Proceedings Volume 9905

Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray

cover
Proceedings Volume 9905

Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 23 September 2016
Contents: 27 Sessions, 202 Papers, 0 Presentations
Conference: SPIE Astronomical Telescopes + Instrumentation 2016
Volume Number: 9905

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9905
  • Solar/UV I
  • Solar/UV II
  • Solar/UV III
  • Detector I
  • Detector II
  • ASTRO-H I
  • ASTRO-H II
  • Polarization
  • ASTROSAT
  • NICER
  • SRG
  • New Missions
  • Optics I
  • Optics II
  • ATHENA I
  • ATHENA II
  • ATHENA III
  • Gamma
  • Poster Session: Solar/UV
  • Poster Session: ASTRO-H
  • Poster Session: Detectors
  • Poster Session: Polarization
  • Poster Session: New Missions
  • Poster Session: ATHENA
  • Poster Session: Gamma
  • Poster Session: Optics
Front Matter: Volume 9905
icon_mobile_dropdown
Front Matter: Volume 9905
This PDF file contains the front matter associated with SPIE Proceedings Volume 9905, including the Title Page, Copyright information, Table of Contents, Introduction, and the Conference Committee listing.
Solar/UV I
icon_mobile_dropdown
SMILE: a joint ESA/CAS mission to investigate the interaction between the solar wind and Earth's magnetosphere
Walfried Raab, Graziella Branduardi-Raymont, Chi Wang, et al.
The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a collaborative science mission between ESA and the Chinese Academy of Sciences (CAS). SMILE is a novel self-standing mission to observe the coupling of the solar wind and Earth's magnetosphere via X-Ray imaging of the solar wind -- magnetosphere interaction zones, UV imaging of global auroral distributions and simultaneous in-situ solar wind, magnetosheath plasma and magnetic field measurements. The SMILE mission proposal was submitted by a consortium of European, Chinese and Canadian scientists following a joint call for mission by ESA and CAS. It was formally selected by ESA's Science Programme Committee (SPC) as an element of the ESA Science Program in November 2015, with the goal of a launch at the end of 2021.

