Share Email Print
cover

Proceedings Paper

Trade-off between spatial details and motion artifact in multi-detector CT: A virtual clinical trial with 4D textured human models
Author(s): Ehsan Abadi; W. Paul Segars; Brian Harrawood; Shobhit Sharma; Thomas Sauer; Anuj Kapadia; Ehsan Samei
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In Computed Tomography (CT) imaging, high pitch and wide beam collimations accelerate imaging acquisitions and thus reduce motion artifacts. However, increasing pitch and collimation impact acquisition geometry and thus spatial quality of the images. The purpose of this study was to quantify the effects of pitch and beam collimation on image quality using a realistic virtual clinical trial (VCT) construct. The study used extended-cardio torso (XCAT) phantoms enhanced by synthesizing intra-organ heterogeneities within the lungs and bones. Different amounts of cardiac and respiratory motion were simulated, including heart rates of 0, 60, 90, 120 beats per minute, and respiratory rates of 0, 8, 12, 16 breadths per minute. Each case was imaged using a realistic, scanner-specific, and rapid CT simulator setup based on the geometry and physics of a commercial CT scanner (Siemens Definition Flash), at 120 kV, under multiple pitch values, beam collimations, all at the same dose levels. With the knowledge of the ground truth, the quality of the acquired images was quantified by measuring root mean squared error (RMSE) in the lungs. In general, results indicated that RMSE was higher for the phantoms with more respiratory or cardiac motions. For the pitch experiment, images with higher pitch values had less in-plane motion artifacts. RMSE also increased with increasing the pitch. However, the slope of this trend was found to be a function of motion profile, showing the trade-off between motion artifacts and spatial detail loss. For the beam collimation experiment, no major change was observed in in-plane motion artifacts with changes in the beam collimation. RMSE was almost constant with the increase in beam collimation. This study demonstrates the utility of a realistic VCT construct in quantitative evaluation and optimization of CT imaging protocols, when designing such a trial is ethically-prohibitive, costly, and time-consuming.

Paper Details

Date Published: 1 March 2019
PDF: 6 pages
Proc. SPIE 10948, Medical Imaging 2019: Physics of Medical Imaging, 109482R (1 March 2019); doi: 10.1117/12.2512891
Show Author Affiliations
Ehsan Abadi, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)
W. Paul Segars, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)
Brian Harrawood, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)
Shobhit Sharma, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)
Thomas Sauer, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)
Anuj Kapadia, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)
Ehsan Samei, Carl E. Ravin Advanced Imaging Labs., Duke Univ. (United States)


Published in SPIE Proceedings Vol. 10948:
Medical Imaging 2019: Physics of Medical Imaging
Taly Gilat Schmidt; Guang-Hong Chen; Hilde Bosmans, Editor(s)

© SPIE. Terms of Use
Back to Top