Proceedings Volume 9955

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIII—Commemorating the 50th Anniversary of Nonimaging Optics

cover
Proceedings Volume 9955

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIII—Commemorating the 50th Anniversary of Nonimaging Optics

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 19 December 2016
Contents: 9 Sessions, 17 Papers, 17 Presentations
Conference: SPIE Optical Engineering + Applications 2016
Volume Number: 9955

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9955
  • Half a Century of Nonimaging Optics
  • Solar Conversion Optics I
  • Solar Conversion Optics II
  • Freeform and Illumination Optics I
  • Freeform and Illumination Optics II
  • Novel Optics and Core Concepts
  • Solar Thermal Concentrators
  • Poster Session
Front Matter: Volume 9955
icon_mobile_dropdown
Front Matter: Volume 9955
This PDF file contains the front matter associated with SPIE Proceedings Volume 9955, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Half a Century of Nonimaging Optics
icon_mobile_dropdown
How nonimaging optics began
Classical optics was traditionally the mapping of point sources by lenses, mirrors and occasionally holograms , i.e. making an image. The subject has had many famous scientists associated with it; Fermat, Huygens, Descartes, Hamilton just to name a few. By the mid 20th Century it was a well-developed field as exemplified by such luminaries as Walter T. Welford, Emil Wolf and many others. The theory of aberrations which addresses the imperfections of the mapping codified the state of the art. Then arose the need to collect energy, not just images. To the author’s knowledge it can be traced back to WWII Germany with collection of infra-red radiation (the work by D. E. Williamson, was not published until 1952). The radiation collector, a simple right-circular cone, was a harbinger of things to come.
Retrospective on 30 years of nonimaging optics development for solar energy at the University of Chicago
As the field of nonimaging optics has developed over the last 50 years, among its many applications, the best known and recognized is probably in solar energy. In particular, the approach provides the formalism that allows the design of devices that approach the maximum physically attainable geometric concentration for a given set of optical tolerances. This means that it has the potential to revolutionize the design of solar concentrators. Much of the experimental development and early testing of these concepts was carried out at the University of Chicago by Roland Winston and his colleagues and students. In this presentation, some of many embodiments and variations of the basic Compound Parabolic Concentrator that were developed and tested over a thirty-year period at Chicago are reviewed. Practical and economic aspects of concentrator design for both thermal and photovoltaic applications are discussed. Examples covering the whole range of concentrator applications from simple low-concentration non-tracking designs to ultrahigh-concentration multistage configurations are covered.
The role of optics in practical concentrating photovoltaics
S. Horne
Commercially viable concentrating photovoltaic systems are a difficult blend of science and practicality, especially as the complete product lifecycle must be addressed. Optical choices are key: they set the stage for the many compromises that must be made, for better or for worse. This talk will outline SolFocus' experience in bringing one approach to commercial reality, and the important role the company's consulting professors played.
Solar Conversion Optics I
icon_mobile_dropdown
High performance solar cells: It's all about the optics (Conference Presentation)
Eli Yablonovitch
For solar cells at 25%, good electron-hole transport is already a given. Further improvements of efficiency above 25% are all about the photon management! Our mantra is: “A good solar cell has to be a good LED; A great solar cell has to be a great LED! It has been found that thin-film cells are more efficient than the best wafer cells. Even more counter-intuitively, solar cells perform best when some of the solar photons are returned as external fluorescence. That is, the external luminescence yield ext, should be maximized. Good external fluorescence produces record output voltage.
3D-printed concentrators for tracking-integrated CPV modules
Harry Apostoleris, Julian Leland, Matteo Chiesa, et al.
We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.
