Proceedings Volume 9914

Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII

cover
Proceedings Volume 9914

Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 16 August 2016
Contents: 22 Sessions, 95 Papers, 0 Presentations
Conference: SPIE Astronomical Telescopes + Instrumentation 2016
Volume Number: 9914

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9914
  • Current Cameras and Arrays
  • Transition-Edge Sensors
  • Coherent Detector Technology
  • Future Cameras and Arrays
  • Kinetic Inductance Detectors I
  • CMB Instruments I
  • Kinetic Inductance Detectors II
  • Optics and Components
  • CMB Instruments II
  • Multiplexing and Readout Systems
  • CMB Instruments III
  • Terahertz Technology
  • Emerging Concepts and New Instruments
  • Poster Session: Coherent Detector Technology
  • Poster Session: Future Cameras and Arrays
  • Poster Session: Kinetic Inductance Detectors I and II
  • Poster Session: Associated Technologies
  • Poster Session: Optics and Components
  • Poster Session: CMB Instruments I, II, III
  • Poster Session: Multiplexing and Readout Systems
  • Poster Session: Emerging Concepts and New Instruments
Front Matter: Volume 9914
icon_mobile_dropdown
Front Matter: Volume 9914
This PDF file contains the front matter associated with SPIE Proceedings Volume 9914, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Current Cameras and Arrays
icon_mobile_dropdown
POL-2: a polarimeter for the James-Clerk-Maxwell telescope
Per Friberg, Pierre Bastien, David Berry, et al.
The POL-2 polarimeter for the SCUBA-2 10 000 pixel Terahertz camera on the James Clerk Maxwell Telescope (JCMT) in it's late state of commissioning. Proposals have been accepted for POL-2 and general observing will start in August 2016. SCUBA-2 has a field of view of 43 arcmin at both of the 850 and 450 μm focal planes. POL-2 will map the sky in the the 850 μm band. The POL-2 polarimeter utilizes three optical components: a half wave plate and two wire-grid polarizers used as calibrator and analyzer covering the full field of SCUBA-2. We describe the instrument, data acquisition and features/artifacts that have been encountered during the commissioning.
SPACEKIDS: kinetic inductance detectors for space applications
SPACEKIDS, a European Union FP-7 project, has recently been completed. It has focused on developing kinetic inductance detector (KID) arrays and demonstrating their suitability for space applications at far infrared and submillimetre wavelengths. KID arrays have been developed for both low-background (typical of astrophysical applications) and high-background (typical of Earth-observation applications), based on performance specifications derived from the science requirements of representative potential future missions. KID pixel and array designs have been developed, together with readout electronics necessary to read out large numbers of pixels. Two laboratory demonstrator systems have been built and used for comprehensive evaluation of large-format array characteristics and performance in environments representative of both astronomy and Earth observing applications. We present an overview of the SPACEKIDS project and a summary of its main results and conclusions.
Transition-Edge Sensors
icon_mobile_dropdown
Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI
The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.
Optical characterisation of a camera module developed for ultra-low NEP TES detector arrays at FIR wavelengths
D. Morozov, R. Sudiwala, P. A. R. Ade, et al.
Here we report on the optical design and on the spectral-spatial characterisation of a small 16 pixel camera. The prototype uses TES detectors with NEPs ~10-16 W/Hz0.5 which have been fabricated with near identical optical coupling structures to mimic their much lower NEP counterparts (~10-19 W/Hz0.5). This modification, which is achieved through changing only the pixel thermal conductance, G, has allowed us to perform spectral/spatial cryogenic testing using a 100mK ADR to view room temperature thermal sources. The measurements show a flat spectral response across the waveband and minimal side lobe structure in the antenna patterns down to 30dB.
Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument
D. J. Goldie, D. M. Glowacka, S. Withington, et al.
We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 − 210 μm and S-band 34 − 60 μm .
Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA
P. Khosropanah, T. Suzuki, M. L. Ridder, et al.
SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.
Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments
We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ∼90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.
Coherent Detector Technology
icon_mobile_dropdown
Development of digital sideband separating down-conversion for Yuan-Tseh Lee Array
Chao-Te Li, Derek Kubo, Jen-Chieh Cheng, et al.
This report presents a down-conversion method involving digital sideband separation for the Yuan-Tseh Lee Array (YTLA) to double the processing bandwidth. The receiver consists of a MMIC HEMT LNA front end operating at a wavelength of 3 mm, and sub-harmonic mixers that output signals at intermediate frequencies (IFs) of 2–18 GHz. The sideband separation scheme involves an analog 90° hybrid followed by two mixers that provide down-conversion of the IF signal to a pair of in-phase (I) and quadrature (Q) signals in baseband. The I and Q baseband signals are digitized using 5 Giga sample per second (Gsps) analog-to-digital converters (ADCs). A second hybrid is digitally implemented using field-programmable gate arrays (FPGAs) to produce two sidebands, each with a bandwidth of 1.6 GHz. The 2 x 1.6 GHz band can be tuned to cover any 3.6 GHz window within the aforementioned IF range of the array. Sideband rejection ratios (SRRs) above 20 dB can be obtained across the 3.6 GHz bandwidth by equalizing the power and delay between the I and Q baseband signals. Furthermore, SRRs above 30 dB can be achieved when calibration is applied.
A wideband 240 GHz receiver for the submillimeter array
C.-Y. Edward Tong, Paul K. Grimes, Patrick S. Leiker, et al.
We report on the design of a 240 GHz double-side-band receiver for the Submillimeter Array (SMA). The heart of this receiver is a 3-junction series connected SIS mixer, which allows it to provide intermediate frequency (IF) output up to more than 12 GHz. We have custom built a low noise Amplifier-Multiplier Chain for use as the receiver’s Local Oscillator module, which is tunable from 210 to 270 GHz. The receiver has demonstrated low noise performance in laboratory. 7 out of the 8 SMA antennas are now equipped with this receiver. The receiver has already participated in Event Horizon Telescope observations in April 2016, working with the SMA-200 receiver to provide dual polarization coverage for the EHT Hawaii Station. This receiver has enabled the SMA to provide 32 Gbit per second data stream to the EHT observations. We are currently trying to improve the on-sky beam co-alignment of this receiver with respect to other SMA receivers.
A new high-performance sideband-separating mixer for 650GHz
R. Hesper, A. Khudchenko, A. M. Baryshev, et al.
In the modular sideband-separating mixers that we built over the last years, we observe a clear anti-correlation between the image rejection ratio obtained with a certain block and its noise performance, as well as strong correlations between the image rejection and imbalances in the pumping of the mixer devices. We report on the mechanisms responsible for these effects, and conclude that the reduction of the image rejection is largely explained by the presence of standing waves. We demonstrate the rejection ratio to be very sensitive to those. In principle, all potential round-trip paths should be terminated in matched loads, so no standing waves can develop. In practice, the typical high reflections from the SIS mixers combined with imperfect loads and non-negligible input/output reflections of the other components give many opportunities for standing waves. Since most of the loss of image rejection can be attributed to standing waves, the anti-correlation with the noise temperature can be understood by considering any excess loss in the structure, as the waveguides start acting as distribured loads. This reduces the standing waves, and thereby improves the rejection ratio, at the expense of noise temperature. Based on these experiences, we designed a new waveguide structure, with a basic waveguide size of 400×200 μm and improved loads. Strong emphasis was placed on low input and output reflections of the waveguide components, in some places at the cost of phase or amplitude imbalance. For the latter there is ample margin not to impair the performance, however. Apart from further details of the design, we present the first results of the new mixers, tested in a modified production-level ALMA Band 9 receiver, and show that even in an unfinished state, it simultaneously meets requirements for image rejection and noise temperature.
Sideband-separating MMIC receivers for observation in the 3-mm band
James W. Lamb, Kieran A. Cleary, Rohit S. Gawande, et al.
Wideband receivers for the 3-mm band were developed for CARMA, the Combined Array for Research in Millimeterwave Astronomy. Three cryogenic MMIC (monolithic microwave integrated circuit) amplifiers manufactured in InP 35- nm technology are combined in a block with waveguide probes and gain equalizers to cover the 80–116 GHz band. These are followed by a sideband-separating mixer that has two 17 GHZ wide outputs, for upper and lower sidebands. Each receiver has a feed horn followed by a circular-to-linear polarizer and orthomode transducer. The two polarizations are amplified by the cryogenic MMICs, and the outputs downconverted in sideband separating mixers, resulting in four 1–18 GHz channels that can be simultaneously correlated. The first receiver was tested in the lab, and on-sky tests conducted at CARMA. Measured noise temperatures were in the range 40–70 K, with a sideband rejection of about 15 dB.
Future Cameras and Arrays
icon_mobile_dropdown
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID detector arrays
Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced degree-scale polarization maps of several nearby molecular clouds with arcminute resolution. The success of BLASTPol has motivated a next-generation instrument, BLAST-TNG, which will use more than 3000 linear polarization- sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5 m diameter carbon fiber primary mirror to make diffraction-limited observations at 250, 350, and 500 µm. With 16 times the mapping speed of BLASTPol, sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to examine nearby molecular clouds and the diffuse galactic dust polarization spectrum in unprecedented detail. The 250 μm detec- tor array has been integrated into the new cryogenic receiver, and is undergoing testing to establish the optical and polarization characteristics of the instrument. BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from Antarctica in December 2017 for 28 days and will be the first balloon-borne telescope to offer a quarter of the flight for “shared risk” observing by the community.
An upgraded SCUBA-2 for JCMT
SCUBA-2 is a state of the art wide field camera on the JCMT. SCUBA-2 has been fully operational since November 2011, producing a wide range of science results, including a unique series of survey programs. A new large survey programme commenced in 2015, which included for the first time, polarisation sensitive measurements using POL-2, the polarimeter ancillary instrument. We discuss proposals and the science case for upgrading SCUBA-2 with new detector arrays that will keep SCUBA-2 and the JCMT at the forefront of continuum submillimetre science.
Detector modules and spectrometers for the TIME-Pilot [CII] intensity mapping experiment
Jonathon Hunacek, James Bock, C. Matt Bradford, et al.
This proceeding presents the current TIME-Pilot instrument design and status with a focus on the close-packed modular detector arrays and spectrometers. Results of laboratory tests with prototype detectors and spectrometers are discussed. TIME-Pilot is a new mm-wavelength grating spectrometer array under development that will study the Epoch of Reionization (the period of time when the first stars and galaxies ionized the intergalactic medium) by mapping the fluctuations of the redshifted 157:7 μm emission line of singly ionized carbon ([CII]) from redshift z ~ 5:2 to 8:5. As a tracer of star formation, the [CII] power spectrum can provide information on the sources driving reionization and complements 21 cm data (which traces neutral hydrogen in the intergalactic medium). Intensity mapping provides a measure of the mean [CII] intensity without the need to resolve and detect faint sources individually. We plan to target a 1 degree by 0.35 arcminute field on the sky and a spectral range of 199-305 GHz, producing a spatial-spectral slab which is 140 Mpc by 0.9 Mpc on-end and 1230 Mpc in the redshift direction. With careful removal of intermediate-redshift CO sources, we anticipate a detection of the halo-halo clustering term in the [CII] power spectrum consistent with current models for star formation history in 240 hours on the JCMT. TIME-Pilot will use two stacks of 16 parallel-plate waveguide spectrometers (one stack per polarization) with a resolving power R ~ 100 and a spectral range of 183 to 326 GHz. The range is divided into 60 spectral channels, of which 16 at the band edges on each spectrometer serve as atmospheric monitors. The diffraction gratings are curved to produce a compact instrument, each focusing the diffracted light onto an output arc sampled by the 60 bolometers. The bolometers are built in buttable dies of 8 (low freqeuency) or 12 (high frequency) spectral channels by 8 spatial channels and are mated to the spectrometer stacks. Each detector consists of a gold micro-mesh absorber and a titanium transition edge sensor (TES). The detectors (1920 total) are designed to operate from a 250 mK base temperature in an existing cryostat with a photon-noise-dominated NEP of ~2 * 10-17 WHz-1-2. A set of flexible superconducting cables connect the detectors to a time-domain multiplexing SQUID readout system.
Kinetic Inductance Detectors I
icon_mobile_dropdown
Lumped element kinetic inductance detectors for space applications
Alessandro Monfardini, Jochem Baselmans, Alain Benoit, et al.
Kinetic Inductance Detectors (KID) are now routinely used in ground-based telescopes. Large arrays, deployed in formats up to kilopixels, exhibit state-of-the-art performance at millimeter (e.g. 120-300 GHz, NIKA and NIKA2 on the IRAM 30-meters) and sub-millimeter (e.g. 350-850 GHz AMKID on APEX) wavelengths. In view of future utilizations above the atmosphere, we have studied in detail the interaction of ionizing particles with LEKID (Lumped Element KID) arrays. We have constructed a dedicated cryogenic setup that allows to reproduce the typical observing conditions of a space-borne observatory. We will report the details and conclusions from a number of measurements. We give a brief description of our short term project, consisting in flying LEKID on a stratospheric balloon named B-SIDE. Keywords: cryogenics detectors, millimeter-wave, superconducting resonators.
Development of dual-polarization LEKIDs for CMB observations
Heather McCarrick, Maximilian H. Abitbol, Peter A. R. Ade, et al.
We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped-element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.
CMB Instruments I
icon_mobile_dropdown
BICEP3 performance overview and planned Keck Array upgrade
J. A. Grayson, P. A. R. Ade, Z. Ahmed, et al.
Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The increased per-receiver optical throughput compared to Bicep2/Keck Array, due to both its faster f=1:7 optics and the larger aperture, more than doubles the combined mapping speed of the Bicep/Keck program. The Bicep3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, Bicep3- class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new "BICEP Array" that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies.
BICEP3 focal plane design and detector performance
H. Hui, P. A. R. Ade, Z. Ahmed, et al.
BICEP3, the latest telescope in the BICEP/Keck program, started science observations in March 2016. It is a 550mm aperture refractive telescope observing the polarization of the cosmic microwave background at 95 GHz. We show the focal plane design and detector performance, including spectral response, optical efficiency and preliminary sensitivity of the upgraded BICEP3. We demonstrate 9.72 μKCMB√s noise performance of the BICEP3 receiver.
Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
Johannes Hubmayr, Jason E. Austermann, James A. Beall, et al.
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.
Inflight performance of the PILOT balloon-borne experiment
J.-Ph. Bernard, P. Ade, Y. André, et al.
PILOT is a stratospheric experiment designed to measure the polarization of dust FIR emission, towards the diffuse interstellar medium. The first PILOT flight was carried out from Timmins in Ontario-Canada on September 20th 2015. The flight has been part of a launch campaign operated by the CNES, which has allowed to launch 4 experiments, including PILOT. The purpose of this paper is to describe the performance of the instrument in flight and to perform a first comparison with those achieved during ground tests. The analysis of the flight data is on-going, in particular the identification of instrumental systematic effects, the minimization of their impact and the quantification of their remaining effect on the polarization data. At the end of this paper, we shortly illustrate the quality of the scientific observations obtained during this first flight, at the current stage of systematic effect removal.
Kinetic Inductance Detectors II
icon_mobile_dropdown
Polarization sensitive Multi-Chroic MKIDs
Bradley R. Johnson, Daniel Flanigan, Maximilian H. Abitbol, et al.
We report on the development of scalable prototype microwave kinetic inductance detector (MKID) arrays tai- lored for future multi-kilo-pixel experiments that are designed to simultaneously characterize the polarization properties of both the cosmic microwave background (CMB) and Galactic dust emission. These modular arrays are composed of horn-coupled, polarization-sensitive MKIDs, and each pixel has four detectors: two polariza- tions in two spectral bands between 125 and 280 GHz. A horn is used to feed each array element, and a planar orthomode transducer, composed of two waveguide probe pairs, separates the incoming light into two linear po- larizations. Diplexers composed of resonant-stub band-pass filters separate the radiation into 125 to 170 GHz and 190 to 280 GHz pass bands. The millimeter-wave power is ultimately coupled to a hybrid co-planar waveguide microwave kinetic inductance detector using a novel, broadband circuit developed by our collaboration. Elec- tromagnetic simulations show the expected absorption efficiency of the detector is approximately 90%. Array fabrication will begin in the summer of 2016.
Low-volume aluminum and aluminum / titanium nitride bilayer lumped-element kinetic inductance detectors for far-infrared astronomy
Jason Glenn, Adalyn Fyhrie, Jordan Wheeler, et al.
We present the design and characterization of low-volume, lumped-element aluminum kinetic inductance de- tectors for sensitive far-infrared astronomy observations. The lumped-element kinetic inductance detectors are comprised of meandered inductors that serve as radiation absorbers in parallel with interdigitated capacitors, forming high quality factor resonators. Low inductor volumes lead to low noise equivalent powers by raising quasiparticles densities, and hence responsivities, with respect to larger volumes. Low volumes are achieved with thin (20 nm), narrow (150 nm) inductors. The interdigitated capacitor architecture is designed to mitigate two-level system noise by lowering electric fields in the silicon substrate. Resonance frequencies are in the range of 190 to 500 MHz, with measured internal quality factors in excess of 1 x 105. In a prior incarnation, a titanium nitride layer on top of the aluminum served as a protective layer, but complicated the superconducting proper- ties. These results were reported previously. In the current incarnation, the aluminum layer is left bare with no titanium nitride over-layer. The results for these bare aluminum devices include a yield of 88%, frequency responsivity of 109 W-1, and noise equivalent power of 1 x 10-17 W Hz-1/2 for a 350μm array. There is no evidence for 1=f noise down to at least 200 mHz. The sensitivity is currently limited by white noise, very likely from stray light in the testbed; for this detector design, sensitivities limited by generation-recombination noise in a lower-background environment should be several orders of magnitude lower.
Optics and Components
icon_mobile_dropdown
Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments
N. Trappe, M. Bucher, P. De Bernardis, et al.
The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.
Optical characterisation and analysis of multi-mode pixels for use in future far infrared telescopes
In this paper we present the development and verification of feed horn simulation code based on the mode- matching technique to simulate the electromagnetic performance of waveguide based structures of rectangular cross-section. This code is required to model multi-mode pyramidal horns which may be required for future far infrared (far IR) space missions where wavelengths in the range of 30 to 200 µm will be analysed. Multi-mode pyramidal horns can be used effectively to couple radiation to sensitive superconducting devices like Kinetic Inductance Detectors (KIDs) or Transition Edge Sensor (TES) detectors. These detectors could be placed in integrating cavities (to further increase the efficiency) with an absorbing layer used to couple to the radiation. The developed code is capable of modelling each of these elements, and so will allow full optical characterisation of such pixels and allow an optical efficiency to be calculated effectively. As the signals being measured at these short wavelengths are at an extremely low level, the throughput of the system must be maximised and so multi-mode systems are proposed. To this end, the focal planes of future far IR missions may consist of an array of multi-mode rectangular feed horns feeding an array of, for example, TES devices contained in individual integrating cavities. Such TES arrays have been fabricated by SRON Groningen and are currently undergoing comprehensive optical, electrical and thermal verification. In order to fully understand and validate the optical performance of the receiver system, it is necessary to develop comprehensive and robust optical models in parallel. We outline the development and verification of this optical modelling software by means of applying it to a representative multi-mode system operating at 150 GHz in order to obtain sufficiently short execution times so as to comprehensively test the code. SAFARI (SPICA FAR infrared Instrument) is a far infrared imaging grating spectrometer, to be proposed as an ESA M5 mission. It is planned for this mission to be launched on board the proposed SPICA (SPace Infrared telescope for Cosmology and Astrophysics) mission, in collaboration with JAXA. SAFARI is planned to operate in the 1.5-10 THz band, focussing on the formation and evolution of galaxies, stars and planetary systems. The pixel that drove the development of the techniques presented in this paper is typical of one option that could be implemented in the SAFARI focal plane, and so the ability to accurately understand and characterise such pixels is critical in the design phase of the next generation of far IR telescopes.
Development of the multi-mode horn-lens configuration for the LSPE-SWIPE B-mode experiment
Stephen Legg, Luca Lamagna, Gabriele Coppi, et al.
The Large Scale Polarisation Explorer (LSPE) is a balloon-borne experiment aiming to measure the B-mode component of the CMB polarisation at large angular scales. Onboard LSPE, the Short Wavelength Instrument for the Polarisation Explorer (SWIPE) is a bolometric polarimeter observing in three bands centred at 140, 220 and 240 GHz. The telescope is a single large-diameter plano-convex lens with a cold aperture stop. A small number of multi-mode feed horns feeding bolometric detectors are used within the focal plane, achieving a sensitivity equivalent to that of 100’s of single-mode horns. Simulations have been performed to predict the multi-mode optical response of the horn-lens configuration for centre and off-axis pixels pertaining to each frequency band. The horn has been simulated to a high accuracy using the Method of Moments. Using the horn simulation result as a source, the optical response of the lens has been examined using the more approximate simulation technique; Ray-Launching Geometrical Optics (RL-GO). Solution accuracy and simulation time depend heavily on the choice of RL-GO simulation parameters including: mesh size; the number of launched rays; and how densely the horn source beam is sampled. Individual convergence studies have been performed for each of these parameters and a final model has been obtained as a compromise between simulation time and accuracy. The instrumental polarisation of the lens is predicted to be at the -50 dB level. Finally, the optimal location of where to place the telescope focus in relation to the horn to maximise on-axis gain has been investigated. Several techniques agreed that the ‘phase centre’ is around 20 mm behind the horn aperture at 140 GHz, increasing to 30 mm at 220 and 240 GHz. Taking into account beam truncation effects caused by the finite size of the telescope was found to reduce the overall variation in on-axis gain.
Systematics of an ambient-temperature, rapidly-rotating half-wave plate
T. Essinger-Hileman, A. Kusaka, J. W. Appel, et al.
In these proceedings, we summarize our in-field evaluation of temperature-to-polarization leakage associated with the use of a continuously-rotating, ambient-temperature half-wave plate (HWP) on the Atacama B-Mode Search (ABS) experiment. Using two seasons of data, we demonstrate scalar leakage of ∼ 0.01%. This is consistent with model expectations and an order of magnitude better than any previously-reported leakage. We constrain higher-order dipole and quadrupole leakage terms to be < 0.06% (95% confidence). Without any mitigation from scan cross-linking or boresight rotation, this corresponds to an upper limit on systematic errors in the tensor-to-scalar ratio r ;S 0.01. The HWP significantly reduces temperature-to-polarization leakage systematic errors for ABS and shows the promise of fast polarization modulation with HWPs for future experiments. Full details can be found in Ref. 1.
The design and characterization of wideband spline-profiled feedhorns for Advanced ACTPol
Sara M. Simon, Jason Austermann, James A. Beall, et al.
Advanced ACTPol (AdvACT) is an upgraded camera for the Atacama Cosmology Telescope (ACT) that will measure the cosmic microwave background in temperature and polarization over a wide range of angular scales and five frequency bands from 28-230 GHz. AdvACT will employ four arrays of feedhorn-coupled, polarization- sensitive multichroic detectors. To accommodate the higher pixel packing densities necessary to achieve Ad- vACT’s sensitivity goals, we have developed and optimized wideband spline-profiled feedhorns for the AdvACT multichroic arrays that maximize coupling efficiency while carefully controlling polarization systematics. We present the design, fabrication, and testing of wideband spline-profiled feedhorns for the multichroic arrays of AdvACT.
CMB Instruments II
icon_mobile_dropdown
Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver
Chrystian M. Posada, Peter A. R. Ade, Adam J. Anderson, et al.
Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES’s Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.
Highly uniform 150 mm diameter multichroic polarimeter array deployed for CMB detection
Shuay-Pwu Patty Ho, Jason Austermann, James A. Beall, et al.
The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition- edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities, saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.
Multimode bolometer development for the PIXIE instrument
Peter C. Nagler, Kevin T. Crowley, Kevin L. Denis, et al.
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ∼ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Dealing with beam structure in PIXIE
D. J. Fixsen, Alan Kogut, Robert S. Hill, et al.
Measuring the B-mode polarization of the CMB radiation requires a detailed understanding of the projection of the detector onto the sky. We show how the combination of scan strategy and processing generates a cylindrical beam for the spectrum measurement. Both the instrumental design and the scan strategy reduce the cross coupling between the temperature variations and the B-modes. As with other polarization measurements some post processing may be required to eliminate residual errors.
Multiplexing and Readout Systems
icon_mobile_dropdown
Readout of a 176 pixel FDM system for SAFARI TES arrays
R. A. Hijmering, R. den Hartog, M. Ridder, et al.
In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.
Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver
A. N. Bender, P. A. R. Ade, A. J. Anderson, et al.
The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of ~16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.
FPGA-based digital signal processing for the next generation radio astronomy instruments: ultra-pure sideband separation and polarization detection
Andrés Alvear, Ricardo Finger, Roberto Fuentes, et al.
Field Programmable Gate Arrays (FPGAs) capacity and Analog to Digital Converters (ADCs) speed have largely increased in the last decade. Nowadays we can find one million or more logic blocks (slices) as well as several thousand arithmetic units (ALUs/DSP) available on a single FPGA chip. We can also commercially procure ADC chips reaching 10 GSPS, with 8 bits resolution or more. This unprecedented power of computing hardware has allowed the digitalization of signal processes traditionally performed by analog components. In radio astronomy, the clearest example has been the development of digital sideband separating receivers which, by replacing the IF hybrid and calibrating the system imbalances, have exhibited a sideband rejection above 40dB; this is 20 to 30dB higher than traditional analog sideband separating (2SB) receivers. In Rodriguez et al.,1 and Finger et al.,2 we have demonstrated very high digital sideband separation at 3mm and 1mm wavelengths, using laboratory setups. We here show the first implementation of such technique with a 3mm receiver integrated into a telescope, where the calibration was performed by quasi-optical injection of the test tone in front of the Cassegrain antenna. We also reported progress in digital polarization synthesis, particularly in the implementation of a calibrated Digital Ortho-Mode Transducer (DOMT) based on the Morgan et al. proof of concept.3 They showed off- line synthesis of polarization with isolation higher than 40dB. We plan to implement a digital polarimeter in a real-time FPGA-based (ROACH-2) platform, to show ultra-pure polarization isolation in a non-stop integrating spectrometer.
Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol
Shawn W. Henderson, Jason R. Stevens, Mandana Amiri, et al.
Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array use separate channels for each polarization and each of the two frequencies, such that four TESes must be read out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.
CMB Instruments III
icon_mobile_dropdown
The Simons Array CMB polarization experiment
N. Stebor, P. Ade, Y. Akiba, et al.
The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.
POLARBEAR-2: an instrument for CMB polarization measurements
Y. Inoue, P. Ade, Y. Akiba, et al.
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
The Primordial Inflation Polarization Explorer (PIPER)
Natalie N. Gandilo, Peter A. R. Ade, Dominic Benford, et al.
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to measure the polarization of the Cosmic Microwave Background on large angular scales. PIPER will map 85% of the sky at 200, 270, 350, and 600 GHz over a series of 8 conventional balloon flights from the northern and southern hemispheres. The first science flight will use two 32 × 40 arrays of backshort-under-grid transition edge sensors, multiplexed in the time domain, and maintained at 100 mK by a Continuous Adiabatic Demagnetization Refrigerator. Front- end cryogenic Variable-delay Polarization Modulators provide systematic control by rotating linear to circular polarization at 3 Hz. Twin telescopes allow PIPER to measure Stokes I, Q, U , and V simultaneously. The telescope is maintained at 1.5 K in an LHe bucket dewar. Cold optics and the lack of a warm window permit sensitivity at the sky-background limit. The ultimate science target is a limit on the tensor-to-scalar ratio of r ∼ 0.007, from the reionization bump to l ∼ 300. PIPER’s first flight will be from the Northern hemisphere, and overlap with the CLASS survey at lower frequencies. We describe the current status of the PIPER instrument.
The Cosmology Large Angular Scale Surveyor
Kathleen Harrington, Tobias Marriage, Aamir Ali, et al.
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Terahertz Technology
icon_mobile_dropdown
MgB2 hot electron bolometer mixers for THz heterodyne instruments
In this work we present experimental investigation of the MgB2 hot-electron bolometer (HEB) for low noise mixing at terahertz frequencies. A dedicated MgB2 thin film deposition system was designed and constructed based on Hybrid Physical-Chemical Deposition. Films as thin as 15nm have a superconducting transition at 35K, with a critical current density <107 A/cm2 (at 4.2K) in bridges as narrow as 500nm, indicating on good connectivity in the film. The gain bandwidth (GBW) was measured by mixing of two THz sources. The GBW is proportional to the film thickness and it is at least 6GHz for 15nm thick devices. Performance of MgB2 HEBs was compared to performance of one of the NbN HEB mixers made for the Herschel Space Observatory (one of the flight units), for which both the GBW and the Noise Bandwidth (NBW) was measured. MgB2 HEB mixers show a GBW at least a factor of three broader compared to the NbN HEB measured in the same set-up.
A 2 THz Schottky solid-state heterodyne receiver for atmospheric studies
Jeanne Treuttel, Erich Schlecht, Jose Siles, et al.
Obtaining temperature, pressure, and composition profiles along with wind velocities in the Earth’s thermosphere/ionosphere system is a key NASA goal for understanding our planet. We report on the status of a technology development effort to build an all-solid-state heterodyne receiver at 2.06 THz that will allow the measurement of the 2.06 THz [OI] line for altitudes greater than 100 km. The receiver front end features low-parasitic Schottky diode mixer chips that are driven by a local oscillator (LO) source using Schottky diode based multipliers. The multiplier chain consists of a 38 GHz oscillator followed by a set of three cascaded triplers at 114 GHz, 343 GHz and 1.03 THz.
Emerging Concepts and New Instruments
icon_mobile_dropdown
CryoPAF4: a cryogenic phased array feed design
Lisa Locke, Dominic Garcia, Mark Halman, et al.
Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 – 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of ~8x compared to a single pixel receiver of equal system temperature.
Proof of concept demonstration for coherent beam pattern measurements of KID detectors
Kristina K. Davis, Andrey M. Baryshev, Willem Jellema, et al.
Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.
A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument
Locke D. Spencer, David A. Naylor, Jeremy P. Scott, et al.
We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.
Multichroic bandpass seashell antenna with cold-electron bolometers for CMB measurements
Leonid S. Kuzmin, Alexander V. Chiginev
novel type of the multichroic “seashell” resonant antenna is developed for CMB measurements. The polarized slot antennas are arranged in the compact form of a seashell with individual slots for each frequency and each polarization. Such an arrangement gives unique opportunity for independent adjusting individual parameters of slots with microstrip lines (MSL) and bolometers. For each frequency band the seashell antenna contains two pairs of orthogonal slots for each polarization connected by microstrip lines (MSL) with a bolometer in the middle for in-phase operation. To fit slots in λ/2 area for the best beam shape, lumped capacitances in the form of H-slot were introduced. Ellipticity of a beam was improved to the level of better than 1%.

The seashell antenna gives a unique opportunity to select needed bandwidth by resonant properties of slots themselves. Slots are phased by MSLs connecting two opposite slots with a resistive Cold-Electron Bolometer (CEB) placed just in middle of two MSLs. MSLs and CEBs are placed just in the area of the seashell antenna. The resonant seashell antenna with CEBs avoids long MSLs bringing signal outside the antenna to large external filters as in the case of sinuous antenna. This innovation avoids losses in long MSLs and increases frequency range.
Poster Session: Coherent Detector Technology
icon_mobile_dropdown
Results of using permanent magnets to suppress Josephson noise in the KAPPa SIS receiver
Caleb H. Wheeler, Marko Neric, Christopher E. Groppi, et al.
We present the results from the magnetic field generation within the Kilopixel Array Pathfinder Project (KAPPa) instrument. The KAPPa instrument is a terahertz heterodyne receiver using a Superconducting-Insulating- Superconducting (SIS) mixers. To improve performance, SIS mixers require a magnetic field to suppress Josephson noise. The KAPPa test receiver can house a tunable electromagnet used to optimize the applied magnetic field. The receiver is also capable of accommodating a permanent magnet that applies a fixed field. Our permanent magnet design uses off-the-shelf neodymium permanent magnets and then reshapes the magnetic field using machined steel concentrators. These concentrators allow the use of an unmachined permanent magnet in the back of the detector block while two small posts provide the required magnetic field across the SIS junction in the detector cavity. The KAPPa test receiver is uniquely suited to compare the permanent magnet and electromagnet receiver performance. The current work includes our design of a ‘U’ shaped permanent magnet, the testing and calibration procedure for the permanent magnet, and the overall results of the performance comparison between the electromagnet and the permanent magnet counterpart.
Band-1 receiver front-end cartridges for Atacama Large Millimeter/submillimeter Array (ALMA): design and development toward production
Yuh-Jing Hwang, Chau-Ching Chiong, Yau-De Huang, et al.
The ALMA Band-1 receiver front-end prototype cold and warm cartridge assemblies, including the system and key components for ALMA Band-1 receivers have been developed and two sets of prototype cartridge were fully tested. The measured aperture efficiency for the cold receiver is above the 80% specification except for a few frequency points. Based on the cryogenically cooled broadband low-noise amplifiers provided by NRAO, the receiver noise temperature can be as low as 15 – 32K for pol-0 and 17 – 30K for pol-1. Other key testing items are also measured. The receiver beam pattern is measured, the results is well fit to the simulation and design. The pointing error extracted from the measured beam pattern indicates the error is 0.1 degree along azimuth and 0.15 degree along elevation, which is well fit to the specification (smaller than 0.4 degree). The equivalent hot load temperature for 5% gain compression is 492 - 4583K, which well fit to the specification of 5% with 373K input thermal load. The image band suppression is higher than 30 dB typically and the worst case is higher than 20 dB for 34GHz RF signal and 38GHz LO signal, which is all higher than 7 dB required specification. The cross talk between orthogonal polarization is smaller than -85 dB based on present prototype LO. The amplitude stability is below 2.0 x 10-7 , which is fit to the specification of 4.0 x 10-7 for timescales in the range of 0.05 s ≤ T ≤ 100 s. The signal path phase stability measured is smaller than 5 fs, which is smaller than 22 fs for Long term (delay drift) 20 s ≤ T < 300 sec. The IF output phase variation is smaller than 3.5° rms typically, and the specification is less than 4.5° rms. The measured IF output power level is -28 to -30.5 dBm with 300K input load. The measured IF output power flatness is less than 5.6 dB for 2GHz window, and 1.3dB for 31MHz window. The first batch of prototype cartridges will be installed on site for further commissioning on July of 2017.
Development of the new multi-beam 100 GHz band SIS receiver FOREST for the Nobeyama 45-m Telescope
Tetsuhiro Minamidani, Atsushi Nishimura, Yusuke Miyamoto, et al.
We report the development of the new 4-beam, 2-polarization, 2-sideband, 100 GHz band SIS receiver "FOREST" (FOur beam REceiver System on the 45-m Telescope) and the results from commissioning and observations on the Nobeyama 45-m Telescope operated by Nobeyama Radio Observatory, a branch of National Astronomical Observatory of Japan. FOREST aims to add new capabilities of large-area mapping and simultaneous multi-line observation at 80 { 116 GHz band to the Nobeyama 45-m Telescope, which is one of the largest millimeter radio telescopes in the world. The configuration of the four beams is a quadrate of 2 x 2 with the separation between adjacent beams of 50". Beam size of each beam is ~ 15" at 115 GHz. Receiver noise temperature is as low as that of ALMA Band 3 receivers, so that mapping speed is more than four times as high as that of the other 100 GHz band receivers on the 45-m Telescope. The IF bandwidth is 8 GHz (4 { 12 GHz) realizing simultaneous 12CO(J = 1-0), 13CO(J = 1-0), and C18O(J = 1-0) observations. Cooled components inside of cryostat are modularized per beam. IF signals from the cryostat are processed by the room temperature IF system, and then passed to spectrometers. We have installed the FOREST receiver into the Nobeyama 45-m Telescope, evaluated its performance, and made large area mapping observations. These demonstrate the excellent performance of the FOREST receiver and the Nobeyama 45-m Telescope.
Extremely low noise UHF-band amplifiers for square kilometer array
Nianhua Jiang, Dominic Garcia, Pat Niranjanan, et al.
This paper demonstrates two designs of extremely low noise amplifiers in the low frequency range of 350 MHz to 1070 MHz. Hybrid microwave integrated circuit is adapted for a low noise design at this low frequency range. Discrete passive components with high-Q and large values are selected to integrate with the best low noise transistors to optimize the LNA performance. The first UHF band cryogenic LNA was designed with InP HEMTs in all three stages for Square Kilometer Array - mid telescope band-1 receiver. This LNA extended the low end frequency to 350 MHz, and achieved averaging 1.4 Kelvin of a record low noise temperature, more than 47 dB gain, and good input and output return losses < -10 dB over the broad bandwidth from 350 to 1050 MHz at 15 K. The second UHF band cryogenic LNA was developed for MeerKAT Array, a precursor of Square Kilometer Array. This LNA was designed with InP HEMT transistor at first stage to achieve best low noise performance and GaAs HEMTs for second and third stages to replace InP HEMTs and realize high gain and good amplitude stability at cryogenic temperature. The second LNA achieved a record low noise temperature of averaging 0.6 Kelvin, more than 45 dB gain, and good input and output return losses ≤ -12 dB over the wide bandwidth from 580 to 1070 MHz at 15 K.
Strategies on solar observation of Atacama Large Millimeter/submillimeter Array (ALMA) band-1 receiver
Chau-Ching Chiong, Po-Han Chiang, Yuh-Jing Hwang, et al.
ALMA covering 35-950 GHz is the largest existing telescope array in the world. Among the 10 receiver bands, Band-1, which covers 35-50 GHz, is the lowest. Due to its small dimension and its time-variant frequency-dependent gain characteristics, current solar filter located above the cryostat cannot be applied to Band-1 for solar observation. Here we thus adopt new strategies to fulfill the goals. Thanks to the flexible dc biasing scheme of the HEMT-based amplifier in Band-1 front-end, bias adjustment of the cryogenic low noise amplifier is investigated to accomplish solar observation without using solar filter. Large power handling range can be achieved by the de-tuning bias technique with little degradation in system performance.
The 7-beam S-band cryogenic receiver for the SRT primary focus: project status
G. Valente, P. Marongiu, A. Navarrini, et al.
Existing radio receivers have a very low noise temperature. To further increase the observation speed, the new generation of radio receivers use a multi-beam focal plane array (FPA) together with wide bandwidth. In this article, we present the front-end and cryogenic design of the 7-beam FPA double linear polarization receiver for the 64-m primary focus of the Sardinia Radio Telescope. At the end of this article, we show the simulated performances of the front-end receiver and the measurements of the down-conversion section.
The control system of the 3 mm band SIS receiver for the Sardinia Radio Telescope
A. Ladu, P. Ortu, A. Saba, et al.
We present the control system of the 84-116 GHz (3 mm band) Superconductor-Insulator-Superconductor (SIS) heterodyne receiver to be installed at the Gregorian focus of the Sardinia Radio Telescope (SRT). The control system is based on a single-board computer from Raspberry, on microcontrollers from Arduino, and on a Python program for communication between the receiver and the SRT antenna control software, which remotely controls the backshorttuned SIS mixer, the receiver calibration system and the Local Oscillator (LO) system.
Next generation receivers for the submillimeter array
Paul Grimes, Ray Blundell, Scott Paine, et al.
The Submillimeter Array (SMA) is an 8-element mm/sub-mm interferometer on the summit of Maunakea, Hawaii that is operated jointly by the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). After nearly 13 years of operation, we are undertaking a major upgrade of the array's cryogenics, receivers and other systems that will enhance the science capabilities of the array and replace components reaching end-of-life. Here we describe the new receivers, containing dual-polarization, ultra-wideband SIS mixers operating at 230 and 345 GHz, the new ultra-wideband IF signal transport and correlator system, and the enhanced observing capabilities that will be enabled by this upgrade.
Status of the radio receiver system of the Sardina Radio Telescope
G. Valente, A. Orfei, R. Nesti, et al.
In this article, we present the design and performances of the radio receiver system installed at the Sardinia Radio Telescope (SRT). The three radio receivers planned for the first light of the Sardinian Telescope have been installed in three of the four possible focus positions. A dual linear polarization coaxial receiver that covers two frequency bands, the P-band (305-410 MHz) and the L-band (1.3-1.8 GHz) is installed at the primary focus. A mono-feed that covers the High C-band (5.7-7.7 GHz) is installed at the beam waveguide foci. A multi-beam (seven beams) K-band receiver (18- 26.5 GHz) is installed at the Gregorian focus. Finally, we give an overview about the radio receivers, which under test and under construction and which are needed for expanding the telescope observing capabilities.
New instrumentation for the 1.2m Southern Millimeter Wave Telescope (SMWT)
P. Vasquez, P. Astudillo, R. Rodriguez, et al.
Here we describe the status of the upgrade program that is being performed to modernize the Southern 1.2m Wave Telescope. The Telescope was built during early ´80 to complete the first Galactic survey of Molecular Clouds in the CO(1-0) line. After a fruitful operation in CTIO the telescope was relocated to the Universidad de Chile, Cerro Calán Observatory. The new site has an altitude of 850m and allows observations in the millimeter range throughout the year. The telescope was upgraded, including a new building to house operations, new control system, and new receiver and back-end technologies. The new front end is a sideband-separating receiver based on a HEMT amplifier and sub-harmonic mixers. It is cooled with Liquid Nitrogen to diminish its noise temperature. The back-end is a digital spectrometer, based on the Reconfigurable Open Architecture Computing Hardware (ROACH). The new spectrometer includes IF hybridization capabilities to avoid analog hybrids and, therefore, improve the sideband rejection ratio of the receiver.
Poster Session: Future Cameras and Arrays
icon_mobile_dropdown
Next generation heterodyne array for JCMT
M.-T. Chen, J. Dempsey, P. T. P. Ho, et al.
As part of the JCMT Future Instrumentation Project, the EAO looks to optimize the premier niche of the facility as the go-to telescope for fast, deep wide-field mapping of the universe at 345 GHz (850 um). The next generation heterodyne array for JCMT will be designed to provide deep ultra-fast mapping capabilities that takes advantage of the full field-of-view available to the telescope, and an array of 90 SIS mixers. This paper presents a preliminary design options and the critical science drivers for the project.
Poster Session: Kinetic Inductance Detectors I and II
icon_mobile_dropdown
Design of corrugated-horn-coupled MKID focal plane for CMB B-mode polarization
Yutaro Sekimoto, Shigeyuki Sekiguchi, Shibo Shu, et al.
A focal plane based on MKID has been designed for cosmic microwave background (CMB) B-mode polarization experiments. We are designing and developing a focal plane with broadband corrugated horn array, planar OMT, 180 degree hybrid, bandpass filters, and MKIDs. The focal plane consists of 3 octave bands (55 - 108 GHz, 80 - 160 GHz, 160 - 320 GHz), 10 hexagonal modules. Broadband corrugated horn-array has been directly machined from an Al block and measured to have a good beam shape which is consistent with electromagnetic field simulations in octave bands. The horn array is designed to be low standing-wave, light weight, and electromagnetic shield. The broadband 4 probes ortho-mode transducer (OMT) is fabricated on Si membrane of an SOI wafer. A broadband 180 degree hybrid made with coplanar waveguide (CPW) is used to reduce higher modes of the circular waveguide. Two bandpass filters of each polarization are patterned with Nb microstrip. A prototype of the broadband corrugated horn coupled MKIDs has been fabricated and tested.
Responsivity boosting in FIR TiN LEKIDs using phonon recycling: simulations and array design
Adalyn Fyhrie, Christopher McKenney, Jason Glenn, et al.
To characterize further the cosmic star formation history at high redshifts, a large-area survey by a cryogenic 4-6 meter class telescope with a focal plane populated by tens of thousands of far-infrared (FIR, 30-300 μm) detectors with broadband detector noise equivalent powers (NEPs) on the order of 3×10-9 W/√ Hz is needed. Ideal detectors for such a surveyor do not yet exist. As a demonstration of one technique for approaching the ultra-low NEPs required by this surveyor, we present the design of an array of 96 350 µm KIDs that utilize phonon recycling to boost responsivity. Our KID array is fabricated with TiN deposited on a silicon-on-insulator (SOI) wafer, which is a 2 μm thick layer of silicon bonded to a thicker slab of silicon by a thin oxide layer. The backside thick slab is etched away underneath the absorbers so that the inductors are suspended on just the 2 μm membrane. The intent is that quasiparticle recombination phonons are trapped in the thin membrane, thereby increasing their likelihood of being re-absorbed by the KID to break additional Cooper pairs and boost responsivity. We also present a Monte-Carlo simulation that predicts the amount of signal boost expected from phonon recycling given different detector geometries and illumination strategies. For our current array geometry, the simulation predicts a measurable 50% boost in responsivity.
Development of octave-band planar ortho-mode transducer with kinetic inductance detector for LiteBIRD
Shibo Shu, Shigeyuki Sekiguchi, Masakazu Sekine, et al.
We demonstrate a design of octave-band circular waveguide coupled planar ortho-mode transducer (OMT) with Microwave Kinetic Inductance Detector (MKID) for LiteBIRD mission, a small-size satellite for cosmic microwave background (CMB) polarization signal full-sky mapping. In our 4-pixel prototype design, each single pixel is sensitive to two frequency bands (90 GHz and 150 GHz) corresponding to atmospheric window. Silicon on insulator (SOI) has been selected for OMT structure and a broadband coplanar waveguide (CPW) 180-degree hybrid is designed to cancel higher modes of a circular waveguide and add two signals from the fundamental mode together. After a microstrip bandpass diplexer, a microstrip line to coplanar waveguide transition structure couples signal to MKID. MKIDs are designed with Nb ground plane and Al/Ti bilayer center strip line to achieve low frequency response and high sensitivity. A 4-pixel module is under test and we plan to deploy these multi- chroic polarimeters on Nobeyama 45m telescope.