In order to achieve its scientific objectives, the SMILE payload will comprise four instruments: the Soft X-ray Imager (SXI), which will spectrally map the Earth's magnetopause, magnetosheath and magnetospheric cusps; the UltraViolet Imager (UVI), dedicated to imaging the auroral regions; the Light Ion Analyser (LIA) and the MAGnetometer (MAG), which will establish the solar wind properties simultaneously with the imaging instruments. We report on the status of the mission and payload developments and the findings of a design study carried out in parallel at the concurrent design facilities (CDF) of ESA and CAS in October/November 2015.
The Solar Ultraviolet Imaging Telescope onboard Aditya-L1
Avyarthana Ghosh, Subhamoy Chatterjee, Aafaque R. Khan, et al.
The Solar Ultraviolet Imaging Telescope (SUIT) is an instrument onboard the Aditya-L1 spacecraft, the first dedicated solar mission of the Indian Space Research Organization (ISRO), which will be put in a halo orbit at the Sun-Earth Langrage point (L1). SUIT has an off-axis Ritchey–Chrétien configuration with a combination of 11 narrow and broad bandpass filters which will be used for full-disk solar imaging in the Ultravoilet (UV) wavelength range 200-400 nm. It will provide near simultaneous observations of lower and middle layers of the solar atmosphere, namely the Photosphere and Chromosphere. These observations will help to improve our understanding of coupling and dynamics of various layers of the solar atmosphere, mechanisms responsible for stability, dynamics and eruption of solar prominences and Coronal Mass ejections, and possible causes of solar irradiance variability in the Near and Middle UV regions, which is of central interest for assessing the Sun’s influence on climate.
World Space Observatory Ultraviolet mission: status 2016
The WSO-UV (World Space Observatory - Ultraviolet) project is intended to built and operate an international space observatory designed for observations in the UV (115 – 310 nm) range, where some of the most important astrophysical processes can be efficiently studied. It is the solution to the problem of future access to UV spectroscopy. Dedicated to spectroscopic and imaging observations of the ultraviolet sky, the World Space Observatory - Ultraviolet mission is a Russian-Spanish collaboration with potential Mexican minor contribution. This paper provides a summary on the project, its status and the major outcomes since the last SPIE meeting.
Galaxy evolution spectroscopic explorer: scientific rationale
GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z~1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (~10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect “feedback” from young massive stars and massive black holes (AGN’s), and other drivers of galaxy evolution.
CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor
Kevin France, Brian Fleming, Keri Hoadley
NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≈ 12 m, Δλ ≈ 1000 Å – 2 μm spectroscopic bandpass) can carry out the largest number of NASA’s exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≈ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R ≥ 14,000 from 1000 – 2000 Å in a single observation and R ~ 24,000 – 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of a LUVOIR Surveyor mission in the next decade.
Solar/UV II
icon_mobile_dropdown
Optical design and optical properties of a VUV spectrographic imager for ICON mission
Jerome Loicq, Christian Kintziger, Alexandra Mazzoli, et al.
In the frame of the ICON (Ionospheric Connection Explorer) mission of NASA led by UC Berkeley, CSL and SSL Berkeley have designed in cooperation a new Far UV spectro-imager. The instrument is based on a Czerny-Turner spectrograph coupled with two back imagers. The whole field of view covers [± 12° vertical, ± 9° horizontal]. The instrument is surmounted by a rotating mirror to adjust the horizontal field of view pointing by ± 30°. To meet the scientific imaging and spectral requirements the instrument has been optimized. The optimization philosophy and related analysis are presented in the present paper. PSF, distortion map and spectral properties are described. A tolerance study and alignment cases were performed to prove the instrument can be built and aligned. Finally straylight and out of band properties are discussed.
Chromospheric LAyer SpectroPolarimeter (CLASP2)
Noriyuki Narukage, David E. McKenzie, Ryoko Ishikawa, et al.
The sounding rocket Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) was launched on September 3rd, 2015, and successfully detected (with a polarization accuracy of 0.1 %) the linear polarization signals (Stokes Q and U) that scattering processes were predicted to produce in the hydrogen Lyman-alpha line (Lyα; 121.567 nm). Via the Hanle effect, this unique data set may provide novel information about the magnetic structure and energetics in the upper solar chromosphere. The CLASP instrument was safely recovered without any damage and we have recently proposed to dedicate its second flight to observe the four Stokes profiles in the spectral region of the Mg II h and k lines around 280 nm; in these lines the polarization signals result from scattering processes and the Hanle and Zeeman effects. Here we describe the modifications needed to develop this new instrument called the "Chromospheric LAyer SpectroPolarimeter" (CLASP2).
The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: spectrometer characterization techniques, spectrometer capabilities, and solar science objectives
The Miniature X-ray Solar Spectrometer (MinXSS) are twin 3U CubeSats. The first of the twin CubeSats (MinXSS-1) launched in December 2015 to the International Space Station for deployment in mid-2016. Both MinXSS CubeSats utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 to 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV, and a LASP-developed X-ray broadband photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The majority of previous solar soft X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broadband) photometers. MinXSS will conduct unique soft X-ray measurements with moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and the effects of solar soft X-ray emission on Earth’s ionosphere. This paper focuses on the X-ray spectrometer instrument characterization techniques involving radioactive X-ray sources and the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). Spectrometer spectral response, spectral resolution, response linearity are discussed as well as future solar science objectives.
SISTINE: a pathfinder for FUV imaging spectroscopy on future NASA astrophysics missions
Brian T. Fleming, Kevin France, Nicholas Nell, et al.
The University of Colorado ultraviolet sounding rocket program presents the motivation and design capabilities of the new Suborbital Imaging Spectrograph for Transition Region Irradiance from Nearby Exoplanet host stars (SISTINE). SISTINE is a pathfinder for future UV space instrumentation, incorporating advanced broadband refl ective mirror coatings and large format borosilicate microchannel plate detectors that address technology gaps identified by the NASA Cosmic Origins program. The optical design capitalizes on new capabilities enabled by these technologies to demonstrate optical pathlengths in a sounding rocket envelope that would otherwise require a prohibitive effective area penalty in the 1020 - 1150 Å bandpass. This enables SISTINE to achieve high signