Proceedings Volume 10698

Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave

Makenzie Lystrup, Howard A. MacEwen, Giovanni G. Fazio, et al.
cover
Proceedings Volume 10698

Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave

Makenzie Lystrup, Howard A. MacEwen, Giovanni G. Fazio, et al.
Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 16 October 2018
Contents: 36 Sessions, 173 Papers, 82 Presentations
Conference: SPIE Astronomical Telescopes + Instrumentation 2018
Volume Number: 10698

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10698
  • JWST I
  • JWST II
  • Missions
  • Probe Study Overviews
  • Decadal Study Overviews: Joint Session with Conferences 10698 and 10699
  • HABEX I
  • HABEX II
  • LUVOIR I
  • LUVOIR II
  • OST I
  • OST II
  • Technology I
  • Technology II
  • Technology III
  • Small Sats I
  • Small Sats II
  • In: Space Assembly
  • EUCLID
  • WFIRST I
  • WFIRST II
  • WFIRST III
  • Posters: Coronagraph
  • Posters: CubeSats
  • Posters: EUCLID
  • Posters: Exoplanets
  • Posters: HABEX
  • Posters: JWST
  • Posters: LUVOIR
  • Posters: Origins
  • Posters: Missions
  • Posters: Observing Tools
  • Posters: SmallSats
  • Posters: Technology
  • Posters: WFIRST
  • Plenary Talks
Front Matter: Volume 10698
icon_mobile_dropdown
Front Matter: Volume 10698
This PDF file contains the front matter associated with SPIE Proceedings Volume 10698 including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
JWST I
icon_mobile_dropdown
The James Webb Space telescope: observatory status and preparations for launch (Conference Presentation)
Michael W. McElwain, Malcolm B. Niedner, Charles W. Bowers, et al.
The James Webb Space Telescope (JWST) is a NASA flagship mission that will address multiple science themes including our Universe’s first light, the assembly of galaxies, the birth of stars and planetary systems, and planets and the origins of life. The JWST is a large (6.5 m) segmented aperture telescope equipped with near- and mid-infrared instruments (0.6-28 microns), all of which are passively cooled to ~40 K by a 5-layer sunshield while the mid-infrared instrument is actively cooled to 7 K. The JWST will be launched to an L2 orbit aboard a European Space Agency (ESA) supplied Ariane 5 rocket, whose payload volume constraints require that the JWST structure is stowed for launch. The JWST telescope recently completed its cryogenic test program and the sunshield has been fully integrated and deployed. JWST is currently in the final stages of the test program at the Observatory level. The current estimated JWST performance metrics will be presented, such as the image quality, pointing stability, sensitivity, and stray light backgrounds. The JWST development status and future plans will be described for the final testing, launch, and commissioning. JWST is an international project with contributions from NASA, ESA, and the Canadian Space Agency (CSA). Northrop Grumman Aerospace Systems is the prime contractor for the JWST, and the Space Telescope Science Institute will serve as the science operations center.
Performance of the center-of-curvature optical assembly during cryogenic testing of the James Webb Space Telescope
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a 6 degree-of-freedom hexapod actuation system and a radius-of-curvature (ROC) actuation system. The full telescope was tested at its cryogenic operating temperature at Johnson Space Center (JSC) in 2017. This testing included center-of-curvature measurements of the PM wavefront error using the Center-of-Curvature Optical Assembly (COCOA), along with the Absolute Distance Meter Assembly (ADMA). The COCOA included an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer was used to enable alignment and phasing of the PM segments. By combining measurements at two laser wavelengths, synthetic wavelengths up to 15 mm could be achieved, allowing mirror segments with millimeter-level piston errors to be phased to the nanometer level. The ADMA was used to measure and set the spacing between the PM and the focus of the COCOA null (i.e., the PM center-of-curvature) for determination of the ROC. This paper describes the COCOA, the PM test setup, the testing performed, the test results, and the performance of the COCOA in aligning and phasing the PM segments and measuring the final PM wavefront error.
James Webb Space Telescope optical performance predictions post cryogenic vacuum tests
The James Webb Space Telescope is a large space-based astronomical telescope that will operate at cryogenic temperatures. Because of its size, the telescope must be stowed in an inoperable configuration for launch and remotely reconfigured in space to meet the operational requirements using active Wave Front Sensing and Control (WFSC). Predicting optical performance for the flight system relies on a sequence of incremental tests and analyses that has culminated with the cryogenic vacuum test of the integrated Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) referred to as OTIS. The interplay between the optical budgeting process, test verification results at incrementally increasing levels of integration, use of test validated models, and the WFSC process to produce the final optical performance predictions for final verification by analysis will be presented.
James Webb Space Telescope (JWST) optical telescope element and integrated science instrument module (OTIS) cryogenic test program and results
Randy A. Kimble, Lee D. Feinberg, Mark F. Voyton, et al.
In 2017, the James Webb Space Telescope Optical Telescope Element and Integrated Science Instrument Module (OTIS) underwent cryogenic optical testing at the Johnson Space Center. In this paper, we summarize the successful execution and results of this 100-day test, which was a major program milestone. We summarize the as-run test configuration and provide a top-level as-run timeline. We also provide the top-level functional, optical, thermal, and operational results from the test. We summarize the key technical issues encountered and the resolution of those issues. The results of the OTIS test indicate that the payload should be fully capable of delivering on JWST’s exciting scientific potential.
JWST II
icon_mobile_dropdown
Optomechanical modeling of the optical telescope element and integrated science instrument module (OTIS) cryo-vacuum test for the James Webb Space Telescope (JWST)
Ryan Irvin, Scott O. Rohrbach, Lenward Seals, et al.
This paper describes the construction and application of an integrated optomechanical raytrace model used for optical analysis support of the OTIS cryo-vacuum test of the James Webb Space Telescope (JWST) test campaign. OTIS is the Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM). Four specific applications are described – 1) simulation of ambient over-lighting conditions from clean room luminaires and photogrammetry flashes, 2) PSF image motion predictions in the presence of auto-collimating flat (ACF) actuation, 3) science instrument field illumination (“shadowgrams”) checking for unexpected vignetting, and 4) pupil alignment simulations of the Near Infrared Imager and Slitless Spectrograph (NIRISS).
JWST’s near infrared spectrograph status and first OTIS test results
Maurice Te Plate, Stephan Birkmann, Marco Sirianni, et al.
The James Webb Space Telescope (JWST) is frequently referred to as the follow-on mission to the Hubble Space Telescope (HST). The “Webb”, as it is often called, will be the biggest space telescope ever built and it will lead to astounding scientific breakthroughs. The observatory is currently scheduled for launch in 2020 from Kourou, French Guyana by an ESA provided Ariane 5 rocket. The Observatory houses four scientific instruments. One of them is NIRSpec, the multi-object Near Infrared Spectrograph, built for ESA by Airbus Defence and Space in Germany. After the JWST Optical telescope Element (OTE) integration and testing was completed in early 2016, the Integrated Science Instruments Module (ISIM) was integrated to the OTE in May 2016. The complete system of OTE and ISIM, now called OTIS, then successfully went through an acoustic and vibration test campaign at NASA Goddard Space Flight Center (GSFC). After this, the OTIS system was shipped to the Johnson Space Center (JSC) in Houston, TX, where a final 100+ days lasting cryogenic vacuum test was conducted inside the famous Thermal Chamber A. This paper presents NIRSpec’s hardware status and some preliminary test results from the OTIS test campaign.
JWST mirror and actuator performance at cryo-vacuum
Erin M. Wolf, Benjamin B. Gallagher, J. Scott Knight, et al.
The James Webb Space Telescope (JWST) telescope’s Secondary Mirror Assembly (SMA) and eighteen Primary Mirror Segment Assemblies (PMSAs) are each actively controlled in rigid body position via six hexapod actuators. Each of the PMSAs additionally has a radius of curvature actuator. The mirrors are stowed to the mirror support structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally deployed position before the Wavefront Sensing & Control (WFSC) alignment and phasing process begins. JWST requires testing of the full optical system in a Cryogenic Vacuum (CV) environment before launch. The cryo vacuum test campaign was executed in Chamber A at the Johnson Space Center (JSC) in Houston Texas. The test campaign consisted of an ambient vacuum test, a cooldown test, a cryo stable test at 65 Kelvin, a warmup test, and finally a second ambient vacuum test. Part of that test campaign was the functional and performance testing of the hexapod actuators on the flight mirrors. This paper will describe the testing that was performed on all 132 hexapod and radius of curvature actuators. The test campaign first tests actuators individually then tested how the actuators perform in the hexapod system. Telemetry from flight sensors on the actuators and measurements from external metrology devices such as interferometers, photogrammetry systems and image analysis was used to demonstrate the performance of the JWST actuators. The mirror move commanding process was exercised extensively during the JSC CV test and many examples of accurately commanded moves occurred. The PMSA and SMA actuators performed extremely well during the JSC CV test, and we have demonstrated that the actuators are fully functional both at ambient and cryo temperatures and that the mirrors will go to their commanded positions with the accuracy needed to phase and align the telescope.
Updated optical modeling of JWST coronagraph performance contrast, stability, and strategies
We update performance simulations and contrast predictions for JWST's coronagraphs based on the latest infor- mation on the as-built telescope and instrument properties, including both static and dynamic contributions to wavefront error. By combining optical modeling of the telescope, instruments and coronagraph optics along with STScI's rigorously-validated exposure time calculation engine, we develop updated contrast models including contributions from effects such as target acquisition residuals, stellar color differences, etc. We present assessments of the impact of wavefront error changes over time between science and PSF reference stars, using modeled wavefront drifts on various timescales based on available observatory structural/thermal/optical modeling and tested performance during the OTIS cryo test, extrapolated to on-orbit conditions. For NIRCam we explore tradeoffs between different occulting masks at a given wavelength. Between now and the start of Cycle 1 science, these and other updated simulations will enable the science community to prepare analysis tools and PSF subtraction software to hit the ground running with JWST coronagraphic observations.
Missions
icon_mobile_dropdown
SPICA: a joint infrared space observatory (Conference Presentation)
Peter R. Roelfsema, Hiroshi Shibai, Kees Wafelbakker, et al.
Measurements in the infrared wavelength domain allow us to assess directly the physical state and energy balance of cool matter in space, thus enabling the detailed study of the various processes that govern the formation and early evolution of stars and planetary systems in the Milky Way and of galaxies over cosmic time. Previous infrared missions, from IRAS to Herschel, have revealed a great deal about the obscured Universe, but sensitivity has been limited because up to now it has not been possible to fly a telescope that is both large and cold. Such a facility is essential to address key astrophysical questions, especially concerning galaxy evolution and the development of planetary systems. SPICA is a mission concept aimed at taking the next step in mid- and far-infrared observational capability by combining a large and cold telescope with instruments employing state-of-the-art ultra-sensitive detectors. The mission concept foresees a 2.5-meter diameter telescope cooled to below 8 K. Rather than using liquid cryogen, a combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With cooling not dependent on a limited cryogen supply, the mission lifetime can extend significantly beyond the required three years. The combination of low telescope background and instruments with state-of-the-art detectors means that SPICA can provide a huge advance on the capabilities of previous missions. The SPICA instrument complement offers spectral resolving power ranging from ~50 through 11000 in the 17-230 µm domain as well as ~28.000 spectroscopy between 12 and 18 µm. Additionally, SPICA will be capable of efficient 30-37 µm broad band mapping, and small field spectroscopic and polarimetric imaging in the 100-350 µm range. SPICA will enable far infrared spectroscopy with an unprecedented sensitivity of ~5x10-20 W/m2 (5σ/1hr) - at least two orders of magnitude improvement over what has been attained to date. With this exceptional leap in performance, new domains in infrared astronomy will become accessible, allowing us, for example, to unravel definitively galaxy evolution and metal production over cosmic time, to study dust formation and evolution from very early epochs onwards, and to trace the formation history of planetary systems.
Thermal and mechanical design of SPICA payload module
We present an overview of the thermal and mechanical design of the Payload Module (PLM) of the next- generation infrared astronomy mission Space Infrared Telescope for Cosmology and Astrophysics (SPICA). The primary design goal of PLM is to cool the whole science assembly including a 2.5 m telescope and focal-plane instruments below 8 K. SPICA is thereby expected to have very low background conditions so that it can achieve unprecedented sensitivity in the mid- and far-infrared. PLM also provides the instruments with the 4.8 K and 1.8 K stages to cool their detectors. The SPICA cryogenic system combines passive, effective radiative cooling by multiple thermal shields and active cooling by a series of mechanical cryocoolers. The mechanical cryocoolers are required to provide 40 mW cooling power at 4.8 K and 10 mW at 1.8 K at End-of-Life (EoL). End-to-end performance of the SPICA cryocooler-chain from 300 K to 50 mK was demonstrated under the framework of the ESA CryoChain Core Technology Program (CC-CTP). In this paper, we focus on the recent progress of the thermal and mechanical design of SPICA PLM which is based on the SPICA mission proposal to ESA.
SPICA mid-infrared instrument (SMI): conceptual design and feasibility studies
SMI (SPICA Mid-infrared Instrument) is one of the two focal-plane science instruments for SPICA. SMI is the Japanese led instrument proposed and managed by a nation-wide university consortium in Japan and planned to be developed in collaboration with Taiwan and the US. SMI covers the wavelength range from 12 to 36 μm with 4 separate channels: the low-resolution (R = 50-120) spectroscopy function for 17-36 μm, the broad-band (R = 5) imaging function at 34 μm, the mid-resolution (R = 1300-2300) spectroscopy function for 18-36 μm, and the high-resolution (R = 28000) spectroscopy function for 12-18 μm. In this paper, we show the results of our conceptual design and feasibility studies of SMI.
Stray light analysis and testing of the SoloHI (solar orbiter heliospheric imager) and WISPR (wide field imager for solar probe) heliospheric imagers
Arnaud F. R. Thernisien, Russell A. Howard, Clarence Korendyke, et al.
The techniques for stray light analysis, optimization and testing are described for two space telescopes that observe the solar corona: the Solar Orbiter Heliospheric Imager (SoloHI) that will fly on the ESA Solar Orbiter (SolO), and the Wide Field Imager for Solar Probe (WISPR) that will fly on the NASA Parker Solar Probe (PSP) mission. Imaging the solar corona is challenging, because the corona is six orders of magnitude dimmer than the Sun surface at the limb, and the coronal brightness continues to decrease to ten orders of magnitude below the Sun limb above 5° elongation from Sun center. The SoloHI and WISPR instruments are located behind their respective spacecraft heat shield. Each spacecraft heat shield does not block the instrument field of view above the solar limb, but will prevent direct sunlight entering the instrument aperture. To satisfy the instrument stray light attenuation required to observe the solar corona, an additional set of instrument baffles were designed and tested for successive diffraction of the heat shield diffracted light before entering the telescope entrance pupil. A semi empirical model of diffraction was used to design the baffles, and tests of the flight models were performed in flight like conditions with the aim of verifying the rejection of the design. Test data showed that the baffle systems behaved as expected. A second source of stray light is due to reflections of the sunlight off of the spacecraft structures and towards the instruments. This is especially the case for SoloHI where one of the spacecraft 8m tall solar arrays is located behind the telescope and reflects sunlight back onto the instrument baffles. The SoloHI baffle design had to be adjusted to mitigate that component, which was achieved by modifying their geometry and their optical coating. Laboratory tests of the flight model were performed. The test data were correlated with the predictions of a ray tracing model, which enabled the fine tuning of the model. Finally, end-to-end ray tracing was used to predict the stray light for the flight conditions.
A submm-wave comet explorer for water isotopic composition measurements
Imran Mehdi, Paul von Allmen, Jacob Kooi, et al.
Remote submm-wave spectrometers have the capability of providing statistically significant numbers of isotopic composition measurements within the budget constraints of available planetary missions. This talk will present a mission and instrument concept that would enable an accurate measurement of the D/H ratio on not one but several dozens of comets in a four-year mission lifetime. The instrument would utilize advanced cryogenic detectors that would allow us to measure the abundance of the para and ortho spin states of water and its isotopologues. State of the art superconducting heterodyne receivers have been developed that provide detection sensitivities approaching the quantum limit in the 500 GHz frequency range enabling the measurement of D/H ratio on around 50 comets from an observatory stationed for example at the thermally benign Lagrange point L2
Probe Study Overviews
icon_mobile_dropdown
Precision astrometry mission for exoplanet detection around binary stars
We propose an innovative low-cost mission capable of detecting potentially habitable planets around a sample of solartype stars near the sun. The finding of rocky planets in temperate orbits among our immediate stellar neighbors will be a signature discovery. Our mission will deliver relative measurements of stellar position and motion at sub-micro arcsecond precision. These data, in turn, will reveal the presence of orbiting exoplanets. For the case of our primary targets Alpha Centauri A and B, objects below one Earth mass will be accessible when the end-of-mission astrometric precision requirement of 0.4 micro arcsecond is achieved. TOLIMAN will directly reveal the presence of sub-earth mass planets and constrain it orbit and mass This paper describes the optical and mechanical architecture of the mission, and first order instrument design. We also explain the instrument stability requirements imposed by the diffractive pupil post-processing calibration limitations. Our design baseline is a stable two-mirror telescope that images the field directly on CCD camera minimizing the number of reflections and optical components.
The ARIEL space mission
The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next M4 space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of about 1000 known transiting exoplanets using its metre-class telescope, a three-band photometer and three spectrometers that will cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. The payload is designed to perform primary and secondary transit spectroscopy, and to measure spectrally resolved phase curves with a stability of < 100 ppm (goal 10 ppm). Observing from an L2 orbit, ARIEL will provide the first statistically significant spectroscopic survey of hot and warm planets. These are an ideal laboratory in which to study the chemistry, the formation and the evolution processes of exoplanets, to constrain the thermodynamics, composition and structure of their atmospheres, and to investigate the properties of the clouds.
ATLAS probe for the study of galaxy evolution with 300,000,000 galaxy spectra
Robert Content, Yun Wang, Massimo Roberto, et al.
ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a mission concept for a NASA probe-class space mission with primary science goal the definitive study of galaxy evolution through the capture of 300,000,000 galaxy spectra up to z=7. It is made of a 1.5-m Ritchey-Chretien telescope with a field of view of solid angle 0.4 deg2. The wavelength range is at least 1 μm to 4 μm with a goal of 0.9 μm to 5 μm. Average resolution is 600 but with a possible trade-off to get 1000 at the longer wavelengths. The ATLAS Probe instrument is made of 4 identical spectrographs each using a Digital Micro-mirror Device (DMD) as a multi-object mask. It builds on the work done for the ESA SPACE and Phase-A EUCLID projects. Three-mirror fore-optics re-image each sub-field on its DMD which has 2048 x 1080 mirrors 13.6 μm wide with 2 possible tilts, one sending light to the spectrograph, the other to a light dump. The ATLAS Probe spectrographs use prisms as dispersive elements because of their higher and more uniform transmission, their larger bandwidth, and the ability to control the resolution slope with the choice of glasses. Each spectrograph has 2 cameras. While the collimator is made of 4 mirrors, each camera is made of only one mirror which reduces the total number of optics. All mirrors are aspheric but with a relatively small P-V with respect to their best fit sphere making them easily manufacturable. For imaging, a simple mirror to replace the prism is not an option because the aberrations are globally corrected by the collimator and camera together which gives large aberrations when the mirror is inserted. An achromatic grism is used instead. There are many variations of the design that permit very different packaging of the optics. ATLAS Probe will enable ground-breaking science in all areas of astrophysics. It will (1) revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from the local group to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly; (2) open a new window into the dark universe by mapping the dark matter filaments to unveil the nature of the dark Universe using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of gravity using cosmic large-scale structure; (3) probe the Milky Way's dust-shrouded regions, reaching the far side of our Galaxy; and (4) characterize asteroids and other objects in the outer solar systems.
Evolution of galaxies and stars with CETUS
CETUS (“Cosmic Evolution Through Ultraviolet Spectroscopy”) is a mission concept that was selected by NASA for study as a Probe-class mission, meaning a mission whose full life-cycle cost to NASA is between $400M and $1.0B. CETUS has a wide-field UV telescope that will work with other survey telescopes observing at gamma-rays to radio waves to help solve major problems in galaxy and stellar astrophysics. CETUS features a 1.5-m telescope and two widefield survey instruments, a near-UV multi-object slit spectrograph (MOS), a near-UV/ far-UV camera. It also has a near- UV/far-UV imaging spectrograph to survey classes of astronomical objects one at a time. In this paper, we describe how CETUS will address questions posed by the 2010 Astrophysics Decadal Survey panel (Astro-2010) including: what are the drivers of galaxy evolution at the peak rate of star formation; what are the path(s) of evolution from the blue cloud to the red sequence; and how does the circumgalactic medium influence galaxy evolution and vice versa.
CHEOPS: the ESA mission for exo-planets characterization
N. Rando, J. Asquier, C. Corral Van Damme, et al.
The ESA Science Programme Committee (SPC) selected CHEOPS (Characterizing Exoplanets Satellite) in October 2012 as the first Small-class mission (S1) within the Agency’s Scientific Programme, with the following requirements: science driven mission selected through an open Call; an implementation cycle, from the Call to launch, drastically shorter than for Medium-class (M) and Large-class (L) missions; a strict cost-cap to ESA, with possibly higher Member States involvement than for M or L missions. The CHEOPS mission is devoted to the characterization of known exoplanets orbiting bright stars, achieved through the precise measurement of exoplanet radii using the technique of transit photometry. It was adopted for implementation in February 2014 as a partnership between the ESA Science Programme and Switzerland, with a number of other Member States delivering significant contributions to the instrument development and to operations. The CHEOPS instrument is an optical Ritchey-Chrétien telescope with 300 mm effective aperture diameter and a large external baffle to minimize straylight. The compact CHEOPS spacecraft (approx. 300 kg, 1.5 m size), based on a flight-proven platform, will orbit the Earth in a dawn-dusk Sun Synchronous Orbit at 700 km altitude. CHEOPS completed the Preliminary Design Review at the end of September 2014, and passed the Critical Design Review in May 2016. In the course of 2017, flight platform and payload have been integrated and tested, while satellite level activities are planned to start in early 2018, targeting flight readiness by the end of the year. The paper describes the latest CHEOPS development status, focusing on the acceptance test performed on instrument and platform, as well as on the satellite level environmental test campaign.
The Galaxy Evolution Probe: a concept for a mid and far-infrared space observatory
The Galaxy Evolution Probe (GEP) is a concept for a mid and far-infrared space observatory designed to survey sky for star-forming galaxies from redshifts of z = 0 to beyond z = 4. Furthering our knowledge of galaxy formation requires uniform surveys of star-forming galaxies over a large range of redshifts and environments to accurately describe star formation, supermassive black hole growth, and interactions between these processes in galaxies. The GEP design includes a 2 m diameter SiC telescope actively cooled to 4 K and two instruments: (1) An imager to detect star-forming galaxies and measure their redshifts photometrically using emission features of polycyclic aromatic hydrocarbons. It will cover wavelengths from 10 to 400 μm, with 23 spectral resolution R = 8 filter-defined bands from 10 to 95 μm and five R = 3.5 bands from 95 to 400 μm. (2) A 24 – 193 μm, R = 200 dispersive spectrometer for redshift confirmation, identification of active galactic nuclei, and interstellar astrophysics using atomic fine-structure lines. The GEP will observe from a Sun-Earth L2 orbit, with a design lifetime of four years, devoted first to galaxy surveys with the imager and second to follow-up spectroscopy. The focal planes of the imager and the spectrometer will utilize KIDs, with the spectrometer comprised of four slit-coupled diffraction gratings feeding the KIDs. Cooling for the telescope, optics, and KID amplifiers will be provided by solar-powered cryocoolers, with a multi-stage adiabatic demagnetization refrigerator providing 100 mK cooling for the KIDs.
Decadal Study Overviews: Joint Session with Conferences 10698 and 10699
icon_mobile_dropdown
The habitable exoplanet imaging mission (HabEx): science goals and projected capabilities (Conference Presentation)
The Habitable-Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The HabEx mission concept is a large (~4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with extensions into the near UV and near infrared domains. The primary goal of HabEx is to answer fundamental questions in exoplanet science, searching for and characterizing potentially habitable worlds, providing the first complete “family portraits” of planets around our nearest Sun-like neighbors and placing the solar system in the context of a diverse set of exoplanets. At the same time, HabEx will enable a broad range of Galactic, extragalactic, and solar system astrophysics, from resolved stellar population studies that inform the stellar formation history of nearby galaxies, to characterizing the life cycle of baryons as they flow in and out of galaxies, to detailed studies of bodies in our own solar system. We report here on our team’s efforts in defining a scientifically compelling HabEx mission that is technologically executable, affordable within NASA’s expected budgetary envelope, and timely for the next decade. In particular, we present architectures trade study results, quantify technical requirements and predict scientific yield for a small number of design reference missions, all with broad capabilities in both exoplanet science and cosmic origins science. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Overview of the Origins Space telescope: science drivers to observatory requirements
Margaret Meixner, Lee Armus, Cara Battersby, et al.
The Origins Space Telescope (OST) mission concept study is the subject of one of the four science and technology definition studies supported by NASA Headquarters to prepare for the 2020 Astronomy and Astrophysics Decadal Survey. OST will survey the most distant galaxies to discern the rise of metals and dust and to unveil the co-evolution of galaxy and blackhole formation, study the Milky Way to follow the path of water from the interstellar medium to habitable worlds in planetary systems, and measure biosignatures from exoplanets. This paper describes the science drivers and how they drove key requirements for OST Mission Concept 2, which will operate between ~5 and ~600 microns with a JWST sized telescope. Mission Concept 2 for the OST study optimizes the engineering for the key science cases into a powerful and more economical observatory compared to Mission Concept 1.
The large UV/optical/infrared surveyor (LUVOIR): decadal mission study update
NASA commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor, to be evaluated by the 2020 Decadal Survey in Astrophysics. In response, the Science and Technology Definition Team (STDT) identified a broad range of science objectives for LUVOIR that include the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the exchange of matter between galaxies, star and planet formation, and the remote sensing of Solar System objects. To meet these objectives, the LUVOIR Study Office, located at NASA’s Goddard Space Flight Center (GSFC), completed the first design iteration of a 15-m segmented-aperture observatory that would be launched by the Space Launch System (SLS) Block 2 configuration. The observatory includes four serviceable instruments: the Extreme Coronagraph for Living Planetary Systems (ECLIPS), an optical / near-infrared coronagraph capable of delivering 10−10 contrast at inner working angles as small as 2 λ/D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 – 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-NIR imager; and Pollux, a high-resolution UV spectro-polarimeter being contributed by Centre National d’Etudes Spatiales (CNES). The study team has executed a second design iteration to further improve upon the 15-m concept, while simultaneously studying an 8-m concept. In these proceedings, we provide an update on these two architectures.
HABEX I
icon_mobile_dropdown
The Habitable Exoplanet Observatory (HabEx)
The Habitable-Exoplanet Observatory (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The first HabEx mission concept that has been studied is a large (~4m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with extensions into the near ulttraviolet and near infrared domains. We report here on our team’s efforts in defining a scientifically compelling HabEx mission that is technologically executable, affordable within NASA’s expected budgetary envelope, and timely for the next decade. We also briefly discuss our plans to explore less ambitious, descoped missions relative to the primary mission architecture discussed here.
Overview of the 4m baseline architecture concept of the habitable exoplanet imaging mission (HabEx) study
Gary M. Kuan, Keith Warfield, Bertrand Mennesson, et al.
The Habitable Exoplanet Imaging Mission (HabEx) Study is one of four studies sponsored by NASA for consideration by the 2020 Decadal Survey Committee as a potential flagship astrophysics mission. A primary science directive of HabEx would be to image and characterize potential habitable exoplanets around nearby stars. As such, the baseline design of the HabEx observatory includes two complimentary starlight suppression systems that reveal the reflected light from the exoplanet – an internal coronagraph instrument, and an external, formation-flying starshade occulter. In addition, two general astrophysics instruments are baselined: a high-resolution ultraviolet spectrograph, and an ultraviolet, visible, and near-infrared (UV/Vis/NIR), multi-purpose, wide-field imaging camera and spectrograph. In this paper, we present the baseline architecture concept for a 4m HabEx telescope, including key requirements and a description of the mission and payload designs.
The HabEx workhorse camera (Conference Presentation)
Daniel Stern, John Clarke, Scott Gaudi, et al.
The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.
Technology maturity for the habitable-zone exoplanet imaging observatory (HabEx) concept
Rhonda Morgan, Keith Warfield, Gary Kuan, et al.
HabEx Architecture A is a 4m unobscured telescope mission concept optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and also enables a wide range of general astrophysics science. The exoplanet detection and characterization drives the enabling core technologies. A hybrid starlight suppression approach of a starshade and coronagraph diversifies technology maturation risk. In this paper we assess these exoplanet-driven technologies, including elements of coronagraphs, starshades, mirrors, jitter mitigation, wavefront control, and detectors. By utilizing high technology readiness solutions where feasible, and identifying required technology development that can begin early, HabEx will be well positioned for assessment by the community in 2020 Astrophysics Decadal Survey.
HabEx space telescope exoplanet instruments
The HabEx (Habitable Exoplanet) space telescope mission concept carries two complementary optical systems as part of its baseline design, a coronagraph and a starshade, that are designed to detect and characterize planetary systems around nearby stars. The starshade is an external occulter which would be 72 m in diameter and fly some 124,000 km ahead of the telescope. A starshade instrument on board the telescope enables formation flying to maintain the starshade within 1 m of the line of sight to the star. The starshade instrument has various modes, including imaging from the near UV through to the near infrared and integral field spectroscopy in the visible band. The coronagraph would provide imaging and integral field spectroscopy in the visible band and would reach out to 1800 nm for low resolution spectroscopy in the near infrared. To provide the necessary stability for the coronagraph, the telescope would be equipped with a laser metrology system allowing measurement and control of the relative positions of the principal mirrors. In addition, a fine guidance sensor is needed for precision attitude control. The requirements for telescope stability for coronagraphy are discussed. The design and requirements on the starshade will also be discussed.
HABEX II
icon_mobile_dropdown
HabEx: A high-precision pointing architecture using microthrusters and a fine steering mirror
This paper provides an overview of a feasible design architecture that satisfies the strict pointing requirements for the 2020 Astrophysics Decadal Survey Habitable Exoplanet Observatory (HabEx) Architecture A mission concept. Microthruster technology has matured significantly in recent years, with high specific impulse and low-level disturbance making microthrusters the prime candidate for high-precision pointing in upcoming space telescope missions. HabEx’s Architecture A concept utilizes microthrusters as the main actuators for the attitude control system pointing mode and a fine steering piezo-electric-operated mirror is utilized in the inner finepointing loop of the attitude control system. Sensing is undertaken using a high-resolution, low-noise focal-plane camera that can support high readout speeds (> 100 Hz), in addition to a state-of-the-art low-order wavefront sensor, which is currently under technology development for NASA’s Wide Field Infrared Survey Telescope (WFIRST).