Kinetic inductance detectors for far-infrared spectroscopy
The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (between redshifts 1 and 3) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation during that period, in particular fine structure lines of nitrogen, carbon, and oxygen, as well as the carbon monoxide molecule. Using an observation technique known as intensity mapping, it would be possible to observe the total line intensity for a given redshift range even without detecting individual sources. Here, we describe a detector system suitable for a balloonborne spectroscopic intensity mapping experiment at far-infrared wavelengths. The experiment requires an “integralfield” type spectrograph, with modest spectral resolution (R~100) for each of a number of spatial pixels spanning several octaves in wavelength. The detector system uses lumped-element kinetic inductance detectors (LEKIDs), which have the potential to achieve the high sensitivity, low noise, and high multiplexing factor required for this experiment. We detail the design requirements and considerations, and the fabrication process for a prototype LEKID array of 1600 pixels. The pixel design is driven by the need for high responsivity, which requires a small physical volume for the LEKID inductor. In order to minimize two-level system noise, the resonators include large-area interdigitated capacitors. High quality factor resonances are required for a large frequency multiplexing factor. Detectors were fabricated using both trilayer TiN/Ti/TiN recipes and thin-film Al, and are operated at base temperatures near 250 mK.
Performance verification of a double-slot antenna with an elliptical lens for large format KID arrays
Lorenza Ferrari, Ozan Yurduseven, Nuria Llombart, et al.
Microwave Kinetic Inductance Detectors (MKIDs) are becoming a very promising candidate for next generation imaging instruments for the far infrared. A MKID consists of a superconducting resonator coupled to a feed-line used for the readout. In the devices presented here radiation coupling is achieved by coupling the MKID directly to planar antenna. The antenna is placed in the focus of an elliptical lens to increase the filling factor and to match efficiently to fore-optics. In this paper we present the design and the optical performance of MKIDs optimized for operation at 350 GHz. We have measured a device consisting of 14 pixels, characterized the coupling efficiency, antenna-lens frequency response and beam pattern and compared these to theoretical simulations. The optical efficiency has been measured by means of a black body radiator mounted in an ADR cryostat, through the variation of the black body temperature a variable illumination of each pixel (from 0.1 fW to 2 pW) is achieved. The frequency response and beam pattern have been directly measured in a He3 cryostat directly via the cryostat window and without the use of intermediate optics.
Poster Session: Associated Technologies
icon_mobile_dropdown
Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015
Todd R. Hunter, Robert Lucas, Dominique Broguière, et al.
In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of improvement, which include recalibrating the baseline measurement datasets using the contemporaneous measurements of the water vapor scale height and temperature lapse rate from the oxygen sounder, and applying more accurate measurements of the sky coupling of the WVRs.
Managing the cryogenic systems of SCUBA-2 for long term operation
Jamie L. Cookson, Dan Bintley
SCUBA-2 has been operational on JCMT producing excellent science for almost 5 years. We describe the strategy and methods that we have evolved to keep one of the world’s first “dry dilution refrigerators” and the other cryogenic systems working effectively at the summit of Mauna Kea, keeping the instrument functioning at peak efficiency for extended periods (over 12 months at a time), with minimum downtime. We discuss new plans to reduce day-to-day operational costs and to add remote management of the gas handling systems, as we look to the future and envisage another ten years of SCUBA-2 science.
The QUIJOTE TGI cryomechanics
V. Sánchez-de-la-Rosa, A. Vega-Moreno, J. Cózar-Castellano, et al.
The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is operating at the Teide Observatory with the aim of characterizing the polarization of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10–40GHz and at large and medium angular scales. The QUIJOTE CMB experiment consists of two telescopes installed inside a single enclosure, and three instruments, the MFI (multi-frequency 10–30GHz), the TGI (26–36 GHz) and the FGI (37–47 GHz). The first QUIJOTE telescope and the MFI instrument have been in operation at the Observatory since November 2012. In this poster we present the TGI cryostat and optomechanics status, including their design, MAIT, and thermal clamp developments.
Artificial calibration source for ALMA radio interferometer
Hitoshi Kiuchi, Richard Hills, Nicholas D. Whyborn, et al.
The ALMA (Atacama Large Millimeter/submillimeter Array) radio interferometer has some different types of antennas which have a variation of gain and leakages across the primary beam of an individual antenna. We have been developing an artificial calibration source which is used for compensation of individual difference of antennas. In a high-frequency antenna, using astronomical sources to do calibration measurement would be extremely time consuming, whereas with the artificial calibration source becomes a realistic possibility. Photonic techniques are considered to be superior to conventional techniques based on electronic devices in terms of wide bandwidth and high-frequency signals. Conversion from an optical signal to a millimeter/sub-millimeter wave signal is done by a photo-mixer.
Poster Session: Optics and Components
icon_mobile_dropdown
Design and measurement of a direct-drillable smooth walled feedhorn at 1.2 THz for the next generation BLASTPol experiment
Christopher E. Groppi, P. M. Mauskopf, P. A. R. Ade, et al.
We present the design and measurement of a direct-drillable smooth walled feedhorn for the Next Generation BLASTPol balloon experiment. Custom milling cutters were obtained commercially and used to fabricate a two feedhorn structures with UG-387 flanges, each with 0.5mm section of circular waveguide, which were then mated back to back. These horns were then tested at Cardiff University using a rotation stage scanner to measure E and H plane cuts of the horn. The measurements show good agreement in both the beam FWHM and sidelobes as compared to HFSS simulations of the horn.
Far sidelobe effects from panel gaps of the Atacama Cosmology Telescope
Pedro Antonio Fluxa Rojas, Rolando Dünner, Loïc Maurin, et al.
The Atacama Cosmology Telescope is a 6 meter diameter CMB telescope located at 5200 meters in the Chilean desert. ACT has made arc-minute scale maps of the sky at 90 and 150 GHz which have led to precise measurements of the fine angular power spectrum of the CMB fluctuations in temperature and polarization. One of the goals of ACT is to search for the B-mode polarization signal from primordial gravity waves, and thus extending ACT’s data analysis to larger angular scales. This goal introduces new challenges in the control of systematic effects, including better understanding of far sidelobe effects that might enter the power spectrum at degree angular scales. Here we study the effects of the gaps between panels of the ACT primary and secondary reflectors in the worst case scenario in which the gaps remain open. We produced numerical simulations of the optics using GRASP up to 8 degrees away from the main beam and simulated timestreams for observations with this beam using real pointing information from ACT data. Maps from these simulated timestreams showed leakage from the sidelobes, indicating that this effect must be taken into consideration at large angular scales.
Modeling multimode feed-horn coupled bolometers for millimeter-wave and terahertz astronomical instrumentation
Eimante Kalinauskaite, Anthony Murphy, Ian McAuley, et al.
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology
Big Bang cosmologies predict that the cosmic microwave background (CMB) contains faint temperature and polarisation anisotropies imprinted in the early universe. ESA's PLANCK satellite has already measured the temperature anisotropies1 in exquisite detail; the next ambitious step is to map the primordial polarisation signatures which are several orders of magnitude lower. Polarisation E-modes have been measured2 but the even-fainter primordial B-modes have so far eluded detection. Their magnitude is unknown but it is clear that a sensitive telescope with exceptional control over systematic errors will be required. QUBIC3 is a ground-based European experiment that aims to exploit the novel concept of bolometric interferometry in order to measure B-mode polarisation anisotropies in the CMB. Beams from an aperture array of corrugated horns will be combined to form a synthesised image of the sky Stokes parameters on two focal planes: one at 150 GHz the other at 220 GHz. In this paper we describe recent optical modelling of the QUBIC beam combiner, concentrating on modelling the instrument point-spread-function and its operation in the 220-GHz band. We show the effects of optical aberrations and truncation as successive components are added to the beam path. In the case of QUBIC, the aberrations introduced by off-axis mirrors are the dominant contributor. As the frequency of operation is increased, the aperture horns allow up to five hybrid modes to propagate and we illustrate how the beam pattern changes across the 25% bandwidth. Finally we describe modifications to the QUBIC optical design to be used in a technical demonstrator, currently being manufactured for testing in 2016.
Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016. We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.
Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment
Charles A. Hill, Shawn Beckman, Yuji Chinone, et al.
We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at ~ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
Optical design and verification of a 4mm receiver for the 20m telescope at Onsala Space Observatory
The work of this research is the design, analysis and verification of the optical performance of a 4mmreceiver channel for the 20 m telescope at Onsala Space Observatory, Onsala, Sweden. The 4 mm (75 GHz) receiver is a newly proposed channel designed to be installed parallel to the existing 3 mm (100 GHz) channel targeting new science at that longer wavelength. Gaussian beam mode analysis is used to produce the fundamental optical design of the system. The design is then analysed more accurately with the physical optics approximation. We report on the comparison of simulation and measurement and verification of the system design.
Submillimeter and far-infrared dielectric properties of thin films
The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approachtypically reproduce the observed transmittance spectra with an accuracy of < 4%.
An ultra-broadband optical system for ALMA Band 2+3
V. Tapia, R. Nesti, A. González, et al.
ALMA is the largest radio astronomical facility in the world providing high sensitivity between 35 and 950 GHz, divided in 10 bands with fractional bandwidths between 19 and 36%. Having a lifespan of at least 30 years, ALMA carries out a permanent upgrading plan which, for the receivers, is focused on achieving better sensitivity and larger bandwidths. As result, an international consortium works on demonstrating a prototype receiver covering currents Bands 2 and 3 (67 to 116 GHz) which corresponds to a fractional bandwidth of 54%. Here we present the preliminary design, implementation and characterization of suitable refractive optics. Results indicate an excellent performance in good agreement with simulations.