Improving the effectiveness of photovoltaic devices by light guiding optical foils
C. Leiner, F. P. Wenzl, C. Sommer, et al.
A photovoltaic device comprising of areas which are partly covered by solar cells and a light guiding film is investigated. In particular results on the feasibility of combined daylighting and photovoltaic energy generation are presented. Optical simulations have been conducted for a device-design optimized to redirect most of perpendicular impinging light rays onto photovoltaic areas. Two application cases are investigated for integrating the photovoltaic device into windows and/or glazings in middle (northern) latitudes. The first application case deals with an overhead glazing and the second deals with a window integrated in a roof tilted by 30° towards south. For the latter case encouraging results have been derived. In particular it is calculated that during summer time more than 70% of the direct sunlight is absorbed by photovoltaic areas and less than 10% is transmitted. Consequently, effective shading in summer against direct sunlight can be achieved and most of the shaded solar irradiation can be used for photovoltaic energy conversion. In contrast, in winter time about 40% of the direct sunlight is transmitted through the device and enables decent daylighting.
Solar Conversion Optics II
icon_mobile_dropdown
From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)
Assaf Manor, Nimrod Kruger, Leopoldo L. Martin, et al.
The Shockley-Queisser efficiency limit of ~40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.
Design of a light confining concentrator for a solar photochemical reactor and upper bound to the method
Optical concentration obtained by light confinement bears unique features that can increase the efficiency of a photochemical reactor. A suitable implementation of this method for a solar reactor is a series of parallel tubular receivers sealed in a slab-shape reflective cavity, in which light is trapped thanks to a self-adaptive optical filtering mechanism. To predict the concentration in such a generic configuration, we had previously established an analytical model based on idealistic assumptions, which are not valid in our real configuration. Here, we use analytical calculations and numerical ray-trace simulations to investigate how the finite size of the latter impacts the prediction of our model and extrapolate design guidelines for minimal departure from ideality. We apply these guidelines to design an optical concentrator maximizing flux density on tubular receivers and discuss the upper bound to the method, as well as the benefits from its unique features. Accounting for practical and technological limitations, this method can provide optical concentration in the order of ten suns in our generic configuration.
Freeform and Illumination Optics I
icon_mobile_dropdown
Freeform multifocal lenses designed with the SQM: geometry and diffraction
Design of freeform refractive lenses is known to be a difficult inverse problem. But solutions, if available, can be very useful, especially in devices required to redirect and reshape the radiance of the source into an output irradiance redistributed over a given target according to a prescribed pattern. In this report we present results of theoretical and numerical analysis of refractive lenses designed with the Supporting Quadric Method. It is shown that such freeform lenses have a particular simple geometry and qualitatively their diffractive properties are comparable with rotationally symmetric lenses designed with classical methods.
Simultaneous calculation of three optical surfaces in the 3D SMS freeform RXI optic
The Freeform RXI collimator is a remarkable example of advanced nonimaging device designed with the 3D Simultaneous Multiple Surface (SMS) Method. In the original design, two (the front refracting surface and the back mirror) of the three optical surfaces of the RXI are calculated simultaneously and one (the cavity surrounding the source) is fixed by the designer. As a result, the RXI perfectly couples two input wavefronts (coming from the edges of the extended LED source) with two output wavefronts (defining the output beam). This allows for LED lamps able to produce controlled intensity distributions, which can and have been successfully applied to demanding applications like high- and low-beams for Automotive Lighting. Nevertheless, current trends in this field are moving towards smaller headlamps with more shape constraints driven by car design. We present an improved version of the 3D RXI in which also the cavity surface is computed during the design, so that there are three freeform surfaces calculated simultaneously and an additional degree of freedom for controlling the light emission: now the RXI can perfectly couple three input wavefronts with three output wavefronts. The enhanced control over ray beams allows for improved light homogeneity and better pattern definition.
Freeform and Illumination Optics II
icon_mobile_dropdown
Recent advances in the SMS design method: 3D aplanatism and diffraction
Recent advances in the Simultaneous Multiple Surfaces (SMS) design method are reviewed in this paper. In particular, we review the design of diffractive surfaces using the SMS method and the concept of freeform aplanatism as a limit case of a 3D SMS design.
Smart freeform optics solution for an extremely thin direct-lit application
Claude Leiner, Wolfgang Nemitz, Susanne Schweitzer, et al.
Common direct-lit systems for general lighting applications are using LEDs as light sources, which are placed in a certain distance in a regularly arranged array. In order to achieve a homogenous light distribution a diffuser sheet has to be placed on the out-coupling side in a certain height above the LED array. The position of the diffuser sheet is strongly correlated to the distance between the LEDs and is responsible for the positional homogenization of the LED spots, while the rough side of the diffuser averages the angular light distribution. In order to maintain the uniformity of the luminance the distance of the LEDs compared to the height of the diffuser sheet placement (DHR ratio) is of relevance. DHR values of 1 are hardly achievable. To overcome this limitation additional optical elements like freeform lenses are necessary. In this contribution we discuss a smart design concept for an extremely flat direct-lit lighting system. It is characterized by an improved distance (LEDs) to height (diffuser sheet) ratio compared to diffuser sheet only-approaches and a smaller thickness compared to common freeform approaches. For this demand we designed very thin freeform lenses with a maximal height of 75 μm that allow to maintain a uniform illumination in a flat direct-lit backlight using an LEDarray with a comparably large distance between the individual LEDs. The concept emphasizes the use of maskless laser direct write lithography for the cost-effective fabrication of the thin freeform micro-lens array.
Novel Optics and Core Concepts
icon_mobile_dropdown
Nonimaging optics in lighting to reduce light pollution
Melissa Ricketts, Jon Ferry, Lun Jiang, et al.
Light pollution has become a prominent issue, specifically in National Parks such as Yosemite, where visitors go to enjoy the natural ‘night sky’. In an effort to reduce light pollution, a particularly obtrusive light source has been selected for retrofit. Using nonimaging optics and light emitting diodes (LEDs), light can be controlled to achieve a desired prescribed illumination distribution. This distribution possesses a sharp cut-off such that light leakage is minimal. Nonimaging optical designs are 3D printed, retrofitted into the candidate fixture, and tested in Yosemite National Park. The end goal is to drastically reduce and even eliminate the excess light from sources around the park.
Flow line asymmetric nonimaging concentrating optics
Nonimaging Optics has shown that it achieves the theoretical limits by utilizing thermodynamic principles rather than conventional optics. Hence in this paper the condition of the "best" design are both defined and fulfilled in the framework of thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems, even illumination and optical communication tasks. This new way of looking at the problem of efficient concentration depends on probabilities, geometric flux field and radiative heat transfer while “optics” in the conventional sense recedes into the background. Some of the new development of flow line designs will be introduced and the connection between the thermodynamics and flow line design will be officially formulated in the framework of geometric flux field. A new way of using geometric flux to design nonimaging optics will be introduced. And finally, we discuss the possibility of 3D ideal nonimaing optics.
Solar Thermal Concentrators
icon_mobile_dropdown
The rise of non-imaging optics for rooftop solar collectors
Gary Rosengarten, Cameron Stanley, Dave Ferrari, et al.
In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.
Numerical analysis on using compound parabolic couplers for direct transmission of concentrated solar radiation via optical fibre (Conference Presentation)
A challenge in high-temperature solar thermal applications is transfer of concentrated solar radiation to the load with minimum energy loss. The use of a solar concentrator in conjunction with optical fibres has potential advantages in terms of transmission efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. For transferring higher levels of concentrated flux it is necessary to employ multiple optical fibres or fibre bundles. However, the losses at the incident plane of a bundle due to absorption by the epoxy and cladding between the individual fibres in a bundle are substantial, typically over 60% of the overall transmission loss. The optical transmission of the system can thus be enhanced by employing a coupler between the concentrated solar radiation and the entrance to the bundle that reflects all incident light into the cores of individual fibres rather than allowing it to strike the interstitial spaces between the cores. This paper describes the design for such couplers based on multiple compound parabolic (CP) reflectors each with its exit aperture coinciding with the core of an individual fibre within the bundle. The proposed design employs external reflection from a machined metallic aluminium surface. This CP arrangement has the additional benefit of increasing the concentration ratio of the primary solar concentrator used. Simulation modeling using LightTools is conducted into a parabolic Cassegrain solar concentrator employing these CP couplers prior to a fibre bundle. The dependence of overall transmission and total optical efficiency of the system over lengths of the bundle up to 100 m are investigated quantitatively. In addition, the influence on transmission of the angular distribution of radiation intensity at the aperture of the couplers is studied.