Numerically optimized coronagraph designs for the Habitable Exoplanet Imaging Mission (HabEx) concept
A J Eldorado Riggs, Garreth Ruane, Kevin Fogarty, et al.
The primary science goal of the Habitable Exoplanet Imaging Mission (HabEx), one of four candidate flagship missions under investigation, is to image and spectrally characterize Earth-like exoplanets. It is well known that pupil obscurations degrade coronagraphic performance and complicate coronagraph design, so HabEx is planned to have an off-axis, unobscured primary mirror. We utilize the circular symmetry of the aperture to investigate 1D-radial coronagraph optimization methods that are prohibitively time-consuming or intractable in 2D, such as diffractive pupil remapping and concurrent, multi-plane optimization. We also directly constrain sensitivities to dynamic, low-order Zernike aberrations, which are separable in polar coordinates and can thus be propagated as 1D-radial integrals. The mask technologies in our designs claim heritage from the extensive modeling and testbed experiments performed by the Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) project. In this paper, we detail our optimization methods and outline future work to complete our design survey.
Overview and performance prediction of the baseline 4-meter telescope concept design for the habitable-zone exoplanet observatory
The Habitable Exoplanet Observatory Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone around nearby sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultrastable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured threemirror- anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope’s specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.
HabEx Lite: a starshade-only habitable exoplanet imager alternative
David Redding, Keith Coste, Otto Polanco, et al.
The HabEx mission concept is intended to directly image planetary systems around nearby stars, and to perform a wide range of general astrophysics and solar system observations. Its main goal is the discovery and characterization of Earthlike exoplanets through high-contrast imaging and spectroscopy. The baseline HabEx concept would use both a coronagraph and a starshade for exoplanet science. We describe an alternative, “HabEx Lite” concept, which would use a starshade (only) for exoplanet science. The benefit is lower cost: by deleting the complex coronagraph instrument; by lowering observatory mass; by relaxing tolerances and stability requirements; by permitting use of a compact on-axis telescope design; by use of a smaller launch vehicle. The scientific penalty of this lower cost option is a smaller number of detected exoplanets of all types, including exoEarth candidates, and a smaller fraction of exoplanets with measured orbits. Our approach uses a non-deployed segmented primary mirror, whose manufacture is within current capabilities.
LUVOIR I
icon_mobile_dropdown
Picometer level stability of a mounted mirror assembly
For internal coronagraph options on the LUVOIR or HabEx mission concepts, the stated challenge of 10 picometers RMS wavefront stability over 10 minutes will govern the performance of every structure that connects the focal plane assembly to each optical surface. This paper interrogates wavefront stability of a mounted mirror assembly for a primary mirror segment assembly, and stability of the optical surface. Analysis describes stability of each element in a primary mirror segment assembly (PMSA) to understand the impact of each component of the PMSA on surface figure error (SFE) over short time periods.
The LUVOIR coronagraph instrument (Conference Presentation)
In preparation for the Astro 2020 Decadal Survey NASA has commissioned the study four flagship missions spanning to a wide range of observable wavelengths: the Origins Space Telescope (OST, formerly the Far-Infrared Surveyor), Lynx (formerly the X-ray Surveyor), the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx). One of the key scientific objectives of the latter two is the detection and characterization of the earth-like planets around nearby stars using the direct imaging technique (along with a broad range of investigations regarding the architecture of and atmospheric composition exo-planetary systems using this technique). As a consequence dedicated exoplanet instruments are being studied for these mission concepts. This paper discusses the design of the coronagraph instrument for the architectures “A” and “B” (respectively 15 and 9 m apertures) of LUVOIR. The material presented in this paper is aimed at providing an overview of the LUVOIR coronagraph instrument for both architectures. It is the result of a year and a half of discussions and with various community stakeholders (scientists and technologists) regarding the instrument’s basic parameters followed by meticulous design work by the the GSFC Instrument Design Laboratory team. In the first section we review the main science drivers and presents the overall parameters of the instrument (general architecture and backend instrument). We then delve into the details of the currently envisioned coronagraph masks along with a description of the wavefront control system. Throughout the manuscript we describe the trades we made during the design process. Because the vocation of this study is to provide a baseline design for the most ambitious earth-like finding instrument that could be possibly launched into the 2030’s, we have designed an complex system that meets the ambitious science goals out team was chartered by the LUVOIR STDT exoplanet Working Group. We minimized technological risk by emphasizing technologies that will be matured by the WFIRST coronagraph instrument.
Modelling exoplanet detection with the LUVOIR coronagraph (Conference Presentation)
Roser Juanola-Parramon, Neil Zimmerman, Maxime Rizzo, et al.
The Coronagraph is a key instrument on the Large UV-Optical-Infrared (LUVOIR) Surveyor mission concept. The Apodized Pupil Lyot Coronagraph (APLC) is one of the baselined mask technologies to enable 1E10 contrast observations in the habitable zones of nearby stars. The LUVOIR concept uses a large, segmented primary mirror (9--15 meters in diameter) to meet its scientific objectives. For such an observatory architecture, the coronagraph performance depends on active wavefront sensing and control and metrology subsystems to compensate for errors in segment alignment (piston and tip/tilt), secondary mirror alignment, and global low-order wavefront errors. Here we present the latest results of the simulation of these effects for different working angle regions and discuss the achieved contrast for exoplanet detection and characterization under these circumstances, including simulated observations using high-fidelity spatial and spectral models of planetary systems generated with Haystacks, setting boundaries for the tolerance of such errors.
LUVOIR II
icon_mobile_dropdown
Optical design of exo-planet coronagraph, integral field spectrograph, and high resolution spectrometer for LUVOIR study (Conference Presentation)
The Large UV/Optical/IR Surveyor (LUVOIR) is a concept for a highly capable, multi-wavelength space observatory with ambitious science goals. Finding and characterizing a wide range of exoplanets, including those that might be habitable, is a major goal of the study. Driven by the ambitious science goals is the challenges of the optical design. The paper will present how the optical design meets the unique challenges for coronagraphs on large segmented telescopes to achieve high contrast for a wide wavelength range from 400 nm to 1700 nm, such as the position and size of occulter masks, deformable mirror placement and separation, diffraction from a segmented mirror, tight tolerances on the optical system and each element, etc. Two types of spectrometers are designed after the coronagraph to analyze the spectrum of detected exo-planet signals: one is an Integral Field Spectrograph (IFS), and the other one is a High Resolution Spectrometer (HRS). These two spectral instruments will provide information scientists requested in searching for habitable planets. The optical designs, unique challenges, and the solutions for all coronagraph and spectral instruments will be presented. Their specifications derived from science goal will be detailed.
Optical budgeting for LUVOIR
Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 8 to 16 meters in diameter, have a segmented primary mirror, active control, and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance. A wave front error budget has been developed to help define the technology needs and assess performance. The budget includes both spatial and temporal domain aspects for the active, adaptive and passive elements in the optical design.
LUVOIR thermal architecture (Conference Presentation)
Jonathan W. Arenberg, John Pohner, George Harpole, et al.
LUVOIR is one of the four large missions being studied for the Astro 2020 decadal review. The LUVOIR observatory is a large, ~9-15m diameter, serviceable concept. The observatory must be highly stable, low 10’s of picometers/10s of minutes and has cold, less than 100K detectors, and warm mirrors, 270K. This paper discusses the evolution of the thermal architecture and discusses the trades evaluated to arrive at the current concept. The next steps in the development will be discussed.
OST I
icon_mobile_dropdown
The Origins Space Telescope: mission concept overview
D. Leisawitz, E. Amatucci, R. Carter, et al.
The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
Thermal considerations and architecture for Origins Space telescope (Conference Presentation)
Jonathan W. Arenberg, John Pohner, George Harpole, et al.
This paper examines the architectural considerations for one of the designs being considered for the Origins Space Telescope (OST) a future far infra-red (~6-600 µm) space-based observatory. OST requires the temperature of the instruments and optics to operate at temperatures less than 4 Kelvin. Achieving these very low temperatures throughout the optical train in an executable and verifiable design is the defining architectural challenge for OST. This paper will discuss the main elements of OST’s thermal design, cooling, parasitics and thermal verification. This paper will include a discussion of how to modify the JWST for application in the far infra-red.
OST II
icon_mobile_dropdown
The mid-infrared imager, spectrometer, coronagraph (MISC) for the Origins Space telescope (OST)
The Mid-infrared Imager, Spectrometer, Coronagraph (MISC) is one of the instruments studied both for the Origins Space Telescope (OST) Mission Concept 1 and 2. The MISC for OST Mission Concept 1 consists of the MISC imager and spectrometer module (MISC I and S), the MISC coronagraph module (MISC COR) and the MISC transit spectrometer module (MISC TRA). The MISC I and S offers (1) a wide field (3 arcminx3 arcmin) imaging and low-resolution spectroscopic capability with filters and grisms for 6-38 μm, (2) a medium-resolution (R~1,000) Integral Field Unit (IFU) spectroscopic capability for 5- 38 μm and (3) a high-resolution (R~25,000) slit spectroscopic capability for 12-18 μm and 25-36 μm. The MISC COR module employs PIAACMC coronagraphy method and covers 6-38 μm achieving 10-7 contrast at 0.5 arcsec from the central star. The MISC TRA module employs a densified pupil spectroscopic design to achieve 3-5 ppm of spectro-photometric stability and covers 5-26 μm with R=100-300. The MISC for OST Mission Concept 2 consists of the MISC wide field imager module (MISC WFI) and the MISC transit Spectrometer module (MISC TRA). The MISC WFI offers a wide field (3 arcmin ×3 arcmin) imaging and low-resolution spectroscopic capabilities with filters and grisms for 6-28μm. The MISC TRA module in the OST Mission Concept 2 also employs the densified pupil spectroscopic design to achieve <5 ppm of spectro-photometric stability and covers 4-22 μm with R=100-300. The highest ever spectrophotometric stability achieved by MISC TRA enables to detect bio-signatures (e.g., ozone, water, and methane) in habitable worlds in both primary and secondary transits of exoplanets and makes the OST a powerful tool to bring an revolutionary progress in exoplanet sciences. Combined with the spectroscopic capability in the FIR provided by other OST instruments, the MISC widens the wavelength coverage of OST down to 5μm, which makes the OST a powerful tool to diagnose the physical and chemical condition of the ISM using dust features, molecules lines and atomic and ionic lines. The MISC also provides the OST with a focal plane guiding function for the other OST science instruments as well as its own use.
The Origins Survey Spectrometer (OSS): a far-IR discovery machine for the Origins Space Telescope
The OSS on the Origins Space Telescope is designed to decode the cosmic history of nucleosynthesis, star formation, and supermassive black hole growth with wide-area spatial-spectral 3-D surveys across the full 25 to 590 micron band. Six wideband grating modules combine to cover the full band at R=300, each couples a long slit with 60-190 beams on the sky. OSS will have a total of 120,000 background-limited detector pixels in the six 2-D arrays which provide spatial and spectral coverage. The suite of grating modules can be used for pointed observations of targets of interest, and are particularly powerful for 3-D spectral spectral surveys. To chart the transition from interstellar material, particularly water, to planetary systems, two high-spectral-resolution modes are included. The first incorporates a Fourier-transform spectrometer (FTS) in front of the gratings providing resolving power of 25,000 (δv = 12 km/s) at 179 µm to resolve water emission in protoplanetary disk spectra. The second boosts the FTS capability with an additional etalon (Fabry-Perot interferometer) to provide 2 km/s resolution in this line to enable detailed structural studies of disks in the various water and HD lines. Optical, thermal, and mechanical designs are presented, and the system approach to the detector readout enabling the large formats is described.
The Origins Space telescope cryogenic-thermal architecture (Conference Presentation)
The Origins Space Telescope (OST) is studied as a future Mid- and Far-Infrared Observatory. It’s scale is a NASA Astrophysics flagship mission to launch in the mid 2030’s. OST will cover the wavelength range from 6 to 600 µm. To reach the sky background for wavelengths greater than about 15 microns, it is necessary to restrict the telescope emission to temperatures lower than JWST (40 K). For 200 micron wavelengths temperatures of 4 K or lower are required. To achieve this low temperature active cooling is required, along with passive shielding and passive radiation to deep space. Currently two concepts are being studied: Concept 1 with a 9 m diameter primary and a suite of 5 extremely capable instruments providing both imaging and spectroscopy over the entire wavelength range. Concept 1 will require an SLS launch vehicle, currently in development, to reach Sun-Earth L2 (SEL2). Concept 2 is a more modest sized telescope with a collecting area equivalent to a 5 m primary, fewer deployments and 3 or 4 instruments also covering the entire wavelength range for imaging and spectroscopy, although with somewhat reduced spectroscopic resolution, and somewhat slower mapping speed. Concept 2’s mass and volume will fit into currently available rocket capabilities to reach SEL2. This paper will describe OST Concept 2’s cryogenic thermal architecture and thermal model results.
Origins Space Telescope: the far infrared imager and polarimeter FIP
Johannes Staguhn, Edward Amatucci, Lee Armus, et al.
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. "Concept-1" is a cold (4 K) 9 m space telescope with five instruments, while "concept 2" consists of a cold 5.9 m telescope and four instruments, providing imaging and spectroscopic capabilities between 5μm and 600μm. The sensitivity provided by the observatory will be a three to four orders of magnitude improvement over currently achieved observational capabilities, allowing to address a wide range of new and so far inaccessible scientific questions, ranging from bio-signatures in the atmospheres of exo-planets to the production of the first metals in the universe right after the end of re-ionization. Here we present the Far Infrared Imager and Polarimeter (FIP) for OST. The camera will cover four bands, 50μm, 100μm, 250μm, and 500μm. In the "concept 1" version of the instrument, FIP will allow for differential polarimetry with the ability to observe two colors simultaneously, while all four bands can be observed simultaneously in total power mode. The confusion limit in the total power mode will be reached in only 8 ms at 500μm, while at 50μm the source density in the sky is so low that at OST's angular resolution of (see manuscript for symbol) 2" in this band the source confusion limit will only be reached after about two hours of integration with the "concept-2" version of FIP ("concept-1" FIP will not be confusion limited at 50m, no matter how long it integrates). Science topics that can be addressed by the camera include, but are not limited to, galactic and extragalactic magnetic field studies, deep galaxy surveys, and outer Solar System objects.
Heterodyn receiver for the Origins Space Telescope concept 2
M. C. Wiedner, Susanne Aalto, Edward G. Amatucci, et al.
The Origins Space Telescope (OST) is a NASA study for a large satellite mission to be submitted to the 2020 Decadal Review. The proposed satellite has a fleet of instruments including the HEterodyne Receivers for OST (HERO). HERO is designed around the quest to follow the trail of water from the ISM to disks around protostars and planets. HERO will perform high-spectral resolution measurements with 2x9 pixel focal plane arrays at any frequency between 468GHz to 2,700GHz (617 to 111 μm). HERO builds on the successful Herschel/HIFI heritage, as well as recent technological innovations, allowing it to surpass any prior heterodyne instrument in terms of sensitivity and spectral coverage.
Architecture for space-based exoplanet spectroscopy in the mid-infrared
Joseph J. Green, Samuel Case Bradford, Thomas Gautier, et al.
Characterizing exoearths at wavelength about 10 micron offers many benefits over visible coronagraphy. Apart from providing direct access to a number of significant bio-signatures, direct-imaging in the mid-infrared can provide 1000 times or more relaxation to contrast requirements while greatly shortening the time-scales over which the system must be stable. This in turn enables tremendous relief to optical manufacturing, control and stability tolerances bringing them inline with current technology state of the art. In this paper, we explore a reference design that co-optimizes a large, segmented, linearized aperture telescope using one-dimensional phase-induced aperture apodization to provide highcontrast imaging for spectroscopic analysis. By rotating about a parent star, the chemical signatures of its planets are characterized while affording additional means for background suppression.
Technology I
icon_mobile_dropdown
Terrestrial exoplanet coronagraph image quality polarization aberrations in Habex
J. B. Breckinridge, M. Kupinski, J. Davis, et al.
Direct imaging and spectroscopy of terrestrial exoplanets requires the control of vector electromagnetic fields to approximately one part in ten to the fifth over a few milliarc second FOV to achieve the necessary 10-10 intensity contrast levels. Observations using space telescopes are necessary to achieve these levels of diffracted and scattered light control. The highly reflecting metal mirrors and their coatings needed to image these very faint exoplanets introduce polarization into the wavefront, which, in turn affects image quality and reduces exoplanet yield unless corrected. To identify and create the technologies and the electro-optical/mechanical-spacecraft systems models that will achieve these levels, NASA is currently developing two mission concepts, each with their own hardware vision. These are: The Habex, a habitable planet explorer and the LUVOIR, a Large Ultra-Violet Optical-Infrared space telescope system. This paper reports the results of polarization ray-tracing the HabEx detailed optical prescription provided by the project to the authors in the fall of 2017. Diattenuation and retardance across both the exit pupil associated with the occulting mask and the exit pupil associated with the coronagraph image plane are given as well as the corresponding Jones pupil matrices. These are calculated assuming isotropic coatings on all mirrors. Analysis and physical measurements indicates that the specification of the primary mirror for exoplanet coronagraphs will need to include a constraint on spatially varying polarization reflectivity (anisotropic coatings). The Jones exit-pupil phase terms, phi XX and phi YY just before the occulting mask differ in shape and are displaced one from the other by about 10 milli-waves. This shows that A/O, which corrects for geometric path differences, cannot completely correct for wavefront errors introduced by polarization for this particular prescription for HabEx. We suggest that these differences may be corrected by adjusting the opto-mechanical design to change angles of incidence on mirrors and corrected by adjusting the design of the dielectric coatings on the highly-reflecting mirror surfaces. Super-posing the phase of XX onto the phase of YY and then correcting using A/O will assure maximum power transmittance through the system and best contrast. These aspects require further investigation.
Shaped pupil coronagraph: disk science mask experimental verification and testing
The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the baseline coronagraph instrument for the proposed WFIRST mission. While in SPC mode, multiple sets of shaped pupil masks and focal plane masks would be available for various imaging tasks. The disk science mask set (SPC-DSM) is designed for exozodiacal disk science. With a 360 degree high contrast field of view, extending up to 20 λ/D, the SPC-DSM provides a powerful tool to study exozodiacal dust clouds associated with stellar debris disks to gain insight of the exoplanet formation and stellar disk dynamics. We will describe the performance verification and demonstration of the SPC-DSM coronagraph as tested in the high contrast imaging testbed (HCIT) at JPL. The goal of the testbed demonstration is an average contrast of 5e-9 over a 10% bandwidth centered at 565nm, in a field of view extending from 6.5 λ/D to 20 λ/D. We will discuss electric field conjugation, performance metrics, and model agreement as applied to the SPC-DSM.
Laboratory testing of coronagraphs for future space telescopes on the Caltech high contrast spectroscopy testbed for segmented telescopes (HCST) (Conference Presentation)
Garreth Ruane, Dimitri Mawet, Jacques-Robert Delorme, et al.
Imaging Earth-like exoplanets with future space telescopes will require a coronagraph instrument that is capable of creating a dark zone in the starlight at the image plane that is ten orders of magnitude fainter than the off-axis image of the host star. What is more, the coronagraph must simultaneously provide a stable dark zone and high throughput over the angular separations that correspond to habitable zones around nearby Sun-like stars (~10-100 milliarcseconds). Since the pupils of most large-aperture space telescope architectures are likely to be obstructed by secondary mirrors, spider support structures, and gaps between mirror segments, the coronagraph optics must also be specially tailored to passively suppress starlight diffracted from the obstructions and discontinuities in the telescope pupil. Here, we demonstrate an apodized vortex coronagraph optimized for an off-axis segmented telescope on the new High Contrast Spectroscopy Testbed for Segmented Telescopes (HCST) at Caltech. The coronagraph consists of a microdot apodizer, a liquid crystal vortex phase mask in the focal plane, and a Lyot stop. The microdot apodizer is an AR-coated glass window with 10um gold microdots to be used in reflection around lambda=800nm. We describe the HCST optical system; the apodizer optimization, fabrication, and metrology procedures; and present end-to-end testbed results of the coronagraph coupled with a 32x32 Boston Micromachines deformable mirror for wavefront control. We aim to achieve a dark zone 10^-7 times fainter than the simulated host star over a wavelength range of 800±40nm in Spring 2018. Finally, we will outline future plans to demonstrate coronagraph concepts for centrally obscured telescopes.
Design and performance analysis of a PIAACMC coronagraph on a segmented aperture
Ruslan Belikov, Stephen Bryson, Dan Sirbu, et al.
To directly image and characterize exoplanets, starlight suppression systems rely on coronagraphs to optically remove starlight while preserving planet light for spectroscopy. The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) is an attractive coronagraph option for the next generation of large space telescopes optimized for habitable exoplanet imaging: PIAACMC offers high throughput, small inner working angle (IWA) with little loss in image quality. PIAACMC is also compatible with segmented apertures, preserving much of the throughput and resolution of a full pupil. Coronagraph compatibility with segmented apertures is essential for the success of habitable planet characterization with future large apertures, such as the Large UV / Optical/ Infrared (LUVOIR) concept currently under way to inform the 2020 decadal survey. We present a design of PIAACMC for a segmented aperture, using the segmented aperture currently considered for LUVOIR as a representative case. This design is optimized to be resilient to tip/tilt jitter and large stellar angular sizes. This also enables it to have improved tolerance to polarization-specific aberrations, which are dominated by low-order modes such as tip-tilt and astigmatism. We simulate and study the performance of this design using a simplified instrument model. These simulations include wavefront control and tip-tilt errors. We characterize the performance of our design in monochromatic as well as broadband light in terms of throughput, inner working angle, contrast, area of the dark zone, and sensitivity to low-order aberrations.
Technology II
icon_mobile_dropdown
Optimal deformable mirror and pupil apodization combinations for apodized pupil Lyot coronagraphs with obstructed pupils
Kevin Fogarty, Johan Mazoyer, Kathryn St. Laurent, et al.
Combining active pupil correction via deformable mirrors (DMs) with coronagraphs such as the Apodized Pupil Lyot Coronagraph (APLC) provides a powerful tool for creating high contrast dark holes with obstructed pupils featuring central obstructions, spiders, and gaps. We investigate optimal combinations of DM pupil remapping via Active Compensation of Aperture Discontinuities- Optimized Stroke Minimization (ACAD-OSM) and binary mask pupil apodization to obtain dark holes with contrasts of 1010 for the APLC. We examine the space of possible configurations for an APLC apodized with a circularly symmetric pupil mask and a pair of DMs using a modified MCMC algorithm that allows us to probe previously unexamined combinations of pupil apodization, focal plane mask size, and Lyot stop size. We find designs with ~ 20% encircled energy throughput for a focal plane mask radius of 4.5λ/D and a bandwidth of 20%, as well as for a focal plane mask radius of 3.18 λ/D and a bandwidth of 10%. We also find solutions for focal plane mask radii of 2 λ/D and 20% bandwidths that can obtain encircled energy throughputs of up to ~ 4%. Our strategy of combining circularly symmetric binary masks with DMs to create dark holes with obstructed pupils can be expanded to optimize the APLC for terrestrial exoplanet yield, and we conclude by exploring the possibility of optimizing coronagraphs using a simple parametric expression for yield.
Membrane mirror evaluation of APERTURE: a precise extremely large reflective telescope using re-configurable elements
Turgut B. Baturalp, Victoria L. Coverstone, Rocco Coppejans, et al.
Larger mirrors are needed to satisfy the requirements of the next generation of UV-Vis space telescopes. Our NASA-NIAC funded project, titled A Precise Extremely large Reflective Telescope Using Reconfigurable Elements (APERTURE), attempts to meet this requirement. The aim of the project is to demonstrate technology that would deploy a large, continuous, high figure accuracy membrane mirror. The figure of the membrane mirror is corrected after deployment using a contiguous coating of a Magnetic Smart Material (MSM) and a magnetic field. The MSM is a magnetostrictive material which is driven by magnetic write head(s) (MWH), locally imposed on the non-reflective side of the membrane mirror. In this proceeding we report the figure accuracy of the MSM coated membrane mirror under various conditions using a Shack-Hartmann surface profiler. The figure accuracy and magnetostrictive performance of the membrane mirror is found to be significantly dependent on ambient temperature fluctuations, the tension load on the membrane, time, magnetic writing head orientation and magnetic field strength. The results and reproducibility of the surface profiling experiments under various conditions are introduced and discussed.
Wide field of view wavefront sensor for active optics correction chain for future space telescopes
The continuous strive for increased sensitiv ity and higher resolution of space based telescopes can only be satisfied with larger primary mirrors. There are quite a few challenges in launching large mirrors in space such as surviving the stress created from the launch acceleration, deployment, thermoelastic deformations, the gravity release etc. Major constraint to space based application is weight which drives the development of thin, extremely lightweight mirrors. Such mirrors are prone for stress based deformations and need active optics correction chain (AOCC) in order to be operated at their full potential. An AOCC for large monolithic mirrors consists of three key active optics components: corrective element (e.g. deformable mirror or DM), wavefront sensor (WFS) and correction algorithm. In order to assess the feasibility of such a system we have developed an AOCC test stand in a collaboration with the European Space Agency (ESA) a nd Netherlands Organisation for Applied Scientific Research (TNO). With this development we aim to measure the performance and the long-term reliability of an AOCC in controlled laboratory conditions. Our design consists of two separate parts, one where the expected aberrations are generated and another where they are measured and corrected. Two deformable mirrors of 37.5 mm and 116 mm are used, the smallest mirror to generate aberrations and the largest to correct them. For wavefront sensing we are using two different wavefront sensors, an 11x11 Shack-Hartmann as well as phase diversity based at the science sensor. We are able to emulate the conditions for both, astronomy related, and Earth observations. Here, we present the design of the system, including the test stand and the correction algorithms, the performance expected from simulations, and the results from the latest lab tests.
Sparse wavefront control: A new approach to high-contrast imaging
Eduardo Bendek, Dan Sirbu, Christopher Henze, et al.
Current high-contrast imaging systems implement wavefront control using traditional deformable mirrors developed for atmospheric turbulence correction, which require large strokes, high-speed, and continuous phase correction. However, high-contrast imaging has different requirements. Thus, developing a specialized deformable mirror for this application able to meet the demanding requirements of future exoplanet imaging flagship missions is valuable for the exoplanet scientific community. In this paper, we propose a novel wavefront control approach, called Sparse Wave-Front Control (SWFC), which enables high-contrast imaging using sparse phase changes on the active surface re-directing coherent starlight to null speckles. To validate SWFC, we simulated a telescope equipped with a Phase Induced Amplitude Apodization (PIAA) coronagraph and a 100 by 100 actuator sparse Deformable Mirror to null speckles caused by the optical system aberrations. We modeled the mirror as a flat surface where narrow gaussian influence functions represent actuators. We performed wavefront control utilizing Electric Field Conjugation achieving 6.7e-11 mean contrast between 3 to 35λ/D in monochromatic light and 7.4e-11 in 10% broadband light. In the second part of this paper, we propose an approach to manufacture Sparse Deformable Mirrors utilizing photosensitive polymers, which could be placed below the mirror coating and can be photonically actuated by back illumination through the mirror substrate.
Technology III
icon_mobile_dropdown
Material selection for far Infrared telescope mirrors
Large visible telescopes present challenging requirements for manufactured surface figure and stability. By comparison, far infrared (IR) telescopes relax many of these requirements by ~100x. These relaxed requirements may translate into reduced cost, schedule, mass, and system complexity. This paper explores how different mirror substrate materials might take advantage of these requirements while operating in a cryogenic environment. Primary mirror materials are evaluated for an Origins Space Telescope (OST) concept, using a 9.1 m segmented aperture in a 30 μm diffraction limited system.
High-contrast imager for complex aperture telescopes (HiCAT): 5. first results with segmented-aperture coronagraph and wavefront control
Rémi Soummer, Gregory R. Brady, Keira Brooks, et al.
Segmented telescopes are a possible approach to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to the central obstruction, support structures and segment gaps, makes high-contrast imaging very challenging. The High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed was designed to study and develop solutions for such telescope pupils using wavefront control and coronagraphic starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures - e.g. the Wide Field Infrared Survey Telescope (WFIRST) - up to on-axis segmented telescopes, including various concepts for a Large UV, Optical, IR telescope (LUVOIR). In the past year, HiCAT has made significant hardware and software updates in order to accelerate the development of the project. In addition to completely overhauling the software that runs the testbed, we have completed several hardware upgrades, including the second and third deformable mirror, and the first custom Apodized Pupil Lyot Coronagraph (APLC) optimized for the HiCAT aperture, which is similar to one of the possible geometries considered for LUVOIR. The testbed also includes several external metrology features for rapid replacement of parts, and in particular the ability to test multiple apodizers readily, an active tip-tilt control system to compensate for local vibration and air turbulence in the enclosure. On the software and operations side, the software infrastructure enables 24/7 automated experiments that include routine calibration tasks and high-contrast experiments. In this communication we present an overview and status update of the project, both on the hardware and software side, and describe the results obtained with APLC wavefront control.
Exoplanet telescope diffracted light minimized: the pinwheel-pupil solution
Terrestrial exoplanets shine in light reflected from a parent star. Optical spectra are required to provide evidence of a life-supporting environment. Exoplanets are very faint and their optical spectra are contaminated by the spectrum of the parent star. High angular resolution provided by large apertures is needed to distinguish between the spectrum of the exoplanet and its star. Today, large aperture telescopes use segmented primary mirrors that employ close-packed hexagonal segments. The telescope primary mirror is periodically discontinuous with straight lines. These discontinuities scatter unwanted radiation from the much brighter parent star across the field of view to obscure the light from the very faint terrestrial exoplanet. These discontinuities, which mimic a diffraction grating, result in a non-uniform distribution of background light across the image plane. This non-uniformity masks or hides exoplanets from view, to reduce the number of exoplanets that can be observed with a large aperture telescope or to reduce the quality of spectra and thus lead to misinterpretation of data. Here we introduce the concept of the pinwheel pupil whose unique diffraction pattern significantly reduces the non-uniform distribution of background radiation. Diffraction patterns from pinwheel pupils are compared to the monolithic filled aperture, the classical Cassegrain, the 60-degree symmetry of the hexagonal segments (JWST, E-ELT, etc.). Diffraction “spikes” are reduced by at least 105. We discuss the “pinwheel pupil” advantages to spectroscopy, image processing, and observatory operations. We show that, segment fabrication of curved-sided mirrors is not more difficult than fabrication of hexagonal mirror segments. . This is the report of quantitative study of Fraunhofer (far field) diffraction patterns produced by three different topologies or architectures of mirror segmentation, when illuminated by a plane wave of monochromatic white-light. A plot, in angular units of the intensity as a function of azimuth, Phif , within annular rings at different FOVs, centered on the system axis of the diffraction pattern will be presented. The advantages of the segmented pinwheel pupil is discussed.
Diffraction analysis of large segmented mirror concepts for exoplanet exploration
Diffraction effects of large segmented mirror gaps and secondary mirror support struts produce diffraction peaks or flares that are a detriment to exoplanet detection. In this paper we present detailed parametric diffraction analyses of an innovative “Pinwheel Pupil” segmented mirror concept utilizing curved segment gaps and secondary support struts that can potentially eliminate these diffraction flares that can obscure a faint exoplanet image. The resulting numerical diffraction performance predictions are quantitatively compared to that of both ideal monolithic circular pupils and classical annular pupils with straight secondary mirror struts. We utilize performance – based merit functions consisting of both radial and azimuthal profiles of the resulting telescope point spread function.
Neural network control of the high-contrast imaging system
Currently, linear state space modeling is used for focal plane wavefront estimation and control of high-contrast imaging system. Although this framework has made great strides in the past decades, it fails to track the nonlinearities from the deformable mirrors and the light propagation, which to some extent influences the accuracy of the electric field estimation and the speed and robustness of the controller. In this paper, we propose the application of neural networks to identify and optimally control a high-contrast imaging system. Based on the E-M algorithm and reinforcement learning techniques, we develop a new nonlinear system identificaton method and a corresponding nonlinear neural network controller. Simulation and experimental results from Princetons High Contrast Imaging Lab (HCIL) are reported to demonstrate the utility of this algorithm.
Impact of ionizing radiations on ZERODUR
Antoine Carré, Thomas Westerhoff, Tony Hull
Satellites operating on LEO and GEO trajectories are subject to the effect of ionizing space radiations, mostly electrons, that are concentrated in the Van Allen belts. These ionizing radiations are responsible for accelerated ageing (especially compaction, i.e. local material density variation), which is thought to be detrimental for the optical figure of the embedded optical devices. The studies made on this topic during the last four decades, are proposing very different phenomenological power laws description of this effect. However, the simulated deformations derived from these laws are in partial disagreement with the observations made at the laboratory, moreover they do not account for the absence of problems reported during the space missions embedding ZERODUR material. In order to elucidate these mismatches, we defined a new experimental approach suited for the description of the compaction phenomenon for doses corresponding to typical astrospace missions. An overview of the preparatory simulation work for the design of the irradiation environment, for the design of the build-up shielding material as well as of the design of the target samples will be presented. This study will also give a short description of the experimental irradiations sequence as well as the high precision metrological approaches used in order to determine the changes induced in the ZERODUR.
Small Sats I
icon_mobile_dropdown
CubeSats for infrared astronomy
This paper investigates the potential role of small satellites, specifically those often referred to as CubeSats, in the future of infrared astronomy. Whilst CubeSats are seen as excellent (and inexpensive) ways to demonstrate and improve the readiness of critical (space) technologies of the future they also potentially have a role in solving key astrophysical problems. The pros and cons of such small platforms are considered and evaluated with emphasis on the technological limitations and how these might be improved. Three case studies are presented for applications in the IR region. One of the main challenges of operating in the IR is that the detector invariably needs to be cooled. This is a significant undertaking requiring additional platform volume and power and is one of the major areas of discussion in this paper. Whilst the small aperture on a CubeSat inevitably has limitations both in terms of sensitivity and angular resolution when compared to large ground-based and space-borne telescopes, the prospect of having distributed arrays of tens (perhaps hundreds) of IR-optimised CubeSats in the future offers enormous potential. Finally, we summarise the key technology developments needed to realise the case study missions in the form of a roadmap.
SPHEREx: an all-sky NIR spectral survey
Phillip M. Korngut, James J. Bock, Rachel Akeson, et al.
SPHEREx, a mission in NASA’s Medium Explorer (MIDEX) program recently selected for Phase-A implementation, is an all-sky survey satellite that will produce a near-infrared spectrum for every 6 arcsecond pixel on the sky. SPHEREx has a simple, high-heritage design with large optical throughput to maximize spectral mapping speed. While the legacy data products will provide a rich archive of spectra for the entire astronomical community to mine, the instrument is optimized for three specific scientific goals: to probe inflation through the imprint primordial non-Gaussianity left on today’s large-scale cosmological structure; to survey the Galactic plane for water and other biogenic ices through absorption line studies; and to constrain the history of galaxy formation through power spectra of background fluctuations as measured in deep regions near the ecliptic poles. The aluminum telescope consists of a heavily baffled, wide-field off-axis reflective triplet design. The focal plane is imaged simultaneously by two mosaics of H2RG detector arrays separated by a dichroic beamsplitter. SPHEREx assembles spectra through the use of mass and volume efficient linear variable filters (LVFs) included in the focal plane assemblies, eliminating the need for any dispersive or moving elements. Instead, spectra are constructed through a series of small steps in the spacecraft attitude across the sky, modulating the location of an object within the FOV and varying the observation wavelength in each exposure. The spectra will cover the wavelength range between 0.75 and 5.0 µm at spectral resolutions ranging between R=35 and R=130. The entire telescope is cooled passively by a series of three V-groove radiators below 80K. An additional stage of radiative cooling is included to reduce the long wavelength focal plane temperature below 60K, controlling the dark current. As a whole, SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design.
The HOSTS survey for exo-zodiacal dust: preliminary results and future prospects
S. Ertel, G. M. Kennedy, D. Defrère, et al.
The presence of large amounts of dust in the habitable zones of nearby stars is a significant obstacle for future exo-Earth imaging missions. We executed the HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey to determine the typical amount of such exozodiacal dust around a sample of nearby main sequence stars. The majority of the data have been analyzed and we present here an update of our ongoing work. Nulling interferometry in N band was used to suppress the bright stellar light and to detect faint, extended circumstellar dust emission. We present an overview of the latest results from our ongoing work. We find seven new N band excesses in addition to the high confidence confirmation of three that were previously known. We find the first detections around Sun-like stars and around stars without previously known circumstellar dust. Our overall detection rate is 23%. The inferred occurrence rate is comparable for early type and Sun-like stars, but decreases from 71+11 -20% for stars with previously detected mid- to far-infrared excess to 11+9 -4% for stars without such excess, confirming earlier results at high confidence. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal luminosity function of the dust, we find upper limits on the median dust level around all stars without previously known mid to far infrared excess of 11.5 zodis at 95% confidence level. The corresponding upper limit for Sun-like stars is 16 zodis. An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a corresponding limit of 7.5 zodis. We provide important new insights into the occurrence rate and typical levels of habitable zone dust around main sequence stars. Exploiting the full range of capabilities of the LBTI provides a critical opportunity for the detailed characterization of a sample of exozodiacal dust disks to understand the origin, distribution, and properties of the dust.
A space interferometer on a 6U Cubesat: FIRST-S (Conference Presentation)
Vincent Lapeyrère, Sylvestre Lacour, Mathurin Grenot, et al.
The FIRST-S project is an astronomical project in the context of exoplanet detection. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars. It requires high dynamic range (103) at moderate resolution (arcsec). The proposed instrument is 60 cm baseline stellar interferometer with nulling capabilities based on single-mode fibers and LiNbO3 (Lithium niobate) photonic ship on a 6U CubeSat. This nulling technique is currently developed in the context of FIRST project (Fibered Imager foR a Single Telescope), and is suitable for a nanosatellite application. The first part of this challenge – controlling the injection of the star light in a single-mode fiber with a accuracy of 1 arcsecond – is addressed by the PicSat mission. PicSat is using a 2 stages pointing system: the Attitude Determination and Control System (ADCS) of the platform, and the control of a 2 axis piezo stage. The design is based on two 9cm aperture telescope, inspired by the PicSat payload. The light collected by these two telescopes is guided with the single mode fibers to the integrated active optics. The active part of this ship controls the optical phase difference to a nanometer accuracy over few microns and allow to scan the null fringe. The interferometer itself is used as an OPD sensor and interacts with the ADCS of the platform to maintain this OPD lower to few microns. In this presentation I will present the performances of PicSat on which be can base this design. The satellite design will then be described including the telescopes and injection into fibers and the recombination system. Finally the first results on a lab demonstrator with these parts will be shown.
Design of the Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO) on the double asteroid redirection test (DART)
The Double Asteroid Redirection Test (DART) is a spacecraft that will impact the smaller body of the binary asteroid Didymos. As a technology demonstration, this will be the first time a kinetic impactor is used to perturb the motion of a near earth object. This technique could someday be used to deflect a dangerous asteroid on a future collision course with Earth. As the only instrument aboard DART, the Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO) serves two purposes. First, DRACO provides images to the Small-body Maneuvering Autonomous Real-Time Navigation (SMARTNav) algorithm, allowing the spacecraft to precisely locate and impact the target. In its final moments, DRACO will also characterize the impact site by providing high resolution, scientific imagery of the surface. Derived from the Long Range Reconnaissance Imager (LORRI) on New Horizons, the telescope is a 208 mm aperture, f/12.6, catadioptric Ritchey-Chrétien, with a 0.29 degree field of view. A lightweight opto-mechanical structure, with low CTE mirror substrates and a composite baffle tube, maintains telescope focus in the low temperature environment of deep space. At the focal plane is a 2560 by 2160 pixel, panchromatic, front-side illuminated complementary metal oxide semiconductor (CMOS) image sensor, with digital output, global shutter, and low read noise. A highly integrated focal plane electronics (FPE) module controls the sensor and relays data to the spacecraft.
Small Sats II
icon_mobile_dropdown
Concept design of the LiteBIRD satellite for CMB B-mode polarization
Y. Sekimoto, P. Ade, K. Arnold, et al.
LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.
Two-stage attitude control for direct imaging of exoplanets with a CubeSat telescope
Connor Beierle, Andrew Norton, Bruce Macintosh, et al.
This work outlines the design and development of a prototype CubeSat space telescope to directly image exoplanets and/or exozodiacal dust. This prototype represents the optical payload of the miniaturized distributed occulter/telescope (mDOT), a starshade technology demonstration mission combining a 2 meter scale microsatellite occulter and a 6U CubeSat telescope. Science requirements for the mDOT experiment are presented and translated into engineering requirements for the attitude determination and control subsystem (ADCS). The ADCS will utilize a triad of reaction wheels for coarse pointing and a tip tilt mirror for fine image stabilization down to the sub-arcsecond level. A two-stage attitude control architecture is presented to achieve precise pointing necessary for stable acquisition of diffraction limited imagery. A multiplicative extended Kalman filter is utilized to estimate the inertial attitude of the vehicle and provide input into the aforementioned controller. A hardware-in-the-loop optical stimulator is used to stimulate the payload with scenes highly representative of the space environment from a radiometric and geometric stand point. Scenes rendered to the optical stimulator are synthesized in closed-loop based off a high-fidelity numerical simulation of the underlying disturbances, orbital and attitude dynamics. Performance of the two-stage attitude control loop is quantified and demonstrates the ability to achieve sub-arcsecond pointing using a telescope payload prototype.
PSF photometry for BRITE nano-satellite mission
Adam Popowicz
The BRIght Target Explorer (BRITE) is a space mission consisting of five nano-satellites aimed at the observations of microvariability of the brightest stars. Since the end of 2013, this ongoing mission has provided photometric data for nearly 500 bright stars in the sky. Taking the advantage of currently employed chopping mode of observing, a new PSF-fitting based photometric pipeline was developed for the BRITE data. The motivation for a new procedure was the expected increase of photometric precision for the dimmest objects. The proposed new method uses the principal component analysis (PCA) decomposition of stellar profile into a set of eigen-PSFs, which allows for adaptive fitting to PSFs modulated either by the blurring or by the variations of the intra-pixel sensitivity. The first results of the new pipeline confirm its good performance: for faint stars the PSF photometry results in a smaller scatter than the current photometry, while for the brightest stars the results from both pipelines are comparable. The superiority of a novel technique is evident for the most degraded sensors which makes the proposed pipeline a promising solution for the next years of the mission.
Short life and abrupt death of PicSat, a small 3U CubeSat dreaming of exoplanet detection
M. Nowak, S. Lacour, A. Crouzier, et al.
PicSat was a three unit CubeSat (measuring 30 cm Χ 10 cm Χ 10 cm) which was developed to monitor the β Pictoris system. The main science objective was the detection of a possible transit of the giant planet β Pictoris b's Hill sphere. Secondary objectives included studying the circumstellar disk, and detecting exocomets in the visible band. The mission also had a technical objective: demonstrate our ability to inject starlight in a single mode fiber, on a small satellite platform. To answer all those objectives, a dedicated opto-mechanical payload was built, and integrated in a commercial 3U platform, along with a commercial ADCS (Attitude Determination and Control System). The satellite successfully reached Low Earth Orbit on the PSLV-C40 rocket, on January, 12, 2018. Unfortunately, on March, 20, 2018, after 10 weeks of operations, the satellite fell silent, and the mission came to an early end. Furthermore, due to a failure of the ADCS, the satellite never actually pointed toward its target star during the 10 weeks of operations. In this paper, we report on the PicSat mission development process, and on the reasons why it did not deliver any useful astronomical data
Development of near-infrared imaging spectrometer (NISS) onboard NEXTSat-1
The NISS (Near-infrared Imaging Spectrometer for Star formation history) have been developed by KASI as one of the scientific payloads onboard the first small satellite of NEXTSat program (NEXTSat-1) in Korea. The both imaging and low spectral resolution spectroscopy in the wide near-infrared range from 0.95 to 2.5µm and wide field of view of 2° x 2° is a unique capability of the NISS for studying the star formation in local and distant Universe. In the design of the NISS, special care was taken by implementing the off-axis system to increase the total throughput with limited resources from the small satellite. We confirmed that the mechanical structure of the NISS could be maintained in space through passive cooling of the telescope. To operate the infrared detector and spectral filters at 80K stage, the compact dewar module was assembled after the relay-lens module. The integrations of relay-lens part, primary-secondary mirror assembly and dewar module were independently performed, which alleviated the complex alignment process. The telescope and infrared sensor were validated for the operation at cryogenic temperatures of around 200K and 80K, respectively. The system performance of the NISS, such as focus, cooling efficiency, wavelength calibration and system noise, was evaluated by utilizing our constructed test facility. After the integration into the NEXTSat-1, the flight model of the NISS was tested under the space environments. The NISS is scheduled to be launched in late 2018 and it will demonstrate core technologies related to the future infrared space telescope in Korea.
In: Space Assembly
icon_mobile_dropdown
Breaking the cost curve: applying lessons learned from the James Webb space telescope development
Lee Feinberg, Jonathan Arenberg, Dave Yanatsis, et al.
This paper looks at the key programmatic and technical drivers of the James Webb Space Telescope and assesses ways to building more cost-effective telescopes in the future. The paper evaluates the top level programmatics for JWST along with the key technical drivers from design through integration and testing. Actual data and metrics from JWST are studied to identify what ultimately drove cost on JWST. Finally, the paper assesses areas where applying lessons learned can reduce costs on future observatories and will provide better insights into critical areas to optimize for cost.
Advantages to reusing the James Webb design for 2020 decadal missions (Conference Presentation)
Reuse of a proven design can save a mission significant time, money and risk. At least two of the decadal missions, HabEx and Origins Space Telescope, are considering the reuse of some or most of the James Webb Space Telescope flight hardware design for one of their studied architectures. Another, LUVOIR, will benefit highly from learning the necessary lessons on I&T and architecture reuse. This paper compares the performance of the Webb Telescope against the requirements for the HabEx and OST missions to identify the subsystem designs that can be reused without revisions. We will also highlight the areas where new work must be accomplished. We conclude with a net assessment that that shows Webb reuse is a viable program option and a good deal for science.
Servicing and assembly: enabling the most ambitious future space observatories
Ronald S. Polidan, W. K. Belvin, M. A. Greenhouse, et al.
The scientific measurement requirements of future major space astronomy missions are pushing the design limits that can be autonomously deployed JWST-style from even the largest plausible launch vehicles in the 2030s and beyond. In addition, to maximize the scientific return and make missions more cost-effective, they should be capable of being serviced and upgraded. This requirement was even codified by the US Congress in 2010 to ensure the best use of taxpayer investments in science. We need to advance technologies to support this new generation of space telescopes and utilize planned NASA assets to lower costs, reduce risks, and extend mission life of flagship-class science programs for astrophysics and other NASA science. These missions will be capable of searching very large numbers of extrasolar planets for evidence of life and will enable studies, in detail, of the structure of the first star-forming complexes in the earliest galaxies and the central engines in distant galaxies, and will be powerful tools for general astrophysics and solar system science. We will present and discuss current concepts for using astronauts and robots to service, upgrade, and eventually assemble space observatories and starshades designed to achieve major breakthroughs in our understanding of the cosmos. Notional telescopic missions and instruments (filled apertures, interferometers, evolvable systems, and starshades, among others) will be used to illustrate key characteristics of this approach and demonstrate the broad application such a deep-space facility would provide science missions. The goal of this effort is to understand how to use planned NASA human spaceflight assets and infrastructure, with minimal modification, to assemble, test, and service high-value science facilities. These deep space assets are currently being defined and now is the time to jointly develop requirements and capabilities that meet both science and human exploration objectives. The technical and engineering merits and challenges of in-space servicing and assembly will be discussed, including issues of launching telescopes and instruments in parts, assembly in space, and repair and replacement of instruments and systems. Possible future space infrastructure that may make on-orbit assembly and servicing feasible will also be discussed. Precursors and demonstration activities will be presented, as well as early candidate missions for in-space upgrade and servicing.
In-space assembly application and technology for NASA's future science observatory and platform missions
Lynn M. Bowman, W. Keith Belvin, Erik E. Komendera, et al.
Significant developments are being made for the in-space assembly (iSA) of lightweight structures and spacecraft systems that are needed for NASA’s future science observatory and platform missions. Technology advances in autonomy, robotic manipulators, and modular architectures now make iSA and servicing possible at an acceptable risk and cost. Future in-space system capabilities will be needed for large optical observatory and science platform missions in order to assess key structural design considerations. This paper discusses possible NASA applications of iSA, capability and technology needs for telescope assembly, and emerging technologies for space systems in the future.
Ensuring the enduring viability of large space science missions (Conference Presentation)
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future large space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This paper will discuss the origins of these new questions and the steps to their answers.
EUCLID
icon_mobile_dropdown
VIS: the visible imager for Euclid
Mark Cropper, S. Pottinger, R. Azzollini, et al.
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2021. Together with the near infrared imaging within the NISP instrument, it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2 . By combining 4 exposures with a total of 2260 sec, VIS will reach to deeper than mAB=24.5 (10s) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the period up to the beginning of the Flight Model programme
The Euclid STM VIS focal plane assembly: from the integration to the qualification tests (Conference Presentation)
Jérôme Martignac, Benoît Horeau, François Visticot, et al.
In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. After an extensive phase of definition and study over 4 years made at CEA on the thermo-mechanical architecture of that Focal Plane, the first model (Structural and Thermal Model) has been assembled qualified and delivered to MSSL in June 2017. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150K) connected to their front end electronics (operated at 280K). This Focal Plane will be the largest focal plane (~0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the Teledyne e2v company under ESA contract, front end electronics is studied and provided by MSSL. The Structural and Thermal Model is fully representative of the Flight Model regarding the thermo-mechanical architecture. As the instrument development philosophy follows a Proto Flight approach this choice has been made very early in the development program in order to reduce the risk on the PFM program. So the AIT/AIV plan has been built in order to fully validate since the STM program the overall integration, verification and qualification sequences, taking into account the very stringent cleanliness requirement. The STM FPA integrates 36 CCDs representative of the flight model except for the detection function. Electrical configuration of the front end electronics provides electrical interface in order to power the CCDs and check integrity of all the electrical links to CCDs. In this paper we first recall the architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally leading to a SiC structure. The modular architecture concept, considered as a key driver for such big and complex focal plane is detailed. Parallel to that, the integration workflow including verification steps is fully depicted including specific aspects linked to the use of SiC. Validation and qualification test program is described. A summary of geometrical measurements, thermal balance tests and vibrations tests including the main Ground Support Equipment description are reported. Keyword list: Euclid, CCD, SiC, focal plane, architecture, integration
Euclid near infrared spectrometer and photometer instrument : mid phase D status
This paper is an update of the development status of the NISP instrument already presented during the last SPIE conference(SPIE 9904-22)
The EUCLID NISP grisms flight models performance
ESA EUCLID mission will be launched in 2020 to understand the nature of the dark energy responsible of the accelerated expansion of the Universe and to map the geometry of the dark matter. The map will investigate the distanceredshift relationship and the evolution of cosmic structures thanks to two instruments: the NISP and the VIS. The NISP (Near Infrared Spectro-Photometer) is operating in the near-IR spectral range (0.9-2μm) with two observing modes: the photometric mode for the acquisition of images with broad band filters, and the spectroscopic mode for the acquisition of slitless dispersed images on the detectors. The spectroscopic mode uses four low resolution grisms to cover two spectral ranges: three "red" grisms for 1250-1850nm range, with three different orientations, and one "blue" grism for 920- 1300nm range. The NISP grisms are complex optical components combining four main optical functions: a grism function (dispersion without beam deviation of the first diffracted order) done by the grating on the prism hypotenuse, a spectral filter done by a multilayer filter deposited on the first face of the prism to select the spectral bandpass, a focus function done by the curved filter face of the prism (curvature radius of 10m) and a spectral wavefront correction done by the grating which grooves paths are nor parallel, neither straight. The development of these components have been started since 10 years at the Laboratoire d’Astrophysique de Marseille (LAM) and was linked to the project phases: prototypes have been developed to demonstrate the feasibility, then engineering and qualification models to validate the optical and mechanical performance of the component, finally the flight models have been manufactured and tested and will be installed on NISP instrument. In this paper, we present the optical performance of the four EUCLID NISP grisms flight models characterized at LAM: wavefront error, spectral transmission and grating groove profiles. The test devices and the methods developed for the characterization of these specific optical components are described. The analysis of the test results have shown that the grisms flight models for NISP are within specifications with an efficiency better than 70% on the spectral bandpass and a wavefront error on surfaces better than 30nm RMS. The components have withstood vibration qualification level up to 11.6g RMS in random test and vacuum cryogenics test down to 130K with measurement of optical quality in transmission. The EUCLID grisms flight models have been delivered to NISP project in November 2017 after the test campaign done at LAM that has demonstrated the compliance to the specifications.
WFIRST I
icon_mobile_dropdown
The wide field infrared survey telescope (WFIRST) observatory: design formulation (phase-A) overview (Conference Presentation)
Thomas M. Casey, Nerses V Armani, Wes L Alexander, et al.
NASA’s Wide Field Infrared Survey Telescope (WFIRST) is being designed to deliver unprecedented capability in dark energy and exoplanet science, and to host a technology demonstration coronagraph for exoplanet imaging and spectroscopy. The observatory design has matured since 2013 [“WFIRST 2.4m Mission Study”, D. Content, SPIE Proc Vol 8860, 2013] and we present a comprehensive description of the WFIRST observatory configuration as refined during formulation phase (AKA the phase-A study). The WFIRST observatory is based on an existing, repurposed 2.4m space telescope coupled with a 288 megapixel near-infrared (0.6 to 2 microns) HgCdTe focal plane array with multiple imaging and spectrographic modes. Together they deliver a 0.28 square degree field of view, which is approximately 100 times larger than the Hubble Space Telescope, and a sensitivity that enables rapid science surveys. In addition, the technology demonstration coronagraph will prove the feasibility of new techniques for exoplanet discovery, imaging, and spectral analysis. A composite truss structure meters both instruments to the telescope assembly, and the instruments and the spacecraft are on-orbit serviceable. We present the current design and summarize key Phase-A trade studies and configuration changes that improved interfaces, improved testability, and reduced technical risk. We provide an overview of our Integrated Modeling results, performed at an unprecedented level for a phase-A study, to illustrate performance margins with respect to static wavefront error, jitter, and thermal drift. Finally, we summarize the results of technology development and peer reviews, demonstrating our progress towards a low-risk flight development and a launch in the middle of the next decade.
Wide-Field Infrared Survey Telescope (WFIRST): optical telescope assembly (OTA) status
J. Scott Smith, Lisa Bartusek, Tom Casey, et al.
The WFIRST Mission is the next large astrophysical observatory for NASA after the James Webb Space Telescope and is the top priority mission from the 2010 National Academy of Sciences’ decadal survey. The WFIRST OTA includes the inherited primary and secondary mirrors with precision metering structures that are to be integrated to new mirror assemblies to provide optical feeds to the two WFIRST instruments. We present here: (1) the results for the review of the inherited hardware for WFIRST through a thorough technical pedigree process, (2) the status of the effort to establish the capability of the telescope to perform at a cooler operational temperature of 265K, and (3) the status of the work in requirement development for OTA to incorporate the inherited hardware, and (4) the path forward.
Multi-star wavefront control for the wide-field infrared survey telescope
The Wide-Field Infrared Survey Telescope (WFIRST) is planned to have a coronagraphic instrument (CGI) to enable high-contrast direct imaging of exoplanets around nearby stars. The majority of nearby FGK stars are located in multi-star systems, including the Alpha Centauri stars which may represent the best quality targets for the CGI on account of their proximity and brightness potentially allowing the direct imaging of rocky planets. However, a binary system exhibits additional leakage from the off-axis companion star that may be brighter than the target exoplanet. Multi-Star Wavefront Control (MSWC) is a wavefront-control technique that allows suppression of starlight of both stars in a binary system thus enabling direct imaging of circumstellar planets in binary star systems such as Alpha Centauri. We explore the capabilities of the WFIRST CGI instrument to directly image multi-star systems using MSWC. We consider several simulated scenarios using the WFIRST CGI's Shaped Pupil Coronagraph (SPC) Wide-Field Imaging Mode. First, we consider close binaries such as Mu Cassiopeia that require no modifications to the WFIRST CGI instrument and can be implemented as a purely algorithmic solution. Second, we consider wide binaries such as Alpha Centauri that require a diffraction grating to enable suppression of the off-axis starlight leakage at Super-Nyquist separations. We demonstrate via simulation dark holes in 10% broadband compatible with the WFIRST CGI.
Wide-field infrared survey telescope (WFIRST): composite structure verification for operational temperatures
James Mondello, Paul Baird, Lisa Bartusek, et al.
The Wide-Field Infrared Survey Telescope (WFIRST) mission is the next large astrophysics observatory for NASA after the James Webb Space Telescope and is the top priority mission from the 2010 National Academy of Sciences’ decadal survey. The WFIRST Optical Telescope Assembly (OTA) includes inherited composite support structures that were originally designed and tested for room temperature operation; however, the WFIRST mission will require operation at colder temperatures to achieve sufficient sensitivity for the infrared wavelengths. We will present the results and conclusions of testing completed at the coupon and engineering model level to verify that the inherited composite structures will maintain mechanical integrity and performance over the required temperature range. The testing included: (1) characterization testing of constituent material coupons, (2) thermal cycling and static load testing of a representative aft metering structure (AMS) and forward metering structure (FMS), and (3) thermal cycling and dynamic testing of a representative secondary mirror assembly (SMA).
WFIRST II
icon_mobile_dropdown
The WFIRST coronagraph instrument: technology demonstration and science potential (Conference Presentation)
N. Jeremy Kasdin, Margaret Turnbull, Bruce Macintosh, et al.
The Wide Field Infrared Survey Telescope (WFIRST), which is entering Phase B for a launch in 2026, is NASA’s next large space observatory after the James Webb Space Telescope. In addition to the primary science carried out by The Wide Field Instrument (WFI), which is designed to carry out surveys of galaxies in the near infrared, explore the properties of dark energy and dark matter, and carry out a microlensing survey to complete the census of exoplanets, there will be a technology demonstration of a Coronagraph Instrument (CGI) for very high-contrast imaging and spectroscopy of nearby exoplanets. The CGI will incorporate two coronagraph types and demonstrate low- and high-order wavefront correction for the first time on a space telescope. Operating in the visible, it will consist of a direct imaging camera and a lenslet based integral field spectrograph, both using electron-multiplying CCDs in the focal plane, as well as polarizers allowing direct imaging in separate polarization states. Written by the lead science and engineering team, supported by two science investigation teams (SITs – https://wfirst.gsfc.nasa.gov/science/fswg/scienceteam.html), this paper presents an overview of the technology requirements on the instrument, the instrument design, and the operational plans to demonstrate exoplanet imaging and spectroscopic capability. Also described is how CGI will advance algorithms for extracting planet images from the background and retrieving spectra from a space IFS. Once the core performance is successfully demonstrated, CGI will also be used in the latter part of the mission for a dedicated science and Guest Observer (GO) program. This paper thus also describes the potentially revolutionary science that will be enabled through direct imaging and spectroscopy of known radial velocity planets and debris disks as seen in reflected light.
The WFIRST coronagraph instrument: a major step in the exploration of sun-like planetary systems via direct imaging
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will be the first high-performance stellar coronagraph using active wavefront control for deep starlight suppression in space, providing unprecedented levels of contrast and spatial resolution for astronomical observations in the optical. One science case enabled by the CGI will be taking visible images and (R~50) spectra of faint interplanetary dust structures present in the habitable zone of nearby sunlike stars (~10 pc) and within the snow-line of more distant ones (~20 pc), down to dust brightness levels commensurate with that of the solar system zodiacal cloud. Reaching contrast levels below 10-7 at sub-arcsecond angular scales for the first time, CGI will cross an important threshold in debris disks physics, accessing disks with low enough optical depths that their structure is dominated by transport mechanisms rather than collisions. Hence, CGI will help us understand how exozodiacal dust grains are produced and transported in low-density disks around mature stars. Additionally, CGI will be able to measure the brightness level and constrain the degree of asymmetry of exozodiacal clouds around individual nearby sunlike stars in the optical, at the ~3x solar zodiacal emission level. This information will be extremely valuable for optimizing the observational strategy of possible future exo-Earth direct imaging missions, especially those planning to operate at optical wavelengths as well, such as the Habitable Exoplanet Observatory (HabEx) and the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR).
Review and update of WFIRST coronagraph instrument design and technology (Conference Presentation)
Review and update of WFIRST Coronagraph Instrument Design and Technology Richard T. Demers Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena 91109, CA ABSTRACT NASA’s Wide Field InfraRed Survey Telescope (WFIRST) is a proposed flagship astrophysical observatory that would investigate dark energy, carry out wide-field near infrared (NIR) galactic surveys, and image and characterize extrasolar planets in visible reflected light. The WFIRST observatory would utilize an existing 2.4-m aperture telescope integrated with a baseline Coronagraph Instrument to image and spectrally characterize extrasolar planets in visible reflected light. The WFIRST Coronagraph is designed to directly image and characterize mature planets analogous to those in our solar system. In so doing it would advance what is currently possible in exoplanet spectral characterization and imaging using innovative wavefront and pointing jitter sensing and control algorithms, photolithographically fabricated pupil and occulting masks, precise mask positioning mechanisms, a fast steering mirror mechanism, state of the art polished optics, high actuator count deformable mirrors, electron multiplying CCDs and a lenslet-based integral field spectrograph. We present the system design concept and an overview of the current formulation phase design including structural, thermal, optical, pointing and wavefront controls as well as development of deformable mirrors and detectors for the science and engineering cameras.
WFIRST coronagraph flight performance modeling
As it has for the past few years, numerical modeling is being used to predict the on-orbit, high-contrast imaging performance of the WFIRST coronagraph, which was recently defined to be a technology demonstrator with science capabilities. A consequence has been a realignment of modeling priorities and revised applications of modeling uncertainty factors and margins, which apply to multiple factors such as pointing and wavefront jitter, thermally-induced deformations, polarization, and aberration sensitivities. At the same time, the models have increased in fidelity as additional parameters have been added, such as time-dependent pupil shear and mid-spatial-frequency deformations of the primary and secondary mirrors, detector effects, and reaction-wheel-speed-dependent pointing and wavefront jitter.
WFIRST III
icon_mobile_dropdown
High accuracy coronagraph flight WFC model for WFIRST-CGI raw contrast sensitivity analysis
A high-accuracy high-fidelity flight wavefront control (WFC) model is developed for detailed WFIRST-CGI raw contrast sensitivity analysis. Built upon features of recently testbed validated model, it is further refined to combine a full Fresnel propagation diffraction model for high accuracy contrast truth evaluation, and an economical compact model for WFC purposes. Extensive individual raw contrast error sensitivities are evaluated systematically, both as known imperfections and as unknown calibration errors, for two CGI modes: spectroscopy mode and wide field-of-view mode with shaped pupil coronagraph. More than 90 distinct error items were identified, including system aberrations, optical misalignment, component fabrication errors, telescope interface related errors, etc. The result forms the basis for raw contrast error budget flow down to a sub-system level, where detailed specifications needed to aid in component design and manufacturing, mechanical alignment and instrument integration, and verification and validation operations. Evaluations are automated, making it relatively easy for repeat runs of revised design or at new desired error quantity. Observations from the comprehensive analysis and top error sensitivities and contrast floor contributors are noted and discussed. Error budget flowdown process is also briefly described.
Enabling super-nyquist wavefront control on WFIRST (Conference Presentation)
A large fraction of Sun-like stars is contained in binary systems. Within 10pc there are 70 FGK stars, out of which 43 belong to a multi-star system, and 28 have companion leak that is greater than 1e-9 contrast, assuming typical Hubble-quality space optics. Currently, those binary stars are not included in the WFIRST-CGI target list, but they could be observed if high-contrast imaging around binary star systems using WFIRST is possible, potentially significantly increasing the number of possible FGK targets. The Multi-Star Wavefront Control (MSWC) algorithm can be used to suppress the companion star leakage. If the targets have angular separations larger than the Nyquist controllable region of the Deformable Mirror, MSWC must operate in its Super-Nyquist (SN) mode. This mode requires a target star replica within the SN region in order to provide the ability to null speckles at SN angular separations. For the case of WFIRST, more than half of the targets that can be observed using MSWC, including Alpha Centauri, have angular separations larger than the Nyquist controllable region of the 48x48 actuator Deformable Mirror (DM) to be used. Here, we discuss multiple alternatives to generate those PSF replicas with minimal or no impact to the WFIRST Coronagraph instrument, such as: 1) the addition of a movable diffractive pupil mounted on the Shaped Pupil wheel; 2) design of a modified Shape Pupil capable of creating a dark zone and at the same time diffracting a small fraction of the starlight on the SN region; 3) predicting the minimum residual quilting on the WFIRST DM that would allow observing a given target.
WFIRST low order wavefront sensing and control dynamic testbed performance under the flight like photon flux
To maintain the required performance for the WFIRST Coronagraph Instrument (CGI) in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The WFIRST CGI LOWFS/C subsystem will use the Zernike wavefront sensor, which has a phase-shifting disk combined with the coronagraph’s focal plane mask, to sense the low-order wavefront drift and line-of-sight (LoS) error using the rejected starlight. The dynamic tests on JPL’s Occulting Mask Coronagraph (OMC) Testbed have demonstrated that LOWFS/C can maintain coronagraph contrast to better than 10-8 in presence of WFIRST-like line of sight and low order wavefront disturbances in both Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC) modes. However, the previous dynamic tests have been done using a bright source with photon flux equivalent to stellar magnitude of MV = -3.5. The LOWFS/C technology development on the OMC testbed has since then concentrated in evaluating and improving the LOWFS/C performance under the realistic photon flux that is equivalent to WFIRST Coronagraph target stars. Our recent testbed tests have demonstrated that the LOWFS/C can work cohesively with the stellar light suppression wavefront control, which brings broad band coronagraph contrast from ~1x10-6 to 6x10-9, while LOWF/C is simultaneously suppressing the WFIRST like LoS and low order wavefront drift disturbances on a source that photon flux is equivalent to a MV = 2 star. This lab demonstration mimics the CGI initial dark hole establish process on a bright reference star. We have also demonstrated on the testbed that LOWFS/C can maintain the coronagraph contrast by suppressing the WFIRST like line-of-sight disturbances on a fainter MV = 5 star. This mimics scenario of CGI science target observations. In this paper we will present the recent dynamic testbed performance results of LOWFS/C LoS loops and low order wavefront error correction loop on the flight like photon flux.
Hybrid lyot coronagraph for WFIRST: high contrast testbed demonstration in flight-like low flux environment
In order to validate required operation of the proposed Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument, we have built a testbed in Jet Propulsion Laboratory (JPL), which is analogous to the baseline WFIRST coronagraph instrument architecture. Since its birth in 2016, this testbed, named as Occulting Mask Coronagraph (OMC) testbed, has demonstrated several crucial technological milestones: Broadband high contrast demonstration in both Hybrid Lyot Coronagraph (HLC) and Shape Pupil Coronagraph (SPC) modes while the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem senses and corrects the dynamic flight-like wavefront disturbances. In this paper, we present up-to-date progress of HLC mode demonstration in the OMC testbed. While injecting the flight-like low photon flux starlight with expected Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed, we demonstrate generating high contrast dark hole images. We first study the expected photon flux in actual flight environment, and estimate detection noise and estimation accuracy of the complex electric field if the wavefront sensing algorithm is used based on the pair-wise difference imaging. Then, we introduce our improved scheme to mitigate this photon-starved flight-like low flux environment. As a result, we generate a dark hole that meets the WFIRST raw contrast requirements using the 2nd magnitude star light. We establish the key ideas, describe test setups, and demonstrate test results with data analysis.
Superpolished OAPs for WFIRST CGI
Exoplanet imaging requires super polished off-axis parabolas (OAP) with the utmost surface quality. In this paper we describe an innovative manufacturing process combining 3D printing and stress polishing, to create a warping harness capable of producing any off axis parabola profile with a single actuator. The warping harness is manufactured by 3D printing. This method will be applied to the production of the WFIRST coronagraph's off axis parabolas. The evolution of the warping harness design is presented, starting from a ring warping harness generating astigmatism, to an innovative thickness distribution harness optimised to generate an off axis parabola shape. Several design options are available for the prototyping phase, with their advantages and disadvantages which will be discussed.
Posters: Coronagraph
icon_mobile_dropdown
Review of high-contrast imaging systems for current and future ground- and space-based telescopes I: coronagraph design methods and optical performance metrics
G. Ruane, A. Riggs, J. Mazoyer, et al.
The Optimal Optical Coronagraph (OOC) Workshop at the Lorentz Center in September 2017 in Leiden, the Netherlands gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this first installment of a series of three papers summarizing the outcomes of the OOC workshop, we present an overview of design methods and optical performance metrics developed for coronagraph instruments. The design and optimization of coronagraphs for future telescopes has progressed rapidly over the past several years in the context of space mission studies for Exo-C, WFIRST, HabEx, and LUVOIR as well as ground-based telescopes. Design tools have been developed at several institutions to optimize a variety of coronagraph mask types. We aim to give a broad overview of the approaches used, examples of their utility, and provide the optimization tools to the community. Though it is clear that the basic function of coronagraphs is to suppress starlight while maintaining light from off-axis sources, our community lacks a general set of standard performance metrics that apply to both detecting and characterizing exoplanets. The attendees of the OOC workshop agreed that it would benefit our community to clearly define quantities for comparing the performance of coronagraph designs and systems. Therefore, we also present a set of metrics that may be applied to theoretical designs, testbeds, and deployed instruments. We show how these quantities may be used to easily relate the basic properties of the optical instrument to the detection significance of the given point source in the presence of realistic noise.
Straylight analysis for the externally occulted Lyot solar coronagraph ASPIICS
Raphaël Rougeot, Claude Aime, Cristian Baccani, et al.
The ESA formation Flying mission Proba-3 will y the giant solar coronagraph ASPIICS. The instrument is composed of a 1.4 meter diameter external occulting disc mounted on the Occulter Spacecraft and a Lyot-style solar coronagraph of 50mm diameter aperture carried by the Coronagraph Spacecraft positioned 144 meters behind. The system will observe the inner corona of the Sun, as close as 1.1 solar radius. For a solar coronagraph, the most critical source of straylight is the residual diffracted sunlight, which drives the scientific performance of the observation. This is especially the case for ASPIICS because of its reduced field-of-view close to the solar limb. The light from the Sun is first diffracted by the edge of the external occulter, and then propagates and scatters inside the instrument. There is a crucial need to estimate both intensity and distribution of the diffraction on the focal plane. Because of the very large size of the coronagraph, one cannot rely on representative full scale test campaign. Moreover, usual optics software package are not designed to perform such diffraction computation, with the required accuracy. Therefore, dedicated approaches have been developed in the frame of ASPIICS. First, novel numerical models compute the diffraction profile on the entrance pupil plane and instrument detector plane (Landini et al., Rougeot et al.), assuming perfect optics in the sense of multi-reflection and scattering. Results are confronted to experimental measurements of diffraction. The paper reports the results of the different approaches.
Accelerated modeling of near and far-field diffraction for coronagraphic optical systems
Accurately predicting the performance of coronagraphs and tolerancing optical surfaces for high-contrast imaging requires a detailed accounting of diffraction effects. Unlike simple Fraunhofer diffraction modeling, near and farfield diffraction effects, such as the Talbot effect, are captured by plane-to-plane propagation using Fresnel and angular spectrum propagation. This approach requires a sequence of computationally intensive Fourier transforms and quadratic phase functions, which limit the design and aberration sensitivity parameter space which can be explored at high-fidelity in the course of coronagraph design. This study presents the results of optimizing the multi-surface propagation module of the open source Physical Optics Propagation in PYthon (POPPY) package. This optimization was performed by implementing and benchmarking Fourier transforms and array operations on graphics processing units, as well as optimizing multithreaded numerical calculations using the NumExpr python library where appropriate, to speed the end-to-end simulation of observatory and coronagraph optical systems. Using realistic systems, this study demonstrates a greater than five-fold decrease in wall-clock runtime over POPPY’s previous implementation and describes opportunities for further improvements in diffraction modeling performance.
Fast linearized coronagraph optimizer (FALCO) I: a software toolbox for rapid coronagraphic design and wavefront correction
The Fast Linearized Coronagraph Optimizer (FALCO) is an open-source toolbox of routines for coronagraphic focal plane wavefront correction. The goal of FALCO is to provide a free, modular framework for the simulation or testbed operation of several common types of coronagraphs. FALCO includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control, and we ask the community to contribute other wavefront correction algorithms. FALCO utilizes and builds upon PROPER, an established optical propagation library. The key innovation in FALCO is the rapid computation of the linearized response matrix for each deformable mirror (DM), which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. FALCO is freely available as source code in MATLAB at github.com/ajeldorado/falco-matlab and will be available later this year in Python 3 at github.com/ajeldorado/falco-python.
Apodized pupil Lyot coronagraphs designs for future segmented space telescopes
Kathryn St. Laurent, Kevin Fogarty, Neil T. Zimmerman, et al.
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multiwavelength suite of instruments. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the community is assessing as part of NASAs Exoplanet Exploration Program Segmented aperture coronagraph design and analysis (SCDA) team. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. This has enabled us to empirically establish relationships between planet throughput and telescope aperture geometry, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors. We also investigate the combination of APLC with wavefront control or complex focal plane masks to improve inner working angle and throughput. Preliminary scientific yield evaluations based on design reference mission simulations indicate the APLC is a very competitive concept for surveying the local exoEarth population with a mission like LUVOIR.
Development of ASPIICS: a coronagraph based on Proba-3 formation flying mission
Damien Galano, Alessandro Bemporad, Steve Buckley, et al.
This paper presents the recent achievements in the development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), a solar coronagraph that is the primary payload of ESA’s formation flying in-orbit demonstration mission PROBA-3. The PROBA-3 Coronagraph System is designed as a classical externally occulted Lyot coronagraph but it takes advantage of the opportunity to place the 1.4 meter wide external occulter on a companion spacecraft, about 150m apart, to perform high resolution imaging of the inner corona of the Sun as close as ~1.1 solar radii. Besides providing scientific data, ASPIICS is also equipped with sensors for providing relevant navigation data to the Formation Flying GNC system. This paper is reviewing the recent development status of the ASPIICS instrument as it passed CDR, following detailed design of all the sub-systems and testing of STM and various Breadboard models.
Wide field of view liquid crystals-based modulator for the polarimeter of the Metis/Solar Orbiter
Gerardo Capobianco, Marta Casti, Silvano Fineschi, et al.
Metis is an inverted occulted coronagraph on-board the ESA/Solar Orbiter mission. The visible light path of the instrument will observe the "white" light (580-640 nm) linearly-polarized emission from the solar corona. The coronal polarized brightness allows retrieval of physical parameters such as the electron density and temperature of the K-corona. The Metis polarimeter comprises a quarter-wave retarder, the liquid crystal polarization modulation package (PMP) and a linear polarizer working as polarization analyser. The PMP consists of two Anti-Parallel Nematic Liquid Crystal Variable Retarders (LCVRs) with the fast axes parallels one to each other and a pre-tilted angle of the molecules in opposite direction, in order to maximize the homogeneity of the retardance across instrumental wide field of view: ±7 deg. This presentation reports the characterization of the PMP breadboard (BB), fully representative of the optical/polarimetric performances of the flight model. This characterization consisted in determining the performances of the device in terms of retardance as function of the applied voltage at different temperatures, angle of incidence and the variation of the retardance as a function of the wavelength. The calibrations were performed by measuring the complete Mueller matrix of the PMP-BB. The experimental results have been compared with the parameters of the theoretical model (e.g., depolarization, effective retardance, cells misalignment).
Calibration of the liquid crystal visible-light polarimeter for the Metis/Solar Orbiter coronagraph
M. Casti, S. Fineschi, G. Capobianco, et al.
Metis is the solar coronagraph selected for the payload of the ESA Solar Orbiter mission. Metis will acquire simultaneous imaging in linearly polarized, broadband visible light (580-640 nm) and in the narrow-band HI Ly-α line (121.6 nm). The METIS visible light path includes a polarimeter, designed to observe and analyse the K-corona linearly polarized by Thomson scattering. The polarimeter comprises a liquid crystal Polarization Modulation Package (PMP) together with a quarter-wave retarder and a linear polarizer. The Metis PMP consists of two Anti-Parallel Nematic Liquid Crystal Variable Retarders (LCVRs) with their fast axis parallel with respect to each other and a pre-tilted angle of the molecules in opposite direction. The LCVRs provide an electro-optical modulation of the input polarized light by applying an electric field to the liquid crystal molecules inside the cells. A given optical retardance can be induced in the LCVRs by selecting a suitable voltage value. This presentation will report the polarimetric characterization of the Flight Model of the Metis polarimeter and the voltage-to-retardance calibration.
Posters: CubeSats
icon_mobile_dropdown
SmallSat interferometry for THz astrophysics
Christopher E. Groppi, Paul Goldsmith, Philip Mauskopf, et al.
While great strides have been made in far-infrared astrophysics with the NASA Spitzer and ESA Herschel missions, subarcsecond spatial resolution from space is still beyond the reach of current technologies. The Atacama Large Millimeter Array has produced stunning images from the ground of planetary systems in the process of formation but cannot observe the key molecules of water or O2, due to the presence of Earth’s atmosphere. The concept presented here will enable interferometric imaging with sub-arcsecond resolution of water and other key far infrared molecular species from space at a cost far lower than the flagship class interferometric missions previously proposed (i.e. ESA’s ESPRIT). We present a concept for a far infrared interferometer based on a constellation of CubeSat antenna elements with a central ESPA-class correlator satellite optimized for the imaging of water in protoplanetary systems. Such a mission would produce groundbreaking images of newly forming planetary systems in a key astrophysical and astrobiological tracer, the 557 GHz ground state line of water. By leveraging recent developments in CubeSat technology, inflatable reflectors, miniaturized receiver systems and low power CMOS digital electronics, such a mission could be implemented at an Explorer level budget. In addition to the proposed astrophysics application, the developments proposed here could also find application in planetary science (FIR spectroscopy of comets and small bodies) and Earth observing (high resolution imaging of Earth from geostationary orbit).
Posters: EUCLID
icon_mobile_dropdown
The application software of the instrument control unit of Euclid-NISP: ready for qualification tests
Sebastiano Ligori, Leonardo Corcione, Vito Capobianco, et al.
In this paper we describe the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management.
EUCLID: design, analysis, fabrication, and test of a 1.3 m collimator for the on-ground characterization of the EUCLID payload module
Olivier Pirnay, Grégory P. Lousberg, Virgile Monamy, et al.
EUCLID is an optical/near-infrared survey mission to be launched towards the L2 Lagrange point. It will aim at studying the dark universe and providing a better understanding of the origin of the accelerating expansion of the universe. Through the use of cosmological sounding, it will investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures on the geometry of the universe and on the cosmic history of large structures formation. The EUCLID PayLoad Module (PLM) consists of a 1.2 m-class telescope and will accommodate two instruments. As a subcontractor of AIRBUS Defence and Space, AMOS is responsible for the manufacturing of all the silicon carbide mirrors of EUCLID PLM except for the primary mirror. In addition, AMOS also produces the 1.3 m test collimator that is used for the on-ground validation of the optical performances of the payload module under operational thermal vacuum conditions. The 1.3m collimator is designed, manufactured, assembled and tested by AMOS. It is based on a Ritchey-Chretien optical configuration, with a f/2 primary mirror and a hyperbolic secondary mirror. The mirrors are made of ZERODUR and polished by AMOS. The high performance of EUCLID PLM calls for not less demanding requirements for the test collimator, in terms of image quality, thermal stability, line of sight stability under micro-vibration, etc. Here after are presented at first the design and the strategies elaborated to cope with the stringent requirements. Then, the manufacturing and metrology of the mirrors are reported. Finally, the Assembly, Integration and Verification by test (AIV) are discussed.
The Euclid STM VIS focal plane assembly metrology: description of the method to measure the CCDs position and the flatness of the full camera
Benoît Horeau, Jérôme Martignac, Michel Berthé, et al.
In the frame work of the ESA Euclid mission to be launched in 2021, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. After an extensive phase of definition and study over 4 years made at CEA on the thermo-mechanical architecture of that Focal Plane, the first model (Structural and Thermal Model) has been assembled qualified and delivered to MSSL in June 2017. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 153K) connected to their front end electronics (operated at 280K). This Focal Plane will be the largest focal plane (∼0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD-273 type specially designed and provided by the Teledyne e2v company under ESA contract. The Structural and Thermal Model is fully representative of the Flight Model regarding the thermo-mechanical architecture. The STM FPA thus integrates 36 CCDs representative of the flight model except for the detection function. We have implemented specific equipment in order to perform the metrology of the full FPA. It consists of the measurement of the flatness of the full camera as well as the determination of the position of its 36 CCDs. The purpose is to measure the dimension of the sensitive area and to localize each CCDs’ image area with an uncertainty of +/-50 µm in X- and Y-directions. These positions are then given at room temperature in the reference frame of the main FPA structure that is interfaced with the Euclid telescope. The metrology also implies the verification of the flatness of the focal plane in the range of +/-60 μm with an uncertainty of +/-10 μm. Indeed, we must check that the design and the assembly of the FPA meet this requirement that consists of considering that the full photosensitive area is included in a volume of 120 μm high. Based on a marble with a flatness of 10 μm and two motorized linear stages, the test bench combines a CCD camera and a confocal sensor. The camera allows localizing the four fiducial crosses of each CCD-273 and thus to define a grid of 9 equally spaced points on the image area. We can then measure thanks to the confocal sensor the flatness of the full sensitive area in 324 points across the FPA. In this paper, we describe the test bench and the method that we have validated for the STM program. We thus report the results for the STM FPA5 with an estimation of the uncertainty of +/-10 µm for the flatness measurement and around +/- 24 μm (including a coverage factor of 2 for a level of confidence of 95%) for the relative position of the CCDs, which corresponds to twice the pixel size of the CCDs. We finally indicate the improvement that we plan to implement to better estimate the CCDs' position in the FPA coordinates.
Snowballs in Euclid and WFIRST detectors
Snowballs are transient events observed in HgCdTe detectors with a sudden increase of charge in a few pixels. They appear between consecutive reads of the detector, after which the affected pixels return to their normal behavior. The origin of the snowballs is unknown, but it was speculated that they could be the result of alpha decay of naturally radioactive contaminants in the detectors, but a cosmic ray origin cannot be ruled out. Even though previous studies predicted a low rate of occurrence of these events, and consequently, a minimal impact on science, it is interesting to investigate the cause or causes that may generate snowballs and their impact in detectors designed for future missions. We searched for the presence of snowballs in the dark current data in Euclid and Wide Field Infrared Survey Telescope (WFIRST) detectors tested in the Detector Characterization Laboratory at Goddard Space Flight Center. Our investigation shows that for Euclid and WFIRST detectors, there are snowballs that appear only one time, and others than repeat in the same spatial localization. For Euclid detectors, there is a correlation between the snowballs that repeat and bad pixels in the operational masks (pixels that do not fulfill the requirements to pass spectroscopy, photometry noise, quantum efficiency, and/or linearity). The rate of occurrence for a snowball event is about 0.9 snowballs/hr. in Euclid detectors (for the ones that do not have associated bad pixels in the mask), and about 0.7 snowballs/hr. in PV3 Full Array Lot WFIRST detectors.
Posters: Exoplanets
icon_mobile_dropdown
A comparison between the opto-thermo-mechanical model and lab measurements for CHEOPS
Demetrio Magrin, Valentina Viotto, Thomas Beck, et al.
CHEOPS is the first small class mission adopted by ESA in the framework of the Cosmic Vision 2015-2025. Its launch is foreseen in early 2019. CHEOPS aims to get transits follow-up measurements of already known exo-planets, hosted by near bright stars (V<12). Thanks to its ultra-high precision photometry, CHEOPS science goal is accurately measure the radii of planets in the super-Earth to Neptune mass range (1<Mplanet/MEarth<20). The knowledge of the radius by transit measurements, combined with the determination of planet mass through radial velocity techniques, will allow the determination/refinement of the bulk density for a large number of small planets during the scheduled 3.5 years life mission. The instrument is mainly composed of a 320 mm aperture diameter Ritchey-Chretien telescope and a Back End Optics, delivering a de-focused star image onto the focal plane. In this paper we describe the opto-thermo-mechanical model of the instrument and the measurements obtained during the opto-mechanical integration and alignment phase at Leonardo company premises, highlighting the level of congruence between the predictions and measurements.
Posters: HABEX
icon_mobile_dropdown
HabEx space telescope optical system overview: general astrophysics instruments
The HabEx (Habitable Exoplanet) concept study is defining a future space telescope with the primary mission of detecting and characterizing planetary systems around nearby stars. The telescope baseline design includes a high-contrast coronagraph and a starshade to enable the direct optical detection of exoplanets as close as 70 mas to their star. In addition to the study of exoplanets, HabEx carries two dedicated instruments for general astrophysics. The first instrument is a camera enabling imaging on a 3 arc minute field of view in two bands stretching from the UV at 150 nm to the near infrared at 1800 nm. The same instrument can also be operated as a multi-object spectrograph, with resolution of 2000. The second instrument is a high-resolution UV spectrograph operating from 300 nm down to 115 nm with up to 60,0000 resolution. HabEx would provide the highest resolution UV/optical images ever obtained. Diffraction limited at 0.4 μm, it would outperform all current and approved facilities, including the 30 m class ground-based extremely large telescopes (ELTs), which will achieve ~0.01 arcsecond resolution at near-infrared (IR) wavelengths with adaptive optics, but will be seeing-limited at optical wavelengths. HabEx would observe wavelengths inaccessible from the ground, including the UV and in optical/near-IR atmospheric absorption bands. Operating at L2, far above the Earth’s atmosphere and free from the large thermal swings inherent to HST’s low-Earth orbit, HabEx would provide an ultra-stable platform that will enable science ranging from precision astrometry to the most sensitive weak lensing maps ever obtained. Here we discuss the design concepts of the general astrophysics optical instruments for the proposed observatory.
HabEx polarization ray trace and aberration analysis
Jeffrey Davis, Meredith K. Kupinski, Russell A. Chipman, et al.
The flux difference between a terrestrial exoplanet and a much brighter nearby star creates an enormous optical design challenge for space-based imaging systems. Coronagraphs are designed to block the star’s flux and obtain a high-dynamic-range image of the exoplanet. The contrast of an optical system is calculated using the point spread function (PSF). Contrast quantifies starlight suppression of an imaging system at a given separation of the two objects. Contrast requirements can be as small as 10−10 for earth-like planets. This work reports an analysis of the September 2017 Habitable Exoplanet Imaging Mission (HabEx) end-to-end optical system prescription for geometric and polarization aberrations across the 450 to 550 nm channel. The Lyot coronagraph was modeled with a vector vortex charge 6 mask but without adaptive optics (AO) to correct the phase of the Jones pupil. The detector plane irradiance was calculated for three states of the telescope/coronagraph system: (1) free of geometric and polarization aberrations; (2) isotropic mirror coatings throughout the end-toend system; and (3) isotropic mirrors with form birefringence on the primary mirror. For each of these three states the system response both with and without a coronagraph mask was calculated. Two merit functions were defined to quantify the system’s ability to attenuate starlight: (1) normalized polychromatic irradiance (NPI), and (2) starlight suppression factor (SSF). Both of these are dimensionless and their values are functions of position across the focal plane. The NPI is defined as the irradiance point-by-point across the detector plane with a coronagraph mask divided by the value of the on-axis irradiance without a coronagraph mask. The SSF is the irradiance point-by-point across the detector plane with a coronagraph mask divided by the pointby-point value of the irradiance across the detector plane without a coronagraph mask. Both the NPI and the SSF provide insights into coronagraph performance. Deviations from the aberration-free case are calculated and summarized in table 2. The conclusions are: (1) the HabEx optical system is well-balanced for both geometric and polarization aberrations; (2) the spatially dependent polarization reflectivity for the HabEx primary mirror should be specified to ensure the coating is isotropic; (3) AO to correct the two orthogonal polarization-dependent wavefront errors is essential.
Mirror design study for a segmented HabEx system
James T. Mooney, Matthew East, Bruce Rottner, et al.
NASA is exploring telescope and mirror technology options to meet the demanding science goals of the proposed HabEx space telescope. A key priority for the HabEx mission concept would be to leverage affordable telescope solutions that can meet challenging telescope performance requirements with a demanding program timeline. The baseline approach for HabEx is to use an unobscured, monolithic primary mirror with a coronagraph to optimize system performance. NASA is performing an initial study to investigate the feasibility of a HabEx Lite concept which would not leverage a coronagraph and would therefore, have lower exoEarth yield as a consequence, but could provide system mass, cost, and schedule advantages. The HabEx Lite concept leverages replicated, ULE® mirror segments to provide an attractive, alternative telescope architecture to meet the HabEx threshold mission needs. We present the initial mirror design and performance assessment for the HabEx Lite concept.
Posters: JWST
icon_mobile_dropdown
Spectrum extraction from detector plane images for the medium-resolution spectrometer of the mid-Infrared Instrument on-board the James Webb Space Telescope
The Mid-Infrared Instrument (MIRI) on-board the James Webb Space Telescope (JWST) performs mediumresolution spectroscopy in the 5 to 28.5micron wavelength range. In this paper two algorithms are presented that will be used to extract 1D spectra from the 2D absolutely calibrated detector science frames acquired with the Medium-Resolution Spectrometer (MRS) of MIRI. The first spectral extraction algorithm performs standard aperture photometry on point and extended sources. The second algorithm, applicable only to point sources, uses the instrument point spread function (PSF) and the pixel signal variance as a weighting function, to extract the signal from the detector pixels in an optimized way. This "optimal" extraction is also optimal in the case of faint source observations. The two algorithms are tested on MIRI ground test data and compared. For point sources, the optimal extraction algorithm is found to be more reliable than the aperture extraction algorithm.
JWST optical telescope element center of curvature test
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) completed their element level integration and test programs and were integrated to the next level of assembly called OTE/ISIM (OTIS) at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland in 2016. Before shipping the OTIS to Johnson Space Center (JSC) for optical test at cryogenic temperature a series of vibration and acoustic tests were performed. To help ensure that the OTIS was ready to be shipped to JSC an optical center of curvature (CoC) test was performed to measure changes in the mirror’s optical performance to verify that the telescope’s primary mirror was not adversely impacted by the environmental testing and also help us in understanding potential anomalies identified during the JSC tests. The 6.5 meter diameter primary mirror consists of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup and both static and dynamic test results.
James Webb Space Telescope optical simulation testbed V: wide-field phase retrieval assessment
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator for wavefront sensing and control designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in the form of a Cooke triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module. An Iris AO hexagonally segmented mirror stands in for the JWST primary. This setup successfully produces images extremely similar to expected JWST in- ight point spread functions (PSFs), and NIRCam images from cryotesting, in terms of the PSF morphology and sampling relative to the diffraction limit. The segmentation of the primary mirror into subapertures introduces complexity into wavefront sensing and control (WFSandC) of large space based telescopes like JWST. JOST provides a platform for independent analysis of WFSandC scenarios for both commissioning and maintenance activities on such observatories. We present an update of the current status of the testbed including both single field and wide-field alignment results. We assess the optical quality of JOST over a wide field of view to inform the future implementation of different wavefront sensing algorithms including the currently implemented Linearized Algorithm for Phase Diversity (LAPD). JOST complements other work at the Makidon Laboratory at the Space Telescope Science Institute, including the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, that investigates coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFSandC studies for future large segmented space telescopes such as LUVOIR.
Fringing solution for the mid-infrared instrument on-board the James Webb Space Telescope
The Mid-Infrared Instrument (MIRI) on-board the James Webb Space Telescope (JWST) performs medium resolution spectroscopy in the 5 to 28.5micron wavelength range. The Medium-Resolution Spectrometer (MRS) of MIRI uses two Si:As impurity band conduction detector arrays. Coherent reflection of infrared light within the MIRI MRS detectors results in fringing; the detector layers act as efficient Fabry-Pérot etalons. In this paper we present three methods to calibrate out the fringes, as part of the MIRI data reduction pipeline. The methods are presented in the context of the investigations on the fringing seen in the MIRI flight model ground test data. The investigations show that the detector fringe transmission depends on the illumination pattern of the observed source on the detector. Optical stimuli of different spatial extents and position in the field-of-view yield different fringe patterns in their extracted spectra. An optical model of the MIRI detectors is hence proposed. By solving the Fresnel equations across the model optical layers, a source-specific fringe correction is derived.
Wavefront sensing and controls demo during the cryo-vac testing of JWST
A subset of the Wavefront Sensing and Controls (WFSC) operations for JWST were demonstrated during its recent cryo-vac testing using the flight telescope and instruments, and a functional simulation of the spacecraft and ground system. The demonstration had three goals: to confirm the operation of the flight data collection scripts, to check the WFSC optical components, and to verify the coordinates and influence functions that will be used for flight WFSC. In this paper, we present the results and lessons learned from this demonstration.
Operability assessment concept for the JWST/NIRSpec micro-shutter array (MSA)
Timothy D. Rawle, Giovanna Giardino, Catarina Alves de Oliveira, et al.
JWST/NIRSpec will include the first space-borne multi-object spectrograph, comprising a micro-shutter array (MSA) of a quarter of a million closable apertures that can be individually addressed to select up to a couple of hundred objects within a ~3.2x3.4 arcmin field of view. Although more than ~85% of the unvignetted shutters are fully operational, the high degree of mechanical movement combined with complex circuitry on a small scale, inevitably leads to some non-operable shutters. In this paper we present an overview of the operability assessment concept for the MSA, employed during both ground tests and in flight. We describe the procedures used to detect, mitigate against, and even repair the non-operable shutters, and show the effect upon the multiplexing capability and output data from NIRSpec. We also present the operability trending results from ground tests, and discuss the probable impact on nominal operations after launch.
JWST cryo fine guidance closed loop test results
M. Begoña Vila , Scott D. Lambros, David M. Diaz, et al.
The James Webb Space Telescope uses the Fine Guidance Controller to achieve pointing accuracy to a millionth of a degree needed for its scientific observations. This closed loop controller includes the Fine Guidance Sensor instrument, the Attitude Control System, and the Fine Steering Mirror, all working together to generate precise attitude updates every 64 ms to stabilize and point the Observatory. It was exercised for the first time with the flight hardware during the cryogenic test at Johnson Space Center. We provide a top level summary of the test, the results, and its performance in preparation for on-orbit operations.
Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion
Taylor S. Chonis, Ben B. Gallagher, J. Scott Knight, et al.
The James Webb Space Telescope’s (Webb’s) deployable primary and secondary mirrors are actively controlled to achieve and maintain precise optical alignment on-orbit. Each of the 18 primary mirror segment assemblies (PMSAs) and the secondary mirror assembly (SMA) are controlled in six degrees of freedom by using six linear actuators in a hexapod arrangement. In addition, each PMSA contains a seventh actuator that adjusts radius of curvature (RoC). The actuators are of a novel stepper motor-based cryogenic two-stage design that is capable of sub-10 nm motion accuracy over a 20 mm range. The nm-level motion of the 132 actuators were carefully tested and characterized before integration into the mirror assemblies. Using these test results as an initial condition, knowledge of each actuator’s length (and therefore mirror position) has relied on software bookkeeping and configuration control to keep an accurate motor step count from which actuator position can be calculated. These operations have been carefully performed through years of Webb test operations using both ground support actuator control software as well as the flight Mirror Control Software (MCS). While the actuator’s coarse stage length is cross-checked using a linear variable differential transformer (LVDT), no on-board cross-check exists for the nm-level length changes of the actuators’ fine stage. To ensure that the software bookkeeping of motor step count is still accurate after years of testing and to test that the actuator position knowledge was properly handed off from the ground software to the flight MCS, a series of optical tests were devised and performed through the Center of Curvature (CoC) ambient optical test campaigns at the Goddard Space Flight Center (GSFC) and during the thermal-vacuum tests of the entire optical payload that were conducted in Chamber A at Johnson Space Center (JSC). In each test, the actuator Fine Step Count (FSC) value is compared to an external measurement provided by an optical metrology tool with the goal of either confirming the MCS database value, or providing a recommendation for an updated calibration if the measured FSC differs significantly from the MCS-based expectation. During ambient testing of the PMSA hexapods, the nm-level actuator length changes were measured with a custom laser deflectometer by measuring tilts of the PMSA. The PMSA RoC fine stage characterization was performed at JSC using multi-wave interferometric measurements with the CoC Optical Assembly (COCOA). Finally, the SMA hexapod fine stage characterization test was performed at JSC using the NIRCam instrument in the “pass-and-a-half” test configuration using a test source from the Aft-Optics System Source Plate Assembly (ASPA). In this paper, each of these three tests, subsequent data analyses, and uncertainty estimations will be presented. Additionally, a summary of the ensemble state of Webb’s actuator fine stages is provided, along with a comparison to a Wavefront Sensing and Control (WFSC)-based requirement for FSC errors as they relate to the optical alignment convergence of the telescope on-orbit.
Wavefront sensing and control demo during the cryo-vacuum testing of JWST: exercising the science and operations center
Charles-Philippe Lajoie, Marshall D. Perrin, Carey Myers, et al.
Aligning and commissioning the James Webb Space Telescope's segmented mirrors after launch will last many months and involve the telescope itself, all science instruments, and all parts of the observatory ground system. In an effort to assess and demonstrate readiness of the complete end-to-end system - i.e. the flight optical telescope elements (OTE), the Integrated Science Instruments Module, the on-board operational scripts, and the ground processing infrastructure - we performed two operations tests during the JWST OTIS cryogenic campaign in 2017. They are the Wavefront Sensing and Control Demonstration activities at NASA Johnson Space Center (JSC), where we performed flight-like sensing and control using the flight software to command mirror moves and take measurements, and a "Shadow Mode test" at the Space Telescope Science Institute's Mission Operations Center (MOC), where we demonstrated processing of the JSC data through the entire ground system infrastructure. Overall, these tests demonstrated that the full system that will support OTE commissioning is soundly designed although still not fully mature. This paper focuses on the operations and systems testing aspects and some lessons learned. We also report on a series of Wavefront Rehearsals being held at the MOC that are providing additional opportunities to build team readiness in operating the ground system as a whole using high fidelity observatory simulators
Time series observations with the mid-infrared instrument (MIRI) on JWST
Sarah Kendrew, Daniel Dicken, Jeroen Bouwman, et al.
Time-variable phenomena such as transiting exoplanets will be a major science theme for the James Webb Space Telescope (JWST). For Guaranteed Time and Early Release Science Observations, over 500 hours of JWST time have been allocated to time series observations (TSOs) of transiting exoplanets. Several dedicated observing modes are available in the instrument suite, whose operations are specifically tailored to these challenging ob- servations. MIRI, the only JWST instrument covering the wavelength range longwards of 5 µm on JWST, will offer TSOs in two of its modes: the low resolution spectrometer, and the imager. In this paper we will describe these modes for MIRI, and discuss how they differ operationally from regular (non-TSO) observations. We will show performance estimates based on ground testing and modeling, discuss the most relevant detector effects for high precision (spectro-)photometry, and provide some guidelines for planning MIRI TSOs.
Making good use of JWST's coronagraphs: tools and strategies from a user's perspective
Julien H. Girard, William Blair, Brian Brooks, et al.
The James Webb Space Telescope (JWST) and its suite of instruments, modes and high contrast capabilities will enable imaging and characterization of faint and dusty astrophysical sources1-3 (exoplanets, proto-planetary and debris disks, dust shells, etc.) in the vicinity of hosts (stars of all sorts, active galactic nuclei, etc.) with an unprecedented combination of sensitivity and angular resolution at wavelengths beyond 2 μm. Two of its four instruments, NIRCam4, 5 and MIRI,6 feature coronagraphs7, 8 for wavelengths from 2 to 23 μm. JWST will stretch the current parameter space (contrast at a given separation) towards the infrared with respect to the Hubble Space Telescope (HST) and in sensitivity with respect to what is currently achievable from the ground with the best adaptive optics (AO) facilities. The Coronagraphs Working Group at the Space Telescope Science Institute (STScI) along with the Instruments Teams and internal/external partners coordinates efforts to provide the community with the best possible preparation tools, documentation, pipelines, etc. Here we give an update on user support and operational aspects related to coronagraphy. We aim at demonstrating an end to end observing strategy and data management chain for a few science use cases involving coronagraphs. This includes the choice of instrument modes as well as the observing and point-spread function (PSF) subtraction strategies (e.g. visibility, reference stars selection tools, small grid dithers), the design of the proposal with the Exposure Time Calculator (ETC), and the Astronomer's Proposal Tool (APT), the generation of realistic simulated data at small working angles and the generation of high level, science-grade data products enabling calibration and state of the art data-processing.
Posters: LUVOIR
icon_mobile_dropdown
Telescope line-of-sight slew control and agility with non-contact vibration isolation for the large ultraviolet/optical/infrared (LUVOIR) surveyor concept
Kiarash Tajdaran, Larry D. Dewell, Eric V. Eason, et al.
The Large Ultraviolet / Optical / Infrared (LUVOIR) mission concept intends to determine not only if habitable exoplanets exist outside our solar system, but also how common life might be throughout the galaxy. This surveying objective implies a high degree of angular agility of a large segmented optical telescope, whose performance requires extreme levels of dynamic stability and isolation from spacecraft disturbance. The LUVOIR concept architecture includes a non-contact Vibration Isolation and Precision Pointing System (VIPPS), which allows for complete mechanical separation and controlled force/torque exchange between the telescope and spacecraft by means of non-contact actuators. LUVOIR also includes an articulated two-axis gimbal to allow for telescope pointing while meeting sun-pointing constraints of the spacecraft-mounted sunshade. In this paper, we describe an integrated pointing control architecture that enables largeangle slewing of the telescope, while maintaining non-contact between telescope and spacecraft, in addition to meeting the LUVOIR line-of-sight agility requirement. Maintaining non-contact during slews preserves telescope isolation from spacecraft disturbances, maximizing the availability of the LUVOIR observatory immediately after repositioning maneuvers. We show, by means of a detailed multi-body nonlinear simulation with a model of the proposed control architecture, that this non-contact slew performance can be achieved within the size, weight and power capabilities of the current voice coil actuator designs for the LUVOIR mission concept.
LUVOIR primary mirror segment alignment control with joint laser metrology and segment edge sensing
John Z. Lou, David C. Redding, Joel A. Nissen, et al.
An approach is developed for the alignment and stability maintenance of the LUVOIR segmented primary mirror using a segment state estimation and wavefront control method based on a hybrid segment motion sensing architecture of laser truss metrology and segment edge sensors. Our current computer model was generated for LUVOIR Architecture Option A with a 15-meter aperture, 120-segment primary mirror. The methodology and simulation results will be presented and analyzed. JPL has a long history of technology development in laser metrology and edge sensors, including work in SIM [7], Keck and TMT [8], CCAT [3] and LUVOIR [1]. We will discuss our current efforts of LUVOIR laser metrology and edge-sensor models development, showing sensitivities of sensor measurements to various LUVOIR mirror eigen-modes, removing global modes and strengthening weak modes by performing joint (hybrid) lasermetrology and edge sensing. We will define and derive an important performance metric called wavefront error multiplier (WEM), and show that WEM provides a simple link between sensor errors and the closed-loop (controlled) system wavefront error. We will show WEM values for several hybrid sensor configuration options studied. We will discuss an algorithm for mirror shape control and maintenance through segment state and wavefront estimations using joint edge-metrology sensing. We will compare simulated performance of mirror state estimation, wavefront estimation and wavefront control based on joint edge-metrology sensing among several sensor configurations, and show the impact of sensor error distributions on the segmented mirror alignment performance. Mirror shape control performance will also be evaluated in the context of imaging contrast between inner working angles (IWA) and outer working angles (OWA) of a LUVOIR coronagraph.
Picometer differential wavefront metrology by nonlinear Zernike wavefront sensing for LUVOIR
Dustin B. Moore, David C. Redding
We propose the Nonlinear Zernike wavefront sensor (NLZWFS) for out-of-band differential wavefront sensing to augment primary mirror stability on LUVOIR and similar mission concepts during exoplanet coronagraphy. This new data analysis paradigm involving a full polychromatic scalar physical optics model for the phase-shifting Zernike wavefront sensor removes the linearity assumptions which would otherwise prevent accurate sensing. We show Monte-Carlo simulations of NLZWFS and focus-diverse phase retrieval to understand the exposure times necessary to achieve picometer-level stability in the telescope wavefront.
Preliminary jitter stability results for the large UV/optical/infrared (LUVOIR) surveyor concept using a non-contact vibration isolation and precision pointing system
Lia W. Sacks, Carl Blaurock, Larry D. Dewell, et al.
The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor concept. The LUVOIR concept includes a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Wavefront error (WFE) stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Through the utilization of an isolation architecture that involves no mechanical contact between the telescope and the host spacecraft structure, a system design is realized that maximizes the telescope dynamic stability performance without driving stringent technology requirements on spacecraft structure, sensors or actuators. Through analysis of the LUVOIR finite element model and linear optical model, the wavefront error and Line- Of-Sight (LOS) jitter performance is discussed in this paper when using the Vibration Isolation and Precision Pointing System (VIPPS) being developed cooperatively with Lockheed Martin in addition to a multi-loop control architecture. The multi-loop control architecture consists of the spacecraft Attitude Control System (ACS), VIPPS, and a Fast Steering Mirror on the instrument. While the baseline attitude control device for LUVOIR is a set of Control Moment Gyroscopes (CMGs), Reaction Wheel Assembly (RWA) disturbance contribution to wavefront error stability and LOS stability are presented to give preliminary results in this paper. CMG disturbance will be explored in further work to be completed.
Posters: Origins
icon_mobile_dropdown
A highly stable spectrophotometric capability for the Origins Space Telescope (OST) mid-infrared imager, spectrometer, coronagraph (MISC)
Taro Matsuo, Tom Greene, Thomas L. Roellig, et al.
This paper describes the transit spectrograph designed for the Origins Space Telescope mid-infrared imager, spectrometer, coronagraph (MISC) and its performance derived through analytical formulation and numerical simulation. The transit spectrograph is designed based on a densified pupil spectroscopy design that forms multiple independent spectra on the detector plane and minimizes the systematic noise in the optical system. This design can also block any thermal light incoming into pixels around the transit spectra. The gain fluctuations occurring in the detector and readout electronics are accurately corrected by use of a number of blanked-off pixels. We found that the transit spectrograph for the OST concept 1 with a diameter of 9.3m potentially achieves the photon-noise-limited performance and allows detection of biosignature gases through transmission spectroscopy of transiting planets orbiting late- and middle-M type stars at 10 pc with 60 transit observations.
Stray light overview for the Origins Space telescope
The Origins Space Telescope (OST) is a mission concept being studied in preparation for the 2020 Decadal Survey. OST will be a large space based astronomical telescope operating at mid and far Infrared wavelengths. The desire is to have the radiometric sensitivity of observations be limited by the natural celestial sky background. This will require that OST be operated at cryogenic temperatures to limit the self-generated thermal emission. The architecture has the telescope exposed to space, with a protective shield blocking exposure to direct illumination from the sun, earth, and moon. The telescope design limits the self-emission to stray light to only come from the telescope structure, baffles, and optics that are thermally controlled to ≈ 4 K. A reverse try trace technique is used to determine the susceptibility of light from any part of the sky getting to the instrument focal plane and producing a stray light background. A Radiance Transfer Function (RTF) is derived that relates the background stray light produced at the focal plane by a patch of sky to the radiance of that patch of sky. The RTF is defined relative to the observatory reference frame. For a given pointing direction of the Observatory on the sky, the sky radiance mapped in ecliptic coordinates is transformed into the telescope reference frame and multiplied by the RTF to calculate the stray light. The sky radiance maps are from data obtained from the Cosmic Background Explorer (COBE) mission. In addition to the sky source of stray light, a separate calculation is used to determine the self-generated IR thermal background.
Posters: Missions
icon_mobile_dropdown
Optical design of PICO: a concept for a space mission to probe inflation and cosmic origins
Karl Young, Marcelo Alvarez, Nicholas Battaglia, et al.
The Probe of Inflation and Cosmic Origins (PICO) is a probe-class mission concept currently under study by NASA. PICO will probe the physics of the Big Bang and the energy scale of inflation, constrain the sum of neutrino masses, measure the growth of structures in the universe, and constrain its reionization history by making full sky maps of the cosmic microwave background with sensitivity 80 times higher than the Planck space mission. With bands at 21-799 GHz and arcmin resolution at the highest frequencies, PICO will make polarization maps of Galactic synchrotron and dust emission to observe the role of magnetic fields in Milky Way's evolution and star formation. We discuss PICO's optical system, focal plane, and give current best case noise estimates. The optical design is a two-reflector optimized open-Dragone design with a cold aperture stop. It gives a diffraction limited field of view (DLFOV) with throughput of 910 cm2sr at 21 GHz. The large 82 square degree DLFOV hosts 12,996 transition edge sensor bolometers distributed in 21 frequency bands and maintained at 0.1 K. We use focal plane technologies that are currently implemented on operating CMB instruments including three-color multi-chroic pixels and multiplexed readouts. To our knowledge, this is the first use of an open-Dragone design for mm-wave astrophysical observations, and the only monolithic CMB instrument to have such a broad frequency coverage. With current best case estimate polarization depth of 0.65 µKCMB-arcmin over the entire sky, PICO is the most sensitive CMB instrument designed to date.
Current design of the electrical architecture for the payload module of LiteBIRD
M. Tsujimoto, H. Nishino, M. Hazumi, et al.
LiteBIRD is a space-borne project for mapping the anisotropy of the linear polarization of the cosmic microwave background (CMB). The project aims to measure the B-mode pattern in a large angular scale to test the cosmic inflation theory. It is currently in the design phase lead by an international team of Japan, US, Canada, and Europe. We report the current status of the design of the electrical architecture of the payload module of the satellite, which is based on the heritages of other cryogenic space science missions using bolometers or microcalorimeters.
Development of optical system for the NISS onboard NEXTSat-1
Korea Astronomy and Space Science Institute (KASI) successfully developed the Near-infrared Imaging Spectrometer for Star formation history (NISS), which is a scientific payload for the next-generation small satellite-1 (NEXTSat-1) in Korea and is expected to be launched in 2018. The major science cases of NISS are to probe the star formation in local and early Universe through the imaging spectroscopic observations in the near-infrared. The off-axis catadioptric optics with 150mm aperture diameter is designed to cover the FoV of 2x2 deg with the passband of 0.95-2.5μm. The linear variable filter (LVF) is adopted as a disperse element with spectral resolution of R~20. Given the error budgets from the optical tolerance analysis, all spherical and non-spherical surfaces were conventionally polished and finished in the ultraprecision method, respectively. Primary and secondary mirrors were aligned by using interferometer, resulting in residual wave-front errors of P-V 2.7μm and RMS 0.61μm, respectively. To avoid and minimize any misalignment, lenses assembled were confirmed with de-centering measurement tool from Tri-Optics. As one of the key optical design concepts, afocal beam from primary and secondary mirrors combined made much less sensitive the alignment process between mirrors and relay lenses. As the optical performance test, the FWHM of PSF was measured about 16μm at the room temperature, and the IR sensor was successfully aligned in the optimized position at the cryogenic temperature. Finally, wavelength calibration was executed by using monochromatic IR sources. To support the complication of optical configuration, the opto-mechanical structure was optimized to endure the launching condition and the space environment. We confirmed that the optical performance can be maintained after the space environmental test. In this paper, we present the development of optical system of NISS from optical design to performance test and calibration.
Development of data storage system and GSE for cosmic infrared background experiment 2 (CIBER-2)
Won-Kee Park, Seung-Chul Bang, John Battle, et al.
Cosmic Infrared Background ExpeRiment-2 (CIBER-2) is an international project to make a rocket-borne measurement of the Cosmic Infrared Background (CIB) using three HAWAII-2RG image sensors. Since the rocket telemetry is unable to downlink all the image data in real time, we adopt an onboard data storage board for each sensor electronics. In this presentation, the development of the data storage board and the Ground Station Electronics (GSE) system for CIBER2 are described. We have fabricated, integrated, and tested all systems and confirmed that all work as expected, and are ready for flight.
The telescope optical unit prototype AIV in the framework of the PLATO ESA mission
PLATO (Planetary Transits and Oscillations of stars) is a new space telescope selected by ESA to detect terrestrial exoplanets in nearby solar-type stars. The telescope is composed by 26 small telescopes to achieve a large instantaneous field of view. INAF-OAPD is directly involved in the optical design and in the definition and testing of the alignment strategy. A prototype of the Telescope Optical Unis (TOU) was assembled and integrated in warm condition (room temperature) and then the performance is tested in warm and cold temperature (-80C). The mechanical structure of the TOU is representative in terms of thermal expansion coefficient and Young's modulus with respect to the actual one. A dedicated GSE (Ground Support Equipment) is used to manipulate the lenses. By co-align an interferometer and a laser with respect to the center of the third CaF2 lens, a several observables references are used to define the position and tilt of the chief ray. The total procedure tolerances for every lens is 30'' in tilt, between 15-40 μm for focus and 22 μm for decentering and the total error budget of the optical setup bench is below this requirement. In this paper, we describe the AIV procedure and test performed on the prototype of the TOU in the INAF laboratory.
A Mercury surface radiometric model for SIMBIO-SYS instrument suite on board of BepiColombo mission
The BepiColombo mission represents the cornerstone n.5 of the European Space Agency (ESA) and it is composed of two satellites: the Mercury Planetary Orbiter (MPO) realized by ESA and the Mercury Magnetospheric Orbiter (MMO) provided by the Japan Aerospace Exploration Agency (JAXA). The payload of the MPO is composed by 11 instruments. About half of the entire MPO data volume will be provided by the Spectrometer and Imagers for MPO BepiColombo Integrated Observatory System" (SIMBIO-SYS) instrument suite. The SIMBIO-SYS suite includes three imaging systems, two with stereo and high spatial resolution capabilities, which are the Stereoscopic Imaging Channel (STC) and High Resolution Imaging Channel (HRIC), and a hyper-spectral imager in the Vis-NIR range, named Visible and near Infrared Hyper-spectral Imager (VIHI). In order to test and predict the instrument performances, a radiometric model is needed. It consists in a tool that permits to know what fraction of the incoming light is measured by the detector. The obtained signal depends on the detector properties (such as quantum efficiency and dark current) and the instrument transmission characteristics (transmission of lenses and filter strips, mirrors reflectivity). The radiometric model allows to correlate the radiance of the source and the signal measured by each instrument. We used the Hapke model to obtain the Mercury reflectance, and we included it in the radiometric model applied to the STC, HRIC and VIHI channels. The radiometric model here presented is a useful tool to predict the instruments performance: it permits to calculate the expected optical response of the instrument (the position in latitude and longitude of the filter footprints, the on-ground px dimensions, the on-ground speed, the smearing and the illumination angles of the observed points), and the detector behavior (the expected signal and the integration time to reach a specific SNR). In this work we derive the input flux and the integration times for the three channels of SIMBIO-SYS, using the radiometric model to obtain the source radiance for each Mercury surface area observed.
Europa imaging system wide angle camera: the effect of gamma radiation on the refractive index and transmission of radiation resistant glasses
The impact of gamma radiation on refractive index and transmission was analyzed for several glasses. The goal of the analysis is to quantify the optical performance impact of Jovian electron and proton radiation environments using gamma radiation as a proxy for the Europa Imaging System (EIS) Wide Angle Camera1 (WAC) refractive telescope. The testing was split into two sample sets. The first set of glasses tested are baselined in the current WAC design: BK7G18, Calcium Fluoride, Fused Silica, and LF5G15. Analysis demonstrates no significant change in the refractive index or transmission in BK7G18, Calcium Fluoride, Fused Silica, and LF5G15 when exposed to 1 Mrad of gamma radiation. The second set of glasses tested was two i-line and two radiation resistant glasses from Ohara. Analysis demonstrates no significant change in the refractive index in BAL35Y, PBL25Y, S-BAL25-R, and S-BSL7-R when exposed to 1 Mrad of gamma radiation. Significant loss in transmission was observed for the two i-line glasses (BAL35Y and PBL25Y) when exposed to 1 Mrad of gamma radiation.
PICO - the probe of inflation and cosmic origins
Brian M. Sutin, Marcelo Alvarez, Nicholas Battaglia, et al.
The Probe of Inflation and Cosmic Origins (PICO) is a NASA-funded study of a Probe-class mission concept. The toplevel science objectives are to probe the physics of the Big Bang by measuring or constraining the energy scale of inflation, probe fundamental physics by measuring the number of light particles in the Universe and the sum of neutrino masses, to measure the reionization history of the Universe, and to understand the mechanisms driving the cosmic star formation history, and the physics of the galactic magnetic field. PICO would have multiple frequency bands between 21 and 799 GHz, and would survey the entire sky, producing maps of the polarization of the cosmic microwave background radiation, of galactic dust, of synchrotron radiation, and of various populations of point sources. Several instrument configurations, optical systems, cooling architectures, and detector and readout technologies have been and continue to be considered in the development of the mission concept. We will present a snapshot of the baseline mission concept currently under development.
The design of the instrument control unit and its role within the data processing system of the ESA PLATO Mission
M. Focardi, S. Pezzuto, R. Cosentino, et al.
PLATO1 is an M-class mission of the European Space Agency’s Cosmic Vision program, whose launch is foreseen by 2026. PLAnetary Transits and Oscillations of stars aims to characterize exoplanets and exoplanetary systems by detecting planetary transits and conducting asteroseismology of their parent stars. PLATO is the next generation planetary transit space experiment, as it will fly after CoRoT, Kepler, TESS and CHEOPS; its objective is to characterize exoplanets and their host stars in the solar neighbors. While it is built on the heritage from previous missions, the major breakthrough to be achieved by PLATO will come from its strong focus on bright targets, typically with mv≤11. The PLATO targets will also include a large number of very bright and nearby stars, with mv≤8. The prime science goals characterizing and distinguishing PLATO from the previous missions are: the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone; the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for biomarkers in nearby habitable exoplanets (e.g. ARIEL Mission scientific case, E-ELT observations from Ground); a full characterization of the planet host stars, via asteroseismic analysis: this will provide the Community with the masses, radii and ages of the host stars, from which masses, radii and ages of the detected planets will be determined.
Thermal architecture of the ESA ARIEL payload
G. Morgante, L. Terenzi, D. D'Ascanio, et al.
The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) is a space project selected by the European Space Agency for the Phase A study in the context of the M4 mission within the Cosmic Vision 2015-2025 programme. ARIEL will probe the chemical and physical properties of a large number of known exoplanets by observing spectroscopically their atmosphere, to extend our knowledge of how planetary systems form and evolve. To achieve its scientific objectives, the mission is designed as a dedicated 3.5-years survey for transit and eclipse spectroscopy, with an instrumental layout based on a 1-m class telescope feeding two spectrometer channels that cover the band 1.95 to 7.8 μm and four photometric channels in the visible to near-IR range.