FreeCAD visualization of realistic 3D physical optics beams within a CAD system-model
D. Gayer, C. O'Sullivan, S. Scully, et al.
The facility to realise the shape and extent of optical beams within a telescope or beamcombiner can aid greatly in the design and layout of optical elements within the system. It can also greatly facilitate communication between the optical design team and other teams working on the mechanical design of an instrument. Beyond the realm where raytracing is applicable however, it becomes much more difficult to realise accurate 3D beams which incorporate diffraction effects. It then is another issue to incorporate this into a CAD model of the system.

A novel method is proposed which has been used to aid with the design of an optical beam combiner for the QUBIC (Q and U Bolometric Interferometer for Cosmology) 1 experiment operating at 150 GHz and 220 GHz. The method combines calculation work in GRASP 2, a commercial physical optics modelling tool from TICRA, geometrical work in Mathematica, and post processing in MATLAB. Finally, the Python console of the open source package FreeCAD3 is exploited to realise the 3D beams in a complete CAD system-model of the QUBIC optical beam combiner.

This paper details and explains the work carried out to reach the goal and presents some graphics of the outcome. 3D representations of beams from some back-to-back input horns of the QUBIC instrument are shown within the CAD model. Beams of the -3dB and -13dB contour envelope are shown as well as envelopes enclosing 80% and 95% of the power of the beam. The ability to see these beams in situ with all the other elements of the combiner such as mirrors, cold stop, beam splitter and cryostat widows etc. greatly simplified the design for these elements and facilitated communication of element dimension and location between different subgroups within the QUBIC group.
Poster Session: CMB Instruments I, II, III
icon_mobile_dropdown
Optical characterization of the BICEP3 CMB polarimeter at the South Pole
K. S. Karkare, P. A. R. Ade, Z. Ahmed, et al.
BICEP3 is a small-aperture refracting cosmic microwave background (CMB) telescope designed to make sensitive polarization maps in pursuit of a potential B-mode signal from inflationary gravitational waves. It is the latest in the Bicep/Keck Array series of CMB experiments located at the South Pole, which has provided the most stringent constraints on inflation to date. For the 2016 observing season, BICEP3 was outfitted with a full suite of 2400 optically coupled detectors operating at 95 GHz. In these proceedings we report on the far field beam performance using calibration data taken during the 2015-2016 summer deployment season in situ with a thermal chopped source. We generate high-fidelity per-detector beam maps, show the array-averaged beam profile, and characterize the differential beam response between co-located, orthogonally polarized detectors which contributes to the leading instrumental systematic in pair differencing experiments. We find that the levels of differential pointing, beamwidth, and ellipticity are similar to or lower than those measured for Bicep2 and Keck Array. The magnitude and distribution of Bicep3’s differential beam mismatch – and the level to which temperature-to-polarization leakage may be marginalized over or subtracted in analysis - will inform the design of next-generation CMB experiments with many thousands of detectors.
Characterization of AlMn TES impedance, noise, and optical efficiency in the first 150 mm multichroic array for Advanced ACTPol
Kevin T. Crowley, Steve K. Choi, Jeffrey Kuan, et al.
The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope features large arrays of mul- tichroic pixels consisting of two orthogonal-polarization pairs of superconducting bolometers at two observing frequency bands. We present measurements of the detector properties and noise data in a subset of a fielded multichroic array of AlMn transition-edge sensor (TES) detectors. In this array, the distribution of critical temperature Tc across detectors appears uniform at the percent level. The measured noise-equivalent power (NEP) distributions over ∼1200 detectors are consistent with expectations. We find median NEPs of 4.0×10-17 √Hz for low-band detectors and 6.2x10-17√Hz for high-band detectors under covered-window telescope test conditions with optical loading comparable to observing with precipitable water vapor ∼ 0.5 mm. Lastly, we show the estimated detector optical efficiency, and demonstrate the ability to perform optical characterization over hundreds of detectors at once using a cryogenic blackbody source.
The QUIJOTE TGI control system
M. F. Gómez-Reñasco, Y. Martín, M. Aguiar-González, et al.
The QUIJOTE-CMB experiment (Q-U-I JOint TEnerife CMB experiment) has been described in previous publications. In particular, the architecture of the MFI instrument control system, the first of the three QUIJOTE instruments, was presented in [1]. In this paper we describe the control system architecture, hardware, and software, of the second QUIJOTE instrument, the TGI (Thirty GHz Instrument), which has been in the process of commissioning for a few weeks now. It is a 30 pixel 26-36 GHz polarimeter array mounted at the focus of the second QUIJOTE telescope. The polarimeter design is based on the QUIET polarimeter scheme, implementing phase switches of 90° and 180° to generate four states of polarisation. The TGI control system acquires the scientific signal of the four channels for each of the 30 polarimeters, sampled at 160 kHz; it controls the commutation of the 30 x 4 phase switches at 16 kHz or 8 kHz; it performs the acquisition and monitoring of the health of the complete instrument, acquiring housekeeping from the various subsystems and also controls the different operational modes of the telescope. It finally, implements a queue system that permits automation of the observations by allowing the programming of several days of observations with the minimum of human intervention. The acquisition system is based on a PXI-RT host from NI, the commutations of the phase switches are performed by a PXI-FPGA subsystem and the telescope control is based on an EtherCAT bus from Beckhoff.
Assembly and integration process of the first high density detector array for the Atacama Cosmology Telescope
Yaqiong Li, Steve Choi, Shuay-Pwu Ho, et al.
The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroic Transition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.
Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment
Jonathan T. Ward, Jason Austermann, James A. Beall, et al.
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~ 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
Systematic error mitigation for the PIXIE instrument
Alan Kogut, Dale J. Fixsen, Peter Nagler, et al.
The Primordial Inflation Explorer (PIXIE) uses a nulling Fourier Transform Spectrometer to measure the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds. PIXIE will search for the signature of primordial inflation and will characterize distortions from a blackbody spectrum, both to precision of a few parts per billion. Rigorous control of potential instrumental effects is required to take advantage of the raw sensitivity. PIXIE employs a highly symmetric design using multiple differential nulling to reduce the instrumental signature to negligible levels. We discuss the systematic error budget and mitigation strategies for the PIXIE mission.
The calibration of PIXIE
D. J. Fixsen, D. T. Chuss, Alan Kogut, et al.
The FIRAS instrument demonstrated the use of an external calibrator to compare the sky to an instrumented blackbody. The PIXIE calibrator is improved from -35 dB to -65 dB. Another significant improvement is the ability to insert the calibrator into either input of the FTS. This allows detection and correction of additional errors, reduces the effective calibration noise by a factor of 2, eliminates an entire class of systematics and allows continuous observations. This paper presents the design and use of the PIXIE calibrator.
Poster Session: Multiplexing and Readout Systems
icon_mobile_dropdown
The initial characterization of a revised 10-Gsps analog-to-digital converter board for radio telescopes
Homin Jiango, Howard Liuo, Kim Guzzino
In this study, the design of a 4 bit, 10-gigasamples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was revised, manufactured, and tested. It is used for digitizing radio telescopes. An Adsantec ANST7120-KMA flash ADC chip was used, as in the original design. Associated with the field-programmable gate array platform developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the developed PCBA provides data acquisition systems with a wider bandwidth and simplifies the intermediate frequency section. The current version of the PCBA exhibits an analog bandwidth of up to 10 GHz (3 dB loss), and the chip exhibits an analog bandwidth of up to 18 GHz. This facilitates second and third Nyquist sampling. The following worstcase performance parameters were obtained from the revised PCBA at over 5 GHz: spurious-free dynamic range of 12 dB, signal-to-noise and distortion ratio of 2 dB, and effective number of bits of 0.7. The design bugs in the ADC chip caused the poor performance. The vendor created a new batch run and confirmed that the ADC chips of the new batch will meet the specifications addressed in its data sheet.
Detecting anomalies in astronomical signals using machine learning algorithms embedded in an FPGA
Taking a large interferometer for radio astronomy, such as the ALMA1 telescope, where the amount of stations (50 in the case of ALMA’s main array, which can extend to 64 antennas) produces an enormous amount of data in a short period of time – visibilities can be produced every 16msec or total power information every 1msec (this means up to 2016 baselines). With the aforementioned into account it is becoming more difficult to detect problems in the signal produced by each antenna in a timely manner (one antenna produces 4 x 2GHz spectral windows x 2 polarizations, which means a 16 GHz bandwidth signal which is later digitized using 3-bits samplers). This work will present an approach based on machine learning algorithms for detecting problems in the already digitized signal produced by the active antennas (the set of antennas which is being used in an observation). The aim of this work is to detect unsuitable, or totally corrupted, signals. In addition, this development also provides an almost real time warning which finally helps stop and investigate the problem in order to avoid collecting useless information.
The FDM readout system for the TES bolometers of the SWIPE instrument on the balloon-borne LSPE experiment
D. Vaccaro, A. M. Baldini, F. Cei, et al.
We present the design and first tests of a prototype readout for the SWIPE instrument onboard the LSPE balloon-borne experiment. LSPE aims at measuring the linear polarization of the Cosmic Microwave Background (CMB) at large angular scales, to find the imprint of inflation on the B-mode CMB polarization. The SWIPE instrument hosts two focal planes hosting 163 TES Au/Mo spiderweb bolometers each, cooled at 0.3 K for the detection of microwave frequencies of 140, 220 and 240 GHz.