Advanced linear Fresnel optics for solar thermal energy (STE) production (Conference Presentation)
Manuel Collares-Pereira
One path towards low electricity cost is the use of ever higher concentration values, since that, in turn, will provide less thermal losses at higher temperatures and high temperature operation means higher thermodynamic efficiency in the conversion of heat into electricity. However concentration has an added value, since it is associated with larger primaries (see below) and thus with a reduction of collector rows in any given collector field. That, in turn, will reduce receiver length, connecting pipe lengths, number of components, thermal losses in pipes, heat transfer fluid mass, pumping power required (thus less parasitics), OM necessary, and all of that will contribute towards a lower electricity production cost. Conventional PT and LFR concentrators are, essentially, focusing optics solutions and thus very far from the concentration limits set by Non Imaging Optics. However if a conventional PT optics is designed to accommodate a second stage concentrator (or, even better, if a parabolic like primary is designed in an optimal way with a secondary concentrator for a given receiver) the result will have a much higher concentration, but also, as a consequence, a much larger size, since available evacuated tubular receivers come in basically one (standard) size : 70mm diameter. Thus from a typical aperture size of ~6m and a concentration value of ~26, to double the concentration value with n.i.o., would bring the aperture close to ~12m, a value which is not practical for manufacture, transportation, field installation and operation (think about wind loads, for instance) . But with LFR technology this size limitation is not there at all, and low concentration values can now be substituted by much higher ones, and primaries between 20 and 30 m can be produced for the same tube. Some LFRs on the market do have second stage concentration and offer primaries of about 12m total mirror width when designed for those evacuated tubes. These correspond to a CPC type second stage combined with the conventional primary. But is possible to go much further in concentration ( or better yet, to go much further in CAP value – CAP= C*sinθ) by adopting Advanced LFR configurations which achieve the highest concentration possible for any given θ and do so by simultaneously conserve etendue as much as possible. This talk will present and some of these solutions and discuss their merits for the application in view. It will show that all things considered, Advanced LFR solutions, with Molten Salts operating at 565°C , have a much higher final solar to electricity conversion efficiency than the conventional solutions and thus LFR technology seems to have a future market potential (given its inherently low cost) much beyond its present very low market share.
Nonimaging optics maximizing exergy for hybrid solar system
The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.
Poster Session
icon_mobile_dropdown
Design of a segmented nonimaging Fresnel lens optimized for non-tracking solar collection
The success of solar systems, such as photovoltaic and sunlight illumination systems, is principally determined by the primary optical element used as collector. On this subject, the design of a segmented nonimaging Fresnel lens is presented; this collector is formed by the conjunction of different zones for solar collection, where every zone is made of a nonimaging Fresnel lens that collects a specific angular range of sunlight, according to the solar radiation of the northeast received in Mexico. Every collector section focus in a common area. The different zones are designed considering the apparent solar movement due to the daytime and the seasonal displacement over the year. The collector total performance is presented, including spatial and angular distribution. The collector presents an average performance over 80%, with an acceptance half-angle of 120°, and a collection area similar to that in a collector with 45° of acceptance half-angle.
Modeling of efficient light extraction in light-pipes through specular surfaces with elliptical and lineal front shapes
Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular light­pipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.