The high sensitivity requirements of the mission need an extremely stable thermo-mechanical platform. In this paper we describe the thermal architecture of the payload and discuss the main requirements that drive the design. The ARIEL thermal configuration is based on a passive and active cooling approach. Passive cooling is achieved by a V-Groove based design that exploits the L2 orbit favorable thermal conditions. The telescope and the optical bench are passively cooled to a temperature close to 50K to achieve the required sensitivity and stability. The photometric detectors are maintained at the operating temperature of 50K by a dedicated radiator coupled to cold space. The IR spectroscopic channel detectors require a lower temperature reference. This colder stage is provided by an active cooling system based on a Neon Joule-Thomson cold end, fed by a mechanical compressor, able to reach temperatures lower than 30K.

Thermal stability of the telescope and detector units is one of the main drivers of the design. The periodical perturbations due to orbital changes, to the active cooling or to other internal instabilities make the temperature control one of the most critical issues of the whole architecture. The thermal control system design, based on a combination of passive and active solutions aimed at maintaining the required stability at the telescope and detector stages level, is described.

We report here about the baseline thermal architecture at the end of the Phase A, together with the main trade-offs needed to enable the ARIEL exciting science in a technically feasible payload design. Thermal modeling results and preliminary performance predictions in terms of steady state and transient behavior are also discussed.
Integration and instrument characterization of the cosmic infrared background experiment 2 (CIBER-2)
Chi H. Nguyen, Benjamin Stewart, Seung-Cheol Bang, et al.
The extragalactic background light (EBL) is the integrated emission from all objects outside of the Milky Way galaxy. Imprinted by the history of stellar emission, the EBL in the near infrared traces light back to the birth of the first stars in the Universe and can allow tight constraints on structure formation models. Recent studies using data from the Spitzer Space Telescope and the first Cosmic Infrared Background ExpeRiment (CIBER-1) find that there are excess fluctuations in the EBL on large scales which have been attributed to either high redshift galaxies and quasars, or to stars that were stripped from their host galaxies during merging events. To help disentangle these two models, multi-wavelength data can be used to trace their distinctive spectral features. Following the success of CIBER-1, CIBER-2 is designed to identify the sources of the EBL excess fluctuations using data in six wavebands covering the optical and near infrared. The experiment consists of a cryogenic payload and is scheduled to launch four times on a recoverable sounding rocket. CIBER-2 has a 28.5 cm telescope coupled with an optics system to obtain wide-field images in six broad spectral bands between 0.5 and 2.5 μm simultaneously. The experiment uses 2048 × 2048 HAWAII-2RG detector arrays and a cryogenic star tracker. A prototype of the cryogenic star tracker is under construction for a separate launch to verify its performance and star tracking algorithm. The mechanical, optical, and electrical components of the CIBER-2 experiment will have been integrated into the payload by mid-2018. Here we present the final design of CIBER-2 and our team’s instrument characterization efforts. The design and analysis of the optical focus tests will be discussed. We also report on the performance of CIBER-2 support systems, including the cooling mechanisms and deployable components. Finally, we outline the remaining tasks required to prepare the payload for launch.
The optical design and physical optics analysis of a cross-Dragonian telescope for LiteBIRD
The Lite satellite for the studies of B-mode polarization and Inflation from the cosmic microwave background (CMB) Radiation Detection (LiteBIRD) is a next generation CMB satellite dedicated to probing the inflationary universe. It has two telescopes, Low Frequency Telescope (LFT) and High Frequency Telescope (HFT) to cover wide observational bands from 34 GHz to 448 GHz. In this presentation, we report the optical design and characterization of the LFT. We have used the CODE-V to obtain the LFT optical design based on a cross- Dragonian telescope. It is an image-space telecentric system with an F number of 3.5 and 20 x 10 degrees2 field of view. The main, near and far side lobes at far-field have been calculated by using a combination of HFSS and GRASP 10. It is revealed that the LFT telescope has good main lobe properties to satisfy the requirements. On the other hand, the side lobes are affected by the stray light that stems from the triple reflection and the direct path from feed. In order to avoid the stray light, the way to block these paths is now under study.
Optical/mechanical design of the focal plane receiver of the Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE) mission
K. Enya, M. Kobayashi, K. Ishibashi, et al.
The Jupiter Icy Moons Explorer (JUICE) mission of the European Space Agency to be launched in 2022 will provide an opportunity for a dedicated exploration of the Jovian system including its icy moons. The Ganymede Laser Altimeter (GALA) has been selected as one of the ten payloads of JUICE. GALA will enable unique studies of the topography and shape, tidal and rotational state, and geology of primarily Ganymede but also Europa and Callisto. The GALA project is an ongoing international collaboration led by Germany, together with Switzerland, Spain, and Japan. This paper presents the optical and mechanical design of the focal plane receiver, the Japanese part of GALA.
Optimal starshade observation scheduling
Gabriel Soto, Dean Keithly, Daniel Garrett, et al.
An exoplanet direct imaging mission using an external occulter for starlight suppression could potentially achieve higher contrasts and throughputs than an equivalently sized telescope with an internal coronagraph. We consider a formation flying mission where the starshade must station-keep with a telescope, assumed to be on a halo orbit about the Sun-Earth L2 point, during observations and slew between observations as the telescope re-orients to target the next star. We use a parameterization of the slew fuel cost calculation based on interpolation of exact solutions of boundary value problem in the circular restricted three body formalism. Time constraints are imposed based on when stars are observable due to the motion of bright sources in the solar system, integration times, and mission lifetime constraints. Finally, we present a comprehensive cost function incorporating star completeness values as a reward heuristic and retargeting fuel costs to sequentially select the next best star to observe. Ensembles of simulations are conducted for different selection schemes; for a 3 year mission, taking two steps of the linear cost function produces the most unique detections with an average of 7.08± 2.55.
The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (PHI) onboard Solar Orbiter
A. Gandorfer, B. Grauf, J. Staub, et al.
Solar Orbiter is a joint mission of ESA and NASA scheduled for launch in 2020. Solar Orbiter is a complete and unique heliophysics mission, combining remote sensing and in-situ analysis; its special elliptical orbit allows viewing the Sun from a distance of only 0.28 AU, and - leaving the ecliptic plane - to observe the solar poles from a hitherto unexplored vantage point. One of the key instruments for Solar Orbiter’s science is the "Polarimetric and Helioseismic Imager" (PHI), which will provide maps of the solar surface magnetic fields and the gas flows on the visible solar surface. Two telescopes, a full disc imager, and a high resolution channel feed a common Fabry-Perot based tunable filter and thus allow sampling a single Fraunhofer line at 617.3 nm with high spectral resolution; a polarization modulation system makes the system sensitive to the full state of polarization. From the analysis of the Doppler shift and the magnetically induced Zeeman polarization in this line, the magnetic field and the line-of-sight gas motions can be detected for each point in the image. In this paper we describe the opto-mechanical system design of the high resolution telescope. It is based on a decentred Ritchey-Chrétien two-mirror telescope. The telescope includes a Barlow type magnifier lens group, which is used as in-orbit focus compensator, and a beam splitter, which sends a small fraction of the collected light onto a fast camera, which provides the error signals for the actively controlled secondary mirror compensating for spacecraft jitter and other disturbances. The elliptical orbit of the spacecraft poses high demands on the thermo-mechanical stability. The varying size of the solar disk image requires a special false-light suppression architecture, which is briefly described. In combination with a heat-rejecting entrance window, the optical energy impinging on the polarimetric and spectral analysis system is efficiently reduced. We show how the design can preserve the diffraction-limited imaging performance over the design temperature range of -20°C to +60°C. The decentred hyperbolical mirrors require special measures for the inter-alignment and their alignment with respect to the mechanical structure. A system of alignment flats and mechanical references is used for this purpose. We will describe the steps of the alignment procedure, and the dedicated optical ground support equipment, which are needed to reach the diffraction limited performance of the telescope. We will also report on the verification of the telescope performance, both - in ambient condition - and in vacuum at different temperatures.
The optical configuration of the telescope for the ARIEL ESA mission
Vania Da Deppo, Mauro Focardi, Gianluca Morgante, et al.
The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) has been recently selected as the next ESA medium-class mission (M4) with a foreseen launch in 2028. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds.

ARIEL is based on a 1-m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 μm and 7.80 μm; and a combined fine guidance system/visible photometer/NIR spectrometer. The primary payload is the spectrometer, whose scientific observations are supported by the fine guidance system and photometer, which is monitoring the photometric stability of the target and allowing, at the same time, the target to be properly pointed.

The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror; the design has been conceived to satisfy all the mission requirements, and it guarantees the requested “as-built” diffraction limited performance.

To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ±1 K by the Telescope Control Unit (TCU).

The TCU is a payload electronics subsystem also responsible for the thermal control of the main spectrometer detectors as well as the secondary mirror (M2) mechanism and IR calibration source management. The TCU, being a slave subsystem of the Instrument Control Unit (ICU), will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.
Design of the instrument and telescope control units integrated subsystem of the ESA-ARIEL payload
M. Focardi, E. Pace, M. Farina, et al.
The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL)1 Mission has been recently selected by ESA as the fourth medium-class Mission (M4) in the framework of the Cosmic Vision Program. The goal of ARIEL is to investigate, thanks to VIS photometry and IR spectroscopy, the atmospheres of several hundreds of planets orbiting nearby stars in order to address the fundamental questions on how planetary systems form and evolve.2

During its four-years mission, ARIEL will observe several hundreds of exoplanets ranging from Jupiter- and Neptune-size down to super-Earth and Earth-size with its 1 meter-class telescope.3 The analysis of spectra and photometric data will allow to extract the chemical fingerprints of gases and condensates in the planets atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbits around its parent star.
Performance overview of the near infrared detectors in Korean space missions NISS and LIRS
Dae-Hee Lee, Won-Kee Park, Youngsik Park, et al.
NISS (Near-infrared Imaging Spectrometer for Star formation history) is a unique spaceborne imaging spectrometer (R = 20) onboard the Korea’s next micro-satellite NEXTSat-1 to investigate the star formation history of Universe in near infrared wavelength region (0.9 – 2.5 μm). In this paper, we introduce the NISS H2RG detector electronics, the test configuration, and the performance test results. Analyzed data will be presented on; system gain, dark current, readout noise, crosstalk, linearity, and persistence. Also, we present basic test results of a Korean manufactured IR detector, 640 x 512 InAsSb 15 μm pixel pitch, developed for future Korean lunar mission.
Development of optomechanical structure for the NISS onboard NEXTSat-1
The Korea Astronomy and Space Science Institute has developed NISS (Near-infrared Imaging Spectrometer for Star formation history) as a scientific payload for the first next generation of small satellite, NEXTSat-1 in Korea. NISS is a NIR imaging spectrometer exploiting a Linear Variable Filter (LVF) in the spectral passband from 0.95 um to 2.5 um and with low spectral resolution of 20. Optical system consists of 150mm aperture off-axis mirror system and 8-element relay-lenses providing a field of view of 4 square degrees. Primary and secondary aluminum mirrors made of RSA6061 are precisely fabricated and all of the lenses are polished with infrared optics materials. In principle, the optomechanical design has to withstand the vibration conditions of the launcher and maintain optical performance in the space environment. The main structure and optical system of the NISS are cooled down to about 200K by passive cooling for our astronomical mission. We also cool the detector and the LVF down to about 90K by using a small stirling cooler at 200K stage. The cooling test for whole assembled body has shown that the NISS can be cooled down to 200K by passive cooling during about 80 hours. We confirmed that the optomechanical structure is safe and rigid enough to maintain the system performance during the cooling, vibration and thermal vacuum test. After the integration of the NISS into the NEXTSat-1, space environmental tests for the satellite were passed. In this paper, we report the design, fabrication, assembly and test of the optomechanical structure for the NISS flight model.
Fast linearized coronagraph optimizer (FALCO) II: optical model validation and time savings over other methods
We have developed the Fast Linearized Coronagraph Optimizer (FALCO), a new software toolbox for high-contrast, coronagraphic wavefront sensing and control. FALCO rapidly calculates the linearized deformable mirror (DM) response matrices, also called control Jacobians, and can be used for the design, simulation, or testbed operation of several types of coronagraphs. In this paper, we demonstrate that the optical propagation used in FALCO is accurate and matches PROPER. In addition, we demonstrate the drastic reduction in runtime when using FALCO for DM Jacobian calculations instead of the conventional method used, for example with a model of the Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI). We then compare the relative accuracy between optical models in FALCO and PROPER.
Fast linearized coronagraph optimizer (FALCO) IV: coronagraph design survey for obstructed and segmented apertures
Coronagraph instruments on future space telescopes will enable the direct detection and characterization of Earth-like exoplanets around Sun-like stars for the first time. The quest for the optimal optical coronagraph designs has made rapid progress in recent years thanks to the Segmented Coronagraph Design and Analysis (SCDA) initiative led by the Exoplanet Exploration Program at NASA's Jet Propulsion Laboratory. As a result, several types of high-performance designs have emerged that make use of dual deformable mirrors to (1) correct for optical aberrations and (2) suppress diffracted starlight from obstructions and discontinuities in the telescope pupil. However, the algorithms used to compute the optimal deformable mirror surface tend to be computationally intensive, prohibiting large scale design surveys. Here, we utilize the Fast Linearized Coronagraph Optimizer (FALCO), a tool that allows for rapid optimization of deformable mirror shapes, to explore trade-offs in coronagraph designs for obstructed and segmented space telescopes. We compare designs for representative shaped pupil Lyot and vortex coronagraphs, two of the most promising concepts for the LUVOIR space mission concept. We analyze the optical performance of each design, including their throughput and ability to passively suppress light from partially resolved stars in the presence of low-order aberrations. Our main result is that deformable mirror based apodization can suffciently suppress diffraction from support struts and inter-segment gaps whose widths are on the order of ~0.1% of the primary mirror diameter to detect Earth-sized planets within a few tens of milliarcseconds from the star.
Modeling the JANUS stray-light behavior
D. Greggio, M. Munari, D. Magrin, et al.
JANUS is the camera of the ESA mission JUICE, dedicated to high-resolution imaging in the extended-visible wavelength region (340 – 1080nm). The camera will observe Jupiter and its satellites providing detailed maps of their surfaces and atmospheres. During the mission, the camera will face a huge variety of observing scenarios ranging from the imaging of the surfaces of the satellites under varying illumination conditions to limb observation of the atmospheres. The stray-light performance of JANUS has been studied through non-sequential ray-tracing simulations with the aim to characterize and optimize the design. The simulations include scattering effects produced by micro-roughness and particulate contamination of the optical surfaces, the diffusion from mechanical surfaces and ghost reflections from refractive elements. The results have been used to derive the expected stray-light performance of the instrument and to validate the instrument design.
PLATO: the ESA mission for exo-planets discovery
Demetrio Magrin, Roberto Ragazzoni, Heike Rauer, et al.
PLATO (PLAnetary Transits and Oscillation of stars) is the ESA Medium size dedicated to exo-planets discovery, adopted in the framework of the Cosmic Vision program. The PLATO launch is planned in 2026 and the mission will last at least 4 years in the Lagrangian point L2. The primary scientific goal of PLATO is to discover and characterize a large amount of exo-planets hosted by bright nearby stars, constraining with unprecedented precision their radii by mean of transits technique and the age of the stars through by asteroseismology. By coupling the radius information with the mass knowledge, provided by a dedicated ground-based spectroscopy radial velocity measurements campaign, it would be possible to determine the planet density. Ultimately, PLATO will deliver the largest samples ever of well characterized exo-planets, discriminating among their ‘zoology’. The large amount of required bright stars can be achieved by a relatively small aperture telescope (about 1 meter class) with a wide Field of View (about 1000 square degrees). The PLATO strategy is to split the collecting area into 24 identical 120 mm aperture diameter fully refractive cameras with partially overlapped Field of View delivering an overall instantaneous sky covered area of about 2232 square degrees. The opto-mechanical sub-system of each camera, namely Telescope Optical Unit, is basically composed by a 6 lenses fully refractive optical system, presenting one aspheric surface on the front lens, and by a mechanical structure made in AlBeMet.
Characterisation of the analogue read-out chain for the CCDs onboard the mesospheric airglow/aerosol tomography and spectroscopy (MATS)
G. Giono, G. Olentšenko, N. Ivchenko, et al.
The MATS satellite aims at observing airglow and noctilucent clouds in the mesosphere. The main instrument consists of a six channels limb imager in the near-ultraviolet and near-infrared. A high signal-to-noise ratio is required for detecting these mesospheric phenomena: 100 and 500 for ultraviolet and infrared, respectively. This is achieved by an optical design minimizing stray-light, but also with a dedicated design of the read-out analogue chain for the CCD on each channel. The requirements and expected light level on the imaging channels are brie y discussed before focusing on the CCD read-out analogue chain, for which the design and performances are presented.
The pre-launch distortion definition of SIMBIO-SYS/STC stereo camera by rational function models
The ESA-JAXA mission BepiColombo toward Mercury will be launched in October 2018. On board of the European module, MPO (Mercury Planetary Orbiter), the remote sensing suite SIMBIOSYS will cover the imaging demand of the mission. The suite consists of three channels dedicated to imaging and spectroscopy in the spectral range between 420 nm and 2 μm. STC (STereo Imaging Channel) will provide the global three-dimensional reconstruction of the Mercury surface with a vertical accuracy better than 80 m and, as a secondary scientific objective, it will operate in target oriented mode for the acquisition of multi spectral images with a spatial scale of 65 m along-track at the periherm for the first orbit at Mercury. STC consists in 2 sub-channels looking at the Mercury surface with an angle of ±20° with respect to the nadir direction. Most of the optical elements and the detector are shared by the two STC sub-channels and to satisfy the scientific objectives six filters strips are mounted directly in front of the sensor. An off-axis and unobstructed optical configuration has been chosen to enhance the imaging contrast capabilities of the instrument and to allow to reduce the impact of the ghosts and stray light. The scope of this work is to present the on-ground geometric calibration pipeline adopted for the STC instrument. For instruments dedicated to 3D reconstruction, a careful geometric calibration is important, since distortion removal has a direct impact on the registration and the mosaicking of the images. The definition of the distortion for off-axis optical configuration is not trivial, this fact forced the development of a distortion map model based on the RFM (rational function model). In contrast to other existing models, which are based on linear estimates, the RFM is not specialized to any particular lens geometry, and is sufficiently general to model different distortion types, as it will be demonstrated.
Fast linearized coronagraph optimizer (FALCO) III: optimization of key coronagraph design parameters
Deformable mirrors (DMs) are increasingly becoming part of nominal coronagraph designs, such as the hybrid Lyot coronagraph, in addition to their role counteracting optical aberrations. Previous studies have investigated the effects of the inter-DM Fresnel number on achievable contrast, throughput, and tip/tilt sensitivity for apodized coronagraphs augmented with DMs to suppress diffraction from struts and segment gaps. In this paper, we build upon that previous work by directly suppressing tip/tilt sensitivity with the controller, both for coronagraphs with and without apodizers. We also explore the effects of other important design parameters such as actuator density and tip/tilt controller weighting on performance. These comprehensive coronagraph design studies are enabled by the Fast Linearized Coronagraph Optimizer (FALCO) software toolbox, which provides rapid re-calculation of the DM response matrix for a variety of coronagraphs.
Far-infrared space interferometer study IRASSI: motivation, principle design, and technical aspects
Hendrik Linz, Luisa Buinhas, Roger Förstner, et al.
The far-infrared (FIR) regime is one of the few wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist yet. Also medium-term satellite projects like SPICA, Millimetron or OST will not resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited CO and especially from water lines would open the door for transformative science. These demands call for interferometric concepts. We present here first results of our feasibility study IRASSI (Infrared Astronomy Satellite Swarm Interferometry) for an FIR space interferometer. Extending on the principal concept of the previous study ESPRIT, it features heterodyne interferometry within a swarm of 5 satellite elements. The satellites can drift in and out within a range of several hundred meters, thereby achieving spatial resolutions of <0.1 arcsec over the whole wavelength range of 1–6 THz. Precise knowledge on the baselines will be ensured by metrology employing laser frequency combs, for which first ground-based tests have been designed by members of our study team. In this contribution, we first give a motivation how the science requirements translated into operational and design parameters for IRASSI. Our consortium has put much emphasis on the navigational aspects of such a free-flying swarm of satellites operating in relatively close vicinity. We hence present work on the formation geometry, the relative dynamics of the swarm, and aspects of our investigation towards attitude estimation. Furthermore, we discuss issues regarding the real-time capability of the autonomous relative positioning system, which is an important aspect for IRASSI where, due to the large raw data rates expected, the interferometric correlation has to be done onboard, quasi in real-time. We also address questions regarding the spacecraft architecture and how a first thermomechanical model is used to study the effect of thermal perturbations on the spacecraft. This will have implications for the necessary internal calibration of the local tie between the laser metrology and the phase centres of the science signals.
High-contrast imager for complex aperture telescopes (HiCAT): 6. software control infrastructure and calibration
Christopher Moriarty, Keira Brooks, Rémi Soummer, et al.
High contrast imaging using coronagraphy is one of the main avenues to enable the search for life on extrasolar Earth analogs. The HiCAT testbed aims to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes as envisioned for a future large UV optical IR mission (LUVOIR). Our software infrastructure enables 24/7 automated operation of high-contrast imaging experiments while monitoring for safe operating parameters, along with graceful shutdown processes for unsafe conditions or unexpected errors. The infrastructure also includes a calibration suite that can run nightly to catch regressions and track optical per- formance changes over time, and a testbed simulator to support software development and testing, as well as optical modeling necessary for high-contrast algorithms. This paper presents a design and implementation of testbed control software to leverage continuous integration whether the testbed is available or not.
From a demonstration model to the flight model: AIV procedures and results for CHEOPS telescope
M. Bergomi, F. Biondi, D. Magrin, et al.
CHEOPS (CHaracterizing ExOPlanets Satellite) is an ESA Small Mission, planned to be launched in early 2019 and whose main goal is the photometric precise characterization of the radii of exoplanets orbiting bright stars (V<12) already known to host planets. The telescope is composed by two optical systems: a compact on-axis F/5 Ritchey-Chrétien, with an aperture of 320 mm and a Back-End Optics, reshaping a defocused PSF on the detector. In this paper we describe how alignment and integration, as well as ground support equipment, realized on a demonstrator model at INAF Padova, evolved and were successfully applied during the AIV phase of the flight model telescope subsystem at LEONARDO, the Italian industrial prime contractor premises.
The deformable mirror demonstration mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration
Gregory Allan, Ewan S. Douglas, Derek Barnes, et al.
Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS Deformable Mirror (DM) with 5:5 μm maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.
Thermal architecture of the galaxy evolution probe mission concept
The Galaxy Evolution Probe (GEP) is a proposed far infrared-optimized observatory designed for zodiacal-light-limited imaging and spectroscopy in the 10 to 250 micron band. The GEP telescopes and instruments are planned to be actively cooled with the system in a sun-earth L2 halo orbit. A detailed description of the GEP mission concept is documented in [1]. Crucial to the scientific performance of GEP is the thermal architecture; it must support a range of cryogenic elements, ranging from the full telescope optical assembly at around 4 K to the far-IR focal planes consisting of kinetic inductance detector (KID) arrays cooled to 100 mK. Given the mass operating at these low temperatures, the thermal system is one of the main drivers of mission cost and complexity. We present a solution to the GEP thermal design that is realizable within a probe-class envelope. The baseline system utilizes a multi-stage adiabatic demagnetization refrigerator (ADR) for the 100mK base; the ADR system also provides an intercept at 1K. ADR systems similar to that in our design have flown, and among sub-K options, ADRs offer high Carnot efficiency. The ADR rejects heat to a hybrid Joule Thompson (JT) and Stirling or PT Cryocooler with a lowtemperature stage at 4 K as well as an intercept at 20 K. These coolers are also mature systems with flight heritage on most subcomponents.
Posters: Observing Tools
icon_mobile_dropdown
Correcting distortions in the infrared array camera during the cryogenic mission of the Spitzer Space Telescope
Carl J. Grillmair, Patrick J. Lowrance, Sean J. Carey, et al.
We describe our ongoing efforts to model the field distortions of the Infrared Array Camera (IRAC) during the cryogenic portion of the Spitzer Space Telescope’s operations. We have compared over two million measured source positions in ~35,000 IRAC images with their positions in Gaia Data Release 1. Fitting 3rd and 5th order polynomials to the measured offsets, we find systematic uncertainties in IRAC-measured positions that are in the 50-60 milliarcsecond range for the 3.6 micron array, and 120-150 milliarcsecond range for the 4.5 micron array. A 5th-order fit does not appear to significantly improve the results over a 3rd order fit. However, this may be due at least partly to the failure of our current centroiding technique to account for variations in the Point Response Functions across each detector. We anticipate making several improvements in our continuing analysis, including (i) the refitting of the positions and position angles of each IRAC image using the Gaia catalog, (ii) making use of a less position-sensitive centroiding algorithm, (iii) correcting where possible for the proper motions of detected sources, and (iv) significantly increasing the number of source position measurements. Once finalized, the resulting distortion corrections will be incorporated into the headers of the archived images.
Spitzer/IRAC precision photometry: a machine learning approach
James G. Ingalls, Jessica E. Krick, Sean J. Carey, et al.
The largest source of noise in exoplanet and brown dwarf photometric time series made with Spitzer/IRAC is the coupling between intra-pixel gain variations and spacecraft pointing fluctuations. Observers typically correct for this systematic in science data by deriving an instrumental noise model simultaneously with the astrophysical light curve and removing the noise model. Such techniques for self-calibrating Spitzer photometric datasets have been extremely successful, and in many cases enabled near-photon-limited precision on exoplanet transit and eclipse depths. Self-calibration, however, can suffer from certain limitations: (1) temporal astrophysical signals can become aliased as part of the instrument model; (2) for some techniques adequate model estimation often requires a high degree of intra-pixel positional redundancy (multiple samples with nearby centroids) over long time spans; (3) many techniques do not account for sporadic high frequency telescope vibrations that smear out the point spread function. We have begun to build independent general-purpose intra-pixel systematics removal algorithms using three machine learning techniques: K-Nearest Neighbors (with kernel regression), Random Decision Forests, and Artificial Neural Networks. These methods remove many of the limitations of self-calibration: (1) they operate on a dedicated calibration database of approximately one million measurements per IRAC waveband (3.6 and 4.5 microns) of non-variable stars, and thus are independent of the time series science data to be corrected; (2) the database covers a large area of the "Sweet Spot, so the methods do not require positional redundancy in the science data; (3) machine learning techniques in general allow for flexibility in training with multiple, sometimes unorthodox, variables, including those that trace PSF smear. We focus in this report on the K-Nearest Neighbors with Kernel Regression technique. (Additional communications are in preparation describing Decision Forests and Neural Networks.)
The role of narrow-angle forward surface scatter and particulate scatter in exoplanet exploration
It is often thought that because of the very small solid angle subtended by the field-of-view of the coronagraph, scattered light from optical surfaces will have no effect on images recorded for terrestrial exoplanet spectroscopy. In this paper, we examine mirror surface scatter and particulate contamination scatter as sources of background light or noise signal in large aperture terrestrial exoplanet telescope/coronagraph systems. Scattered light control to one part in 10+10 or better is required for exoplanet exploration. We will discuss the optical fabrication tolerances necessary to minimize narrowangle forward scatter and their relative effects upon direct imaging coronagraph instruments used to characterize terrestrial exoplanets.
Effects of thermal and exozodiacal background on space telescope observations of exoEarths
One of the major goals of the exoplanet community in the coming decades is to detect Earth-like exoplanets (exoEarths) and look for biomarkers in their atmospheres. High-dispersion coronagraphy (HDC) may allow detection and characterization to be done simultaneously, as well as relax the starlight suppression requirements of the telescope and coronagraph. However, similar to other direct imaging techniques, HDC faces challenging thermal and/or exozodiacal background levels. In this paper, we present simulations of coronagraphic observations using a variety of space telescope apertures ranging in diameter from 1 to 15 m, specifically incorporating thermal and exozodiacal background. We investigate the effects of instrument temperature and aperture on the maximum usable wavelength, as well as the effects of exozodiacal disk inclination and thickness on observational SNR. We then identify the spectral resolutions which maximize observational SNR subject to detector noise and the required starlight suppression levels for the detection of various potential biomarker molecules (H2O, O2, CO2, and CH4).
Scheduling and target selection optimization for exoplanet imaging spacecraft
Dean R. Keithly, Dmitry Savransky, Daniel Garrett, et al.
Space-based extrasolar planet imaging mission performance is dependent on selection of optimal targets, integration times, and scheduling each observation. We use the WFIRST space telescopes stellar coronagraphic instrument as a baseline to compare simulated exoplanet detection yield of multiple target selection and scheduling algorithms. Using completeness as a reward metric and integration time plus overhead time as a cost metric, we simultaneously optimize the observation list and integration times. To schedule these observations, we present different dynamic planning and static planning algorithms and validate their performance in “realistic” Monte Carlo simulations using the Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package. We test these algorithms with completeness generated from different assumed planet populations to demonstrate robustness in deviation of the actual planet population from the planned planet population.
Direct measurement of the intra-pixel response function of the Kepler Space Telescope's CCDs
Dmitry Vorobiev, Zoran Ninkov, Douglas Caldwell, et al.
Space missions designed for high precision photometric monitoring of stars often under-sample the point-spread function, with much of the light landing within a single pixel. Missions like MOST, Kepler, BRITE, and TESS, do this to avoid uncertainties due to pixel-to-pixel response nonuniformity. This approach has worked remarkably well. However, individual pixels also exhibit response nonuniformity. Typically, pixels are most sensitive near their centers and less sensitive near the edges, with a difference in response of as much as 50%. The exact shape of this fall-off, and its dependence on the wavelength of light, is the intra-pixel response function (IPRF). A direct measurement of the IPRF can be used to improve the photometric uncertainties, leading to improved photometry and astrometry of under-sampled systems. Using the spot-scan technique, we measured the IPRF of a flight spare e2v CCD90 imaging sensor, which is used in the Kepler focal plane. Our spot scanner generates spots with a full-width at half-maximum of .5 microns across the range of 400 nm - 900 nm. We find that Kepler's CCD shows similar IPRF behavior to other back-illuminated devices, with a decrease in responsivity near the edges of a pixel by ~50%. The IPRF also depends on wavelength, exhibiting a large amount of diffusion at shorter wavelengths and becoming much more defined by the gate structure in the near-IR. This method can also be used to measure the IPRF of the CCDs used for TESS, which borrows much from the Kepler mission.
Image processing methods for exoplanets detection and characterization in starshade observations
A starshade is a promising instrument for the direct imaging and characterization of exoplanets. However, even with a starshade, exoplanets are difficult to detect because detector noise, starshade defects, and misalignment (dynamics of the starshade system) degrade the signal to noise ratio (SNR) and contrast. No image processing methods have been specialized for images produced by a starshade system (simply referred as starshade images later). In this paper, we present a method, based on the generalized likelihood ratio test (GLRT), to detect and characterize planets from a single starshade image or multiple starshade images. This paper describes the GLRT model and its preliminary results for simulated images with starshade shape error, dynamics, detector noise and starshade rotation considered. The planets are detected with low false alarm rate, and planet positions are accurately estimated, and planet intensities are reasonably estimated. Thus, it demonstrates great potential as an acute and robust detection method for starshade images
The contrast performance of the NIRSpec micro shutters and its impact on NIRSpec integral field observations
Anurag Deshpande, Nora Lützgendorf, Pierre Ferruit, et al.
The Near Infrared Spectrograph (NIRSpec) instrument is one of the four scientific instruments aboard the James Webb Space Telescope (JWST). NIRSpec can be operated in Multi-Object Spectroscopy (MOS), Fixed-slit Spectroscopy (FS), and Integral Field Spectroscopy (IFS) modes; with spectral resolutions from 100 to 2700. Two of these modes, MOS and IFS, share the same detector real estate and are mutually exclusive. Consequently, the micro-shutters used to select targets in MOS mode must all be closed when observing in IFS mode. However, due to the finite contrast of the micro-shutter array (MSA), some amount of light passes through them even when they are commanded closed. This light creates a low, but potentially significant, parasitic signal, which can affect IFS observations. Here, we present the work carried out to study and model this signal. Firstly, we show the results of an analysis to quantify its levels for all NIRSpec spectral bands and resolution powers. We find a level of parasitic signal that is, in general, lower than 10% of the incident, extended IFS signal. We also show how these results were combined with signal-to-noise considerations to help consolidate the observation strategy for the IFS mode and to prepare guidelines for designing observations. In general, we find that this parasitic signal will be less than the statistical noise of a Zodiacal light exposure up to ~40 groups for the NIRSpec grating configurations, and ~10 groups for the prism configuration. In a second part, we report on the results of our work to model and subtract this signal. We describe the model itself, its derivation, and its accuracy as determined by applying it to ground test data.
Compressive sampling for multispectral imaging in the vis-NIR-TIR: optical design of space telescopes
G. Pariani, A. Zanutta, M. Genoni, et al.
Micro-satellites equipped with multispectral payloads are now under development to acquire information on the radiation reflected and emitted from the earth in the vis-NIR-TIR bands. In this framework, we are studying different approaches based on the compressive sampling technique supported by innovative multispectral detectors, where the image sampling is performed on the telescope focal plane with a Digital Micromirror Device (DMD). We will describe in the paper the possibilities and the constraints given by the use of the DMD in the focal plane. The optical design of the telescope, relay system and detector in two different application cases will be provided.
Posters: SmallSats
icon_mobile_dropdown
CUBESPEC: low-cost space-based astronomical spectroscopy
Gert Raskin, Tjorven Delabie, Wim De Munter, et al.
CubeSats are routinely used for low-cost photometry from space. Space-borne spectroscopy, however, is still the exclusive domain of much larger platforms. Key astrophysical questions in e.g. stellar physics and exoplanet research require uninterrupted spectral monitoring from space over weeks or months. Such monitoring of individual sources is unfortunately not affordable with these large platforms. With CUBESPEC we plan to offer the astronomical community a low-cost CubeSat solution for near-UV/optical/near-IR spectroscopy that enables this type of observations.

CUBESPEC is a generic spectrograph that can be configured with minimal hardware changes to deliver both low resolution (R = 100) with very large spectral coverage (200 - 1000 nm), as well as high resolution (R = 30 000) over a selected wavelength range. It is built around an off-axis Cassegrain telescope and a slit spectrograph with configurable dispersion elements. CUBESPEC will use a compact attitude determination and control system for coarse pointing of the entire spacecraft, supplemented with a fine-guidance system using a fast steering mirror to center the source on the spectrograph slit and to cancel out satellite jitter. An extremely compact optical design allows us to house this instrument in a 6U CubeSat with a volume of only 10 × 20 × 30 cm3 , while preserving a maximized entrance pupil of ca. 9 × 19 cm2 . In this contribution, we give an overview of the CUBESPEC project, discuss its most relevant science cases, and present the design of the instrument.
VAMOS: a SmallSat mission concept for remote sensing of Venusian seismic activity from orbit
Brian M. Sutin, James Cutts, Alan M. Didion, et al.
The apparent youthfulness of Venus’ surface features, given a lack of plate tectonics, is very intriguing; however, longduration seismic observations are essentially impossible given the inhospitable surface of Venus. The Venus Airglow Measurements and Orbiter for Seismicity (VAMOS) mission concept uses the fact that the dense Venusian atmosphere conducts seismic vibrations from the surface to the airglow layer of the ionosphere, as observed on Earth. Similarly, atmospheric gravity waves have been observed by the European Venus Express’s Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument. Such observations would enable VAMOS to determine the crustal structure and ionospheric variability of Venus without approaching the surface or atmosphere. Equipped with an instrument of modest size and mass, the baseline VAMOS spacecraft is designed to fit within an ESPA Grande form factor and travel to Venus predominantly under its own power. Trade studies have been conducted to determine mission architecture robustness to launch and rideshare opportunities. The VAMOS mission concept was studied at JPL as part of the NASA Planetary Science Deep Space SmallSat Studies (PSDS3) program, which has not only produced a viable and exciting mission concept for a Venus SmallSat, but has also examined many issues facing the development of SmallSats for planetary exploration, such as SmallSat solar electric propulsion, autonomy, telecommunications, and resource management that can be applied to various inner solar system mission architectures.
Testing and calibrating an advanced cubesat attitude determination and control system
Tjorven Delabie, Bram Vandoren, Wim De Munter, et al.
CubeSat technology is evolving rapidly. With the increased performance of these small spacecraft platforms, astronomical missions on CubeSats will be flown in the near future. These types of missions have very demanding requirements in terms of spacecraft pointing. At the KU Leuven university, we have developed a compact, highaccuracy attitude determination and control system for CubeSats. The system uses three reaction wheels and a star tracker to deliver high agility and accuracy. In this paper, we will discuss the test and calibration campaign that was carried out. This campaign was instrumental in achieving the performance required by astronomical missions.
Posters: Technology
icon_mobile_dropdown
Smart starting guesses from machine learning for phase retrieval
Scott W. Paine, James R. Fienup
Image-based wavefront sensing uses a physical model to simulate a point-spread function (PSF) that attempts to match measured data. Nonlinear optimization is used to update parameters corresponding to the wavefront. If the starting guess for the wavefront is too far from the true solution, these nonlinear optimization techniques are unlikely to converge. We trained a convolutional neural network (CNN) based on Google’s Inception v3 architecture1 to predict Zernike coefficients from simulated images of PSFs with simulated noise added. These coefficients were used as starting guesses for nonlinear optimization techniques. We performed Monte Carlo analysis to compare these predicted coefficients to 30 random starting guesses for total root-mean-square (RMS) wavefront errors (WFE) ranging from 0.25 waves to 4.0 waves. We found that our CNN’s predictions were more likely to converge than the random starting guesses for RMS WFE larger than 0.5 waves.
Characterization of microdot apodizers for imaging exoplanets with next-generation space telescopes
Manxuan Zhang, Garreth Ruane, Jacques-Robert Delorme, et al.
A major science goal of future, large-aperture, optical space telescopes is to directly image and spectroscopically analyze reflected light from potentially habitable exoplanets. To accomplish this, the optical system must suppress diffracted light from the star to reveal point sources approximately ten orders of magnitude fainter than the host star at small angular separation. Coronagraphs with microdot apodizers achieve the theoretical performance needed to image Earth-like planets with a range of possible telescope designs, including those with obscured and segmented pupils. A test microdot apodizer with various bulk patterns (step functions, gradients, and sinusoids) and 4 different dot sizes (3 μm, 5 μm, 7 μm, and 10 μm) made of small chrome squares on anti-reflective glass was characterized with microscopy, optical laser interferometry, as well as transmission and reflectance measurements at wavelengths λ=600 nm and λ=800 nm. Microscopy revealed the microdots were fabricated to high precision. Results from laser interferometry showed that the phase shifts observed in reflection vary with the local microdot fill factor. This effect is not explained purely by interference between reflected fields from the chrome and glass portions. Transmission measurements showed that microdot fill factor and transmission were linearly related for dot sizes ≥5 μm. However, anomalously high transmittance was measured when the dot size is <5× the wavelength (i.e. ∼3 μm) and the fill factor is approximately 50%, where the microdot pattern becomes periodic. The transmission excess is not as prominent in the case of larger dot sizes suggesting that it is likely to be caused by the interaction between the incident field and electronic resonances in the surface of the metallic microdots. We used our empirical models of the microdot apodizers to optimize a second generation of reflective apodizer designs, specifically for demonstrating end-to-end instrumentation for planet characterization at Caltech’s High Contrast Spectroscopy Testbed for Segmented Telescopes (HCST), and confirmed that the amplitude and phase of the reflected beam closely matches the ideal wavefront.
Using the Spitzer IRAC science archive for instrument trending
Jessica Krick, Jim Ingalls, Patrick Lowrance, et al.
We present a database of reduced data for all staring mode observations taken with the Infrared Array Camera (IRAC) during the Spitzer warm mission to monitor instrument performance, predict future instrument performance, and facilitate exoplanet and brown dwarf science. Our motivation is to be informed so that we can mitigate the impact of changing thermal conditions on science. Monitoring current trends allows us to predict future instrument performance and to adjust our recommended suite of best practices and calibrations accordingly. From this database we show that instrumental effects detrimental to high precision photometry either remain stable or improve. A uniform reduction of all IRAC light curves has never before been published, and will enable powerful science including accurate comparative studies of exoplanets and brown dwarfs. IRAC has been performing well throughout the warm mission and we expect performance to remain excellent.
Hexapod actuated focal plane for high-resolution suborbital and ground-based exploration
Alexander D. Miller, Paul A. Scowen, Rhonda K. Holton, et al.
This paper outlines development efforts to produce an imaging system, known as the HExapod Resolution Enhancement SYstem (HERESY), that can be interchangeably used aboard balloon-based and ground-based observing platforms. The instrument is a cryogenic hexapod system that accomplishes image stabilization similar to a tip-tilt mirror but by actuating the focal plane rather than the incoming optical beam.

