Paper
27 May 2022 A miniaturized chip for 3D optical imaging of tissue regeneration in vivo
Author Affiliations +
Abstract
The current protocols for biocompatibility assessment of biomaterials, based on histopathology, require the sacrifice of a huge number of laboratory animals with an unsustainable ethical burden and remarkable cost. Intravital microscopy techniques can be used to study implantation outcomes in real time though with limited capabilities of quantification in longitudinal studies, mainly restricted by the light penetration and the spatial resolution in deep tissues. We present the outline and first tests of a novel chip which aims to enable longitudinal studies of the reaction to the biomaterial implant. The chip is composed of a regular reference microstructure fabricated via two-photon polymerization in the SZ2080 resist. The geometrical design and the planar raster spacing largely determine the mechanical and spectroscopic features of the microstructures. The development, in-vitro characterization and in vivo validation of the Microatlas is performed in living chicken embryos by fluorescence microscopy 3 and 4 days after the implant; the quantification of cell infiltration inside the Microatlas demonstrates its potential as novel scaffold for tissue regeneration.
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Claudio Conci, Emanuela Jacchetti, Laura Sironi, Lorenzo Gentili, Giulio Cerullo, Rebeca Martinez, Roberto Osellame, Mario Marini, Margaux Bouzin, Maddalena Collini, Laura D'Alfonso, Elmina Kabouraki, Maria Farsari, Anthi Ranella, Nikos Kehagias, Giuseppe Chirico, and Manuela T. Raimondi "A miniaturized chip for 3D optical imaging of tissue regeneration in vivo", Proc. SPIE 12144, Biomedical Spectroscopy, Microscopy, and Imaging II, 121440D (27 May 2022); https://doi.org/10.1117/12.2629824
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissues

Microscopy

In vivo imaging

Confocal microscopy

Two photon polymerization

Tissue optics

Spatial light modulators

Back to Top