To read all the detectors, a 16 channel frequency domain multiplexing readout system has been devised, consisting of LC resonators composed of custom Nb superconducting inductors and commercial SMD capacitors.

A set-up consisting of 14 LC resonators shows that we can accommodate 16 channels in the frequency range between 200 kHz and 1.6 MHz, since the necessary line-widths can be achieved. A preliminary firmware for the generation and read-out of the biasing frequency comb is also discussed.
A real-time KLT implementation for radio-SETI applications
Andrea Melis, Raimondo Concu, Pierpaolo Pari, et al.
SETI, the Search for ExtraTerrestrial Intelligence, is the search for radio signals emitted by alien civilizations living in the Galaxy. Narrow-band FFT-based approaches have been preferred in SETI, since their computation time only grows like N*lnN, where N is the number of time samples. On the contrary, a wide-band approach based on the Kahrunen-Lo`eve Transform (KLT) algorithm would be preferable, but it would scale like N*N. In this paper, we describe a hardware-software infrastructure based on FPGA boards and GPU-based PCs that circumvents this computation-time problem allowing for a real-time KLT.
Inflight characterization and correction of Planck/HFI analog to digital converter nonlinearity
A. Sauvé, F. Couchot, G. Patanchon, et al.
The Planck Satellite launched in 2009 was targeted to observe the anisotropies of the Cosmic Microwave Back-ground (CMB) to an unprecedented sensitivity. While the Analog to Digital Converter of the HFI (High Frequency Instrument) readout electronics had not been properly characterized on ground, it has been shown to add a systematic nonlinearity effect up to 2% of the cosmological signal. This was a limiting factor for CMB science at large angular scale. We will present the in-flight analysis and method used to characterize and correct this effect down to 0.05% level. We also discuss how to avoid this kind of complex issue for future missions.
Poster Session: Emerging Concepts and New Instruments
icon_mobile_dropdown
Low-cost Ku band interferometer for educational purposes
Latest discoveries in the field of astronomy have been associated to the development of extremely sophisticated instruments. With regards to radio-astronomy, instrumentation has evolved to higher processing data rates and a continuous performance improvement, in the analog and digital domain. Developing, maintaining, and using such kinds of instruments – especially in radio-astronomy – requires understanding complex processes which involve plenty of subtle details. The above has inspired the engineering and astronomical communities to design low-cost instruments, which can be easily replicated by the non-specialist or highly skilled personnel who possess a basic technical background. The final goal of this work is to provide the means to build an affordable tool for teaching radiometry sciences. In order to take a step further this way, a design of a basic interferometer (two elements) is here below introduced, intended to turn into a handy tool for learning the basic principles behind the interferometry technique and radiometry sciences. One of the pedagogical experiences using this tool will be the measurement of the sun’s angular diameter. Using these two Ku band receptors, we aim to capture the solar radiation in the 11-12GHz frequency range, the power variations at the earth spin, with a proper phase-lock of the receptors will generate a cross-correlation power oscillation where we can obtain an approximation of the angular sun’s diameter. Variables of interest in this calculation are the declination of the sun (which depends on the capture date and location) and the relation between maximal and minimal power within a fringe cycle.
A 4 K FTS demonstrator for future cooled space telescopes
David Naylor, Ian Veenendaal, Brad Gom, et al.
A commercial Fourier transform spectrometer scanning mechanism has been modified for operation at cryogenic temperatures. When installed in a 4 K cryostat with a multiple component blackbody calibration source and sensitive sub-Kelvin detector, the spectrometer will allow the evaluation of different scanning methods, metrology options and data compression techniques. It will also enable the study of the performance of critical optical components such as beam splitters and filters at their intended operating temperatures.
SuperSpec: development towards a full-scale filter bank
J. Wheeler, S. Hailey-Dunsheath, E. Shirokoff, et al.
SuperSpec is a new spectrometer-on-a-chip technology for submm/mm-wave spectroscopy. SuperSpec stands out from other direct-detection submm spectrometer technologies in that the detectors are coupled to a series of resonant filters along a single microwave feedline instead of using dispersive optics. SuperSpec makes use of kinetic inductance detectors (KIDs) to detect radiation in this filter bank. The small profile of this design makes SuperSpec a natural choice to produce a multi-object spectrometer for tomographic mapping or galaxy redshift surveys. We have recently fabricated a device that is a 50 channel subset of a full 280 channel filter bank, which would cover the 190 - 310 GHz range at R = 275. Analysis of the data from this device informs us of the potential design modifications to enable a high-yield background-limited SuperSpec spectrometer. The results indicate that this subset filter bank can scale up to a full filter bank with only a few collisions in readout space and less than 20% variation in responsivity for the detectors. Additionally, the characterization of this and other prototype devices suggests that the noise performance is limited by generation-recombination noise. Finally, we find that the detectors are sufficiently sensitive for ground-based spectroscopy at R = 100, appropriate for tomographic mapping experiments. Further modifications are required to reach the background limit for R = 400, ideal for spectroscopy of individual galaxies.
Measurements and analysis of optical crosstalk in a microwave kinetic inductance detector array
L. Bisigello, S. J. C. Yates, L. Ferrari, et al.
The main advantage of Microwave Kinetic Inductance Detector arrays (MKID) is their multiplexing capability, which allows for building cameras with a large number of pixels and good sensitivity, particularly suitable to perform large blank galaxy surveys. However, to have as many pixels as possible it is necessary to arrange detectors close in readout frequency. Consequently KIDs overlap in frequency and are coupled to each other producing crosstalk. Because crosstalk can be only minimised by improving the array design, in this work we aim to correct for this effect a posteriori. We analysed a MKID array consisting of 880 KIDs with readout frequencies at 4-8 GHz. We measured the beam patterns for every detector in the array and described the response of each detector by using a two-dimensional Gaussian fit. Then, we identified detectors affected by crosstalk above -30 dB level from the maximum and removed the signal of the crosstalking detectors. Moreover, we modelled the crosstalk level for each KID as a function of the readout frequency separation starting from the assumption that the transmission of a KID is a Lorenztian function in power. We were able to describe the general crosstalk level of the array and the crosstalk of each KID within 5 dB, so enabling the design of future arrays with the crosstalk as a design criterion. In this work, we demonstrate that it is possible to process MKID images a posteriori to decrease the crosstalk effect, subtracting the response of each coupled KID from the original map.
Development of instrumentation for differential spectroscopic measurements at millimeter wavelengths
G. D'Alessandro, P. de Bernardis, S. Masi, et al.
The study of the spectral-spatial anisotropy of the high-latitude mm-wave sky is a powerful tool of cosmology. It can be used to provide deep insight in the Sunyaev-Zeldovich (SZ) effect, the Cosmic Infrared Background, the anisotropy of the CMB, using the spectral dimension to provide substantially increased information with respect to what is achievable by means of standard multiband photometry. Here we focus on spectral measurements of the SZ effect. Large mm-wave telescopes are now routinely mapping photometrically the SZ effect in a number of clusters, estimating the comptonisation parameter and using them as cosmological probes. Low-resolution spectroscopic measurements of the SZ effect would be very effective in removing the degeneracy between parameters inevitable in photometric measurements. We describe a real-world implementation of this measurement strategy, based on an imaging, efficient, differential Fourier transform spectrometer (FTS). The instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the entire input power. In our implementation the observed sky field is divided into two halves along the meridian. Each half-field corresponds to one of the two input ports of the MPI. Each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high common mode rejection of the MPI, tiny sky brightness gradients embedded in an overwhelming isotropic background might be measured. We investigate experimentally the common-mode rejection achievable in the MPI at mm wavelengths, and discuss the use of such an instrument to measure the spectrum of cosmic microwave background (CMB) anisotropy and the SZ effect.
Design and performance of a high resolution µ-spec: an integrated sub-millimeter spectrometer
Emily M. Barrentine, Giuseppe Cataldo, Ari D. Brown, et al.
μ-Spec is a compact submillimeter (~ 100 GHz - 1:1 THz) spectrometer which uses low loss superconducting microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a diffraction grating spectrometer onto a single chip. We have already successfully evaluated the performance of a prototype μ-Spec, with spectral resolving power, R=64. Here we present our progress towards developing a higher resolution μ-Spec, which would enable the first science returns in a balloon flight version of this instrument. We describe modifications to the design in scaling from a R=64 to a R=256 instrument, as well as the ultimate performance limits and design concerns when scaling this instrument to higher resolutions.
W-band planar antennas for next generation sub-millimeter focal plane arrays
Current and future generations of astronomical instruments in the millimetre (mm) and sub-mm range are in need of increased sensitivity through the use of ever larger focal planes with 1000s of pixels. Mass, dimensions and manufacture requirements, mainly for new space missions, is driving the technology to go from feedhorn, and generally waveguide based cold optics to planar coupled detectors, while maintaining RF performance. The present results of a current ESA TRP are presented with respect to the work on planar antennae that will be coupled to cold bolometric detectors through the use of planar mesh lenses. Two planar antennae operating at W-band are developed, namely, a broadband sinuous antenna and a variation on the classical dual-slot antenna to realise multi-band functionality.