In its balloon configuration, HERESY is not a full-gimbaled pointing instrument but is rather a high-precision, highfrequency image stabilization instrument that removes image blurring caused by jitter. The pointing error signal (collected by star tracker) is fed to the hexapod at a high frequency to drive positional corrections in close to real-time. 1 arcsecond sustained pointing has already been demonstrated by missions such as NASA’s STO-2 Antarctic balloon mission, and HERESY would improve STO-like gondola’s pointing by an order of magnitude (0.1”) bringing the imaging capability of the platform down to the 300nm diffraction limit. These balloon imaging capabilities have caught the interest of the planetary community since a long-duration mission would enable persistent diffraction-limited imaging for applications such as Gas Giant storm tracking, small body remote sensing, and exoplanet detections.

The HERESY instrument is transportable and interchangeable since different detector configurations can be readily interchanged on the hexapod’s mounting surface. HERESY can also be plugged into the focal point of any telescope system without introducing the need for any additional optics of its own. Therefore, it is straight-forward to reconfigure HERESY from a balloon-based instrument to a ground-based instrument. In the ground-based configuration an additional fast-read CMOS detector is co-mounted next to the primary science detector and acts as a star tracker. Once the imaging targets are lined up properly, the CMOS tracks the center-point of the guide-star at a rate of 100-200fps and feeds the positional corrections to the hexapod while the primary detector can take a long exposure simultaneously. Using this technique, the hexapod can remove X-Y blurring error in an image caused by atmospheric turbulence. In this configuration, HERESY can be installed at the focal plane of any optical telescope and immediately provide a working image stabilization system. Engineering testing of this prototype instrument have been completed at the 61” Kuiper observatory in Tucson, AZ, but more refinement of the pointing algorithm is needed before this instrument can collect publishable science data. A known limitation of the instrument is that a bright star must be in the FOV of the CMOS while the science target is in the FOV of the primary detector, so future modifications of the ground-based version of HERESY will likely include the addition of several more fast-read CMOS star trackers to broaden the star tracker field of view.
Development of an alignment platform for ESO's mid-infrared E-ELT imager and spectrograph (METIS)
André Boné, António Amorim, Paulo Gordo, et al.
We present a solution to the challenges of interfacing the ELT’s METIS to the telescope using a steerable hexapod structure. To guide the architectural choices, lumped physical models were derived from inverse kinematics in order to address the load distribution in each arm. Complete FE Analysis is carried on the optimal solutions of these models. The hexapod arms, which are high precision heavy duty linear actuators enduring forces in the excess of 30 tons, are designed using standard components whenever possible. An overall fully functional support structure design, satisfying the ESO/ELT and METIS requirements, is described.
A new pulse shape description for alpha particle pulses in a highly-sensitive sub-Kelvin bolometer
S. L. Stever, F. Couchot, N. Coron, et al.
The next generation of cosmology space missions will be sensitive to parasitic signals arising from cosmic rays. Using a composite bolometer, we have investigated pulses produced by α particles in order to understand the movement of energy produced by ionising radiation. Using a series of measurements at 100 mK, we have compared the typical fitting algorithm (a mathematical model) with a second method of pulse interpretation by convolving the detector’s thermal response function with a starting profile of thermalised athermal phonons, taking into account the effects of heat propagation. Using this new fitting method, we have eliminated the need for a non-physical quadratic nonlinearity factor produced using more common methods, and we find a pulse form in good agreement with known aspects of thermal physics. This work is carried forward in the effort to produce a physical model for energy deposition in this detector. The modelling is motivated by the reproduction of statistical features in the experimental dataset, and the new interpretation of α pulse shapes represents an improvement in the current understanding of the energy propagation mechanisms in this detector.
Thermal design utilizing radiative cooling for the payload module of LiteBIRD
Takashi Hasebe, Shingo Kashima, Satoru Uozumi, et al.
The conceptual thermal design of the payload module (PLM) of LiteBIRD utilizing radiative cooling is studied. The thermal environment and structure design of the PLM strongly depend on the precession angle α of the spacecraft. In this study, the geometrical models of the PLM that consist of the sunshield, three layers of Vgrooves, and 5 K shield were designed in the cases of α = 45° , 30° , and 5° . The mission instruments of LiteBIRD are cooled down below 5 K. Therefore, heat transfers down to the 5 K cryogenic part were estimated in each case of α. The radiative heat transfers were calculated by using geometrical models of the PLM. The conductive heat transfers and the active cooling with cryocoolers were considered. We also studied the case that the inner surface of the V-groove is coated by a high-emissivity material.
Modeling non-scalar diffraction in the Princeton starshade testbed
Starshades provide a leading technology to enable the direct detection and spectroscopic characterization of Earth-like exoplanets. Two key aspects to advancing starshade technology are the demonstration of starlight suppression at science-enabling levels and validation of optical models at this high level of suppression. These technologies are addressed in current efforts underway at the Princeton Starshade Testbed. Recent experimental data suggest we are observing the effects of vector (non-scalar) diffraction, which are limiting the starshade's performance and preventing the scalar optical models from agreeing with experimental results at the deepest levels of suppression. This report outlines a model developed to simulate vector diffraction in the testbed using a full solution to Maxwell's equations propagating through narrow features of the starshade. We find that experimental results can be explained by vector diffraction as light traverses the thickness of the starshade mask and that our model is in rough agreement with observations. We provide simulation results of a number of starshade geometries as a first attempt to understand the relation of these effects to properties of the starshade masks. Finally, we outline a number of possible solutions aimed to minimize vector effects and to allow us to reach our milestone of 10-9 suppression.
Edge sensor concept for segment stabilization
Laura E. Coyle, J. Scott Knight, Michael Adkins
To meet ambitious science goals and leverage NASA investments for the James Webb Space Telescope, some proposed mission concepts include large aperture telescopes with segmented primary mirrors. Aberration control at the segment level becomes critical for these architectures because rigid body motion of the individual mirrors overtakes full aperture aberrations as the driver for wavefront stability. Perturbations at the segment level cannot be effectively sensed by existing full pupil low-order wavefront sensors because the errors are discontinuous and low-order techniques applied to individual segments would have insufficient photon flux. Thus, an additional “mid-order” control loop is required. We propose the use of capacitive edge sensors to locally sense the relative motion of segments in piston, tip and tilt, which then provide input to a compensation arm. Ball Aerospace has developed capacitive sensor technology with proven measurement precision of <12 pm RMS that can be adapted for measuring primary mirror segment motion. This performance approaches the 10 pm stability often stated as a requirement for direct imaging of earth-like exoplanets with a coronagraph. Using the geometry of the existing hardware as a baseline, the sensor gap and plate area can be scaled to accommodate mounting to mirror segments while maintaining or increasing sensitivity and multiple plates in different orientations can be used to sense individual degrees of freedom. This paper will present measured results from the Ball capacitive sensor and use those results to develop expected sensitives and a notional sensor head geometry for stabilizing a large, segmented primary mirror with edge sensors.
Apodized Pupil Lyot coronagraphs with arbitrary aperture telescopes: novel designs using hybrid focal plane masks
Mamadou N'Diaye, Kevin Fogarty, Rémi Soummer, et al.
Exoplanet imaging and spectroscopy are now routinely achieved by dedicated instruments on large ground-based observatories (e.g. Gemini/GPI, VLT/SPHERE, or Subaru/SCExAO). In addition to extreme adaptive optics (ExAO) and post-processing methods, these facilities make use of the most advanced coronagraphs to suppress light of an observed star and enable the observation of circumstellar environments. The Apodized Pupil Lyot Coronagraph (APLC) is one of the leading coronagraphic baseline in the current generation of instruments. This concept combines a pupil apodization, an opaque focal plane mask (FPM), and a Lyot stop. APLC can be optimized for a range of applications and designs exist for on-axis segmented aperture telescopes at 1010 contrast in broadband light. In this communication, we propose novel designs to push the limits of this concept further by modifying the nature of the FPM from its standard opaque mask to a smaller size occulting spot surrounded by circular phase shifting zones. We present the formalism of this new concept which solutions find two possible applications: 1) upgrades for the current generation of ExAO coronagraphs since these solutions remain compatible with the existing designs and will provide better inner working angle, contrast and throughput, and 2) coronagraphy at 1010 contrast for future flagship missions such as LUVOIR, with the goal to increase the throughput of the existing designs for the observation of Earth-like planets around nearby stars.
An active optics system for large UVOIR space telescopes
Fiona Kenny, Nicholas Devaney, Alexander Goncharov, et al.
The next generation of large monolithic mirror space telescopes will use aberration correction to ensure resolution performance is maintained throughout their mission. This is due to the use of ever thinner and lighter primary mirrors, which are susceptible to deformation due to a range of effects such as mechanical stress and thermal changes. In this work, we outline our space-telescope design and its corresponding active optics system to correct for these aberrations. We also describe our laboratory system for testing the wavefront sensing and aberration correction capabilities of the active optics components, along with some preliminary experimental results.
Raman laser spectrometer optical head: flight model performance verification
A. Santiago, G. Ramos, M. Sanz-Palomino, et al.
In the framework of the ESA’s Aurora Exploration Programme and, in particular, of the ExoMars mission, the Raman Laser Spectrometer (RLS) will be in charge of performing out planetary Raman spectroscopy for the first time. The instrument is located inside the Rover at the Analytical Drawer (ALD) and will analyze powdered samples obtained from the Martian subsurface in order to determine the geochemistry content and elemental composition of the minerals under study. After the RLS instrument successful qualification, the Flight Model (FM) development and the acceptance verification activities started. Among the different units RLS is composed on, i.e. its three main units that are interconnected by optical fibers and electrical harness, iOH (Internal Optical Head), SPU (Spectrometer Unit) and ICEU (Instrument control and Excitation Unit) which also contains the Raman excitation laser diode, iOH FM information can be found in this paper. RLS iOH unit is in charge of focusing the Raman excitation signal onto the sample, receiving the Raman signal emitted by the sample and focusing this signal in the output optical fiber that is directly connected to SPU unit. As for the rest of RLS instrument FM subunits, and before their final assembly and system level tests, RLS iOH FM exhaustive and complete characterization process was carried out, not only at room conditions but also at relevant environmental conditions: vacuum condition along the operational temperature range with acceptance margins (from -50 to 8ºC). In this paper, and after to carry out the RLS iOH FM proper integration and alignment process, the activities accomplished during the performance verification and the obtained results are reported on
TRL-5 EMCCD controller for space applications
We present the progress in characterization of a Nuv¨ u Cam ¨ eras CCD Controller for Counting Photons ¯ (CCCP) designed for extreme low light imaging in space environment with the 1024×1024 Teledyne-e2V EMCCD detector (the CCD201-20). The EMCCD controller was designed using space qualified parts before being extensively tested in thermal vacuum. The performance test results include the readout noise, clock-induced charges, dark current, dynamic range and EM gain. We also discuss the CCCP’s integration in the coronagraph of the High-Contrast Imaging Balloon System project: a fine-pointing and optical payload for a future Canadian stratospheric balloon mission. This first space qualified EMCCD controller, named CCCPs, will enhance sensitivity of the future low-light imaging instruments for space applications such as the detection, characterization and imaging of exoplanets, search and monitoring of asteroids and space debris, UV imaging, and satellite tracking.
Real-time full alignment and phasing of multiple-aperture imagers using focal-plane sensors on unresolved objects
The alignment of the sub-apertures is a major challenge for future segmented telescopes and telescope arrays. We show here that a focal plane wave-front sensor using only two images can fully and efficiently align a multiple aperture system, both for the alignment (large amplitude tip/tilt aberrations correction) and phasing (piston and small amplitude tip/tilt aberrations correction) modes. We derive a new algorithm for the alignment of the sub-apertures : ELASTICS. We quantify the novel algorithm performance by numerical simulations. We show that the residues are within the capture range of the fine algorithms. We also study the performance of LAPD, a recent real-time algorithm for the phasing of the sub-apertures. The closed-loop alignment of a 6 sub-aperture mirror provides experimental demonstration for both algorithms.
Current limitation of the THD2 bench: the scatter issue
Direct imaging is crucial to increase our knowledge on extrasolar planetary systems. It can detect long orbits planets that are inaccessible by other methods and it allows the spectroscopic characterization of exoplanet’s athmospheres. During the past fewyears, several giant planetswere detected by direct imaging methods. Yet, as exoplanets are 103 to 1010 fainter than their host star in visible and near-infrared wavelengths, direct imaging requires extremely high contrast imaging techniques, especially to detect low-mass and mature exoplanets. Coronagraphs are used to reject the diffracted light of an observed star and obtain images of its circumstellar environment. Nevertheless, coronagraphs are efficient only if the wavefront is flat because aberrated wavefronts induce speckles in the focal plane which mask exoplanet images. Thus, wavefront sensors associated to deformable mirrors are mandatory to correct speckles by reducing aberrations. To test coronagraph techniques and focal plane wavefront sensors at very high contrast level, we developed the THD2 bench in the optical wavelengths. On the THD2 bench, we routinely reach 10􀀀8 raw contrast level inside the dark hole over broadbands but this level is not sufficient to detect low-mass exoplanets. At this level, it seems that many experimental factors can affect the contrast and understanding which one is limiting the final detection contrast will be useful to upgrade the THD2 bench and to develop the next generation of space-based instruments (LUVOIR, HabEx) aiming to reach 10-10 contrast level. We started a complete study of the instrumental limitations of the THD2 bench, focusing on scattering which could add intensity on the detector or polarization effects and residual laboratory turbulences. In this paper, we present the methods used to estimate the amount of scattered light that reaches the final detector on the THD2 bench.
Sensitivity analysis for high-contrast imaging with segmented space telescopes
Direct imaging and spectroscopy of Earth-like planets will require high-contrast imaging at very close angular separation: 1e10 star to planet ux ratio at a few tenths of an arcsecond. Large telescopes in space are necessary to provide sufficient collecting area and angular resolution to achieve this goal. In the static case, coronagraphic instrument designs combined with wavefront control techniques have been optimized for segmented on-axis telescope geometries, but the extreme wavefront stability required at very high contrast of the order of tens of picometers remains one of the main challenges. Indeed, cophasing errors and instabilities directly contribute to the degradation of the final image contrast. A systematic understanding is therefore needed to quantify and optimize the static and dynamic constraints on segment phasing. We present an analytical model: Pair-based Analytical model for Segmented Telescopes Imaging from Space (PASTIS), which enables quasi-instantaneous analytical evaluations of the impact of segment-level aberrations and phasing on the image contrast. This model is based on a multiple sum of Young interference fringes between pairs of segments and produces short and long exposure coronagraphic images with a segmented telescope in presence of local phase aberrations on each segment. PASTIS matches end-to-end numerical simulations with high-fidelity (3% rms error on the contrast). Moreover, the model can be inverted by dint of a projection on the singular modes of the phase to provide constraints on each Zernike polynomial for each segment. These singular modes provide information on the contrast sensitivity to segment-level phasing errors in the pupil, which can be used to derive constraints on both static and dynamic mitigation strategies (e.g. backplane geometry or segment vibration sensing and control). The few most sensitive modes can be well identified and must be controlled at the level of tens of picometers, while the least sensitive modes in the hundreds of picometers. This novel formalism enables a fast and efficient sensitivity analysis for any segmented telescopes, in both static and dynamic modes.
Phase-retrieval-based wavefront metrology for high contrast coronagraphy
We discuss the use of parametric phase-diverse phase retrieval as an in-situ high-fidelity wavefront measurement method to characterize and optimize the transmitted wavefront of a high-contrast coronagraphic instrument. We apply our method to correct the transmitted wavefront of the HiCAT (High contrast imager for Complex Aperture Telescopes) coronagraphic testbed. This correction requires a series of calibration steps, which we describe. The correction improves the system wavefront from 16 nm RMS to 3.0 nm RMS.
NASA's physics of the cosmos and cosmic origins programs manage strategic astrophysics technology development in preparation for the next decadal survey
Thai Pham, Opher Ganel, Harley Thronson
Future strategic astrophysics missions intend to answer the questions “How did our universe begin and evolve?” “How did galaxies, stars, and planets come to be?” and “Are we alone?” Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA’s Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices (POs) manage projects to develop these technologies, which are funded through the Strategic Astrophysics Technology (SAT) program, as well as via directed funding. We present an overview of the Programs’ technology development activities and the current investment portfolio of technology advancements, including those that support four large-mission concepts in preparation for the upcoming Decadal Survey. The PCOS PO also supports funding for US contributionsto the European Space Agency (ESA) Laser Interferometer Space Antenna (LISA) gravitationalwave observatory and the Athena X-ray mission. We discuss our process for identifying and prioritizing technology investments by the NASA Astrophysics Division, which is informed by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH), 2010 Decadal Survey report [1], the Astrophysics Implementation Plan [2] (AIP), and the Astrophysics Roadmap “Enduring Quests, Daring Visions” [3].
Using energy consistency to improve phase retrievals with discrete Fourier transform cropping
A new error metric, known as the Parseval error metric, was developed for phase retrieval algorithms for wavefront sensing that use a cropped discrete Fourier transform to deal with local minima of the sum-squared error metric that have high-frequency phase artifacts that incorrectly place energy outside the crop window. This was done by defining an energy consistency error metric based on a modified version of Parseval’s theorem, and then adding it with a relative weighting factor to the sum-squared error metric to form the Parseval error metric. Simulations were performed to examine the effect of the Parseval error metric compared to the sum-squared error metric alone and to downsampling the data PSF instead of cropping. We found that the cropping methods had better wavefront fits compared to the downsampled method, and the Parseval error metric had better retrieval success rates over the other two methods, although with greater computational requirements.
Automatized alignment of the focal plane assemblies on the PLATO cameras
L. Clermont, J. Jacobs, P. Blain, et al.
PLATO (PLAnetary Transits and Oscillation of stars) is a medium-class space mission part of the ESA Cosmic vision program. Its goal is to find and study extrasolar planetary systems, emphasizing on planets located in habitable zone around solar-like stars. PLATO is equipped with 26 cameras, operating between 500 and 1000nm. The alignment of the focal plane assembly (FPA) with the optical assembly is a time consuming process, to be performed for each of the 26 cameras. An automatized method has been developed to fasten this process. The principle of the alignment is to illuminate the camera with a collimated beam and to vary the position of the FPA to search for the position which minimizes the RMS spot diameter. To reduce the total number of measurements which is performed, the alignment method is done by iteratively searching for the best focus, decreasing at each step the error on the estimated best focus by a factor 2. Because the spot size at focus is similar to the pixel, it would not be possible with this process alone to reach an alignment accuracy of less than several tens of microns. Dithering, achieved by in-plane translation of the focal plane and image recombination, is thus used to increase the sampling of the spot and decrease the error on the merit function.
The segmented aperture interferometric nulling testbed (SAINT) III: control systems analysis and preliminary results
Brian A. Hicks, Keith Jahoda, Peter Petrone III, et al.
This work presents a detailed current performance analysis for the telescope, pointing, and coronagraph com- ponent subsystems of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an active segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize Earth-sized worlds around nearby stars. We describe approaches to optimize subsystem wavefront sensing and control parameters, summarizing relevant scal- ing relations between these parameters, residual errors, and observed contrast measurements. Preliminary results from diagnostic testing under various control states are presented along with intermediate contrast measurements towards demonstrating the full system.
Posters: WFIRST
icon_mobile_dropdown
Lessons for WFIRST CGI from ground-based high-contrast systems
Vanessa P. Bailey, Michael Bottom, Eric Cady, et al.
The Coronagraph Instrument (CGI) for NASA's Wide Field Infrared Survey Telescope (WFIRST) will constitute a dramatic step forward for high-contrast imaging, integral field spectroscopy, and polarimetry of exoplanets and circumstellar disks, aiming to improve upon the sensitivity of current ground-based direct imaging facilities by 2-3 orders of magnitude. Furthermore, CGI will serve as a pathfinder for future exo-Earth imaging and characterization missions by demonstrating wavefront control, coronagraphy, and spectral retrieval in a new contrast regime, and by validating instrument and telescope models at unprecedented levels of precision. To achieve this jump in performance, it is critical to draw on the experience of ground-based high-contrast facilities. We discuss several areas of relevant commonalities, including: wavefront control, post-processing of integral field unit data, and calibration and observing strategies.
WFIRST CGI integral field spectrograph performance and post-processing in the OS6 observing scenario
Maxime J. Rizzo, Neil T. Zimmerman, Tyler D. Groff, et al.
The WFIRST coronagraph instrument (CGI) will have an integral field spectrograph (IFS) backend to disperse the entire field of view at once and obtain spatially-resolved, low-resolution spectra of the speckles and science scene. The IFS will be key to understanding the spectral nature of the speckles, obtain science spectra of planets and disks, and will be used for broadband wavefront control. In order to characterize, predict, and optimize the performance of the instrument, we present a detailed model of the IFS in the context of the new OS6 observing scenario. The simulation includes spatial, spectral, and temporal variations of the speckle field on the IFS detector plane, which allows us to explore several post-processing methods and assess what gains can be expected. The simulator includes the latest models of the detector behavior when operating in photon-counting mode.
WFIRST coronagraph: digging dark-holes with partially corrected pupil phase
Erkin Sidick, John Krist, Ilya Poberezhskiy
The WFIRST coronagraph employs two sequential deformable mirrors to compensate for phase and amplitude errors in the coronagraph optical system. In such a system the actuators of the deformable mirrors would be used for two purposes: To flatten the overall wavefront errors at a system pupil, and to create "dark-holes". The actuators have limited stroke ranges. Therefore, if the pupil phase errors are relatively large, flattening them completely could use up a significant portion of the actuator stroke, sometimes leaving insufficient stroke for creating the dark-holes. We have investigated the impact of partially-corrected pupil phase errors on a Hybrid Lyot Coronagraph (HLC) broadband contrast performance. The predicted broadband contrast floor agrees well with those measured on the HLC testbed.
Plenary Talks
icon_mobile_dropdown
An Engineering History of the JWST Telescope (Conference Presentation)
The James Webb Space Telescope Optical Telescope Element (OTE) is a deployed cryogenic telescope with a 6.5 meter diameter segmented primary mirror that aligns in space. This revolutionary telescope has been the work of over a 1000 engineers, technicians and scientists over the past 15 years and includes numerous technical innovations and first-of-a-kind achievements. This talk will look back in time at the amazing history of the telescope development including the technology, architecture, design, manufacturing, and integration and testing phases. This will include a description of the early years where three fast paced first-of-a-kind optical technologies were developed that helped enable the mission and explore how early architectural decisions played out during the recent test campaign. The presentation will walk through a visual history of the remarkable mirror development efforts, the innovative wavefront sensing and control demonstrations, and recount the intense last two years of integration and testing where the telescope underwent deployment testing, integration with the science instruments, vibration and acoustic testing, and optical testing at cryogenic temperatures at the Johnson Space Center - including through Hurricane Harvey. The talk will end by looking forward in time and discuss how the Webb telescope experience is informing our ability to build future telescopes.
Future Science with the James Webb Space Telescope (Conference Presentation)
Planned for launch in 2019 on an Ariane 5 from French Guiana, JWST will observe at wavelengths from 0.6 to 28 µm with a full suite of imagers, spectrometers, and coronagraphs. JWST will extend the discoveries of the Hubble and Spitzer observatories in all areas from cosmology, galaxies, stars, and exoplanets to our own Solar System. With a 6.5 m primary mirror it has a collecting area 7 times that of Hubble and 50 times that of Spitzer. The image quality is diffraction limited at 2 µm with near IR camera pixels of only 0.03 arcsec. I will outline the planned observing program, showing how the instrument capabilities enable new discoveries in new territories. What were the first objects that formed in the expanding universe? How do the galaxies grow? How are black holes made, ranging from stellar mass to supermassive, over a billion solar masses, and what is their effect on the neighborhood? How are stars and planetary system formed? What governs the evolution of planetary systems, with the possibility of life? How did the Earth become so special? But the most important discoveries will be those we have not even imagined today.
Mapping the Nearest Stars for Habitable Worlds (Conference Presentation)
Thousands of exoplanets are known to orbit nearby stars and small rocky planets are established to be common. The ambitious goal of identifying a habitable or inhabited world is within reach. The race to find habitable exoplanets has accelerated with the realization that “big Earths” transiting small stars can be both discovered and characterized with current technology, such that the James Webb Space Telescope has a chance to be the first to provide evidence of biosignature gases. Transiting exoplanets require a fortuitous alignment and the fast-track approach is therefore only the first step in a long journey. The next step is sophisticated starlight suppression techniques for large ground-based telescopes now under construction and hopeful future space-based based telescopes to observe small exoplanets directly. These ideas will lead us down a path to where future generations will implement very large space-based telescopes to search thousands of all types of stars for hundreds of Earths to find signs of life amidst a yet unknown range of planetary environments. What will it take to identify habitable worlds with the telescopes available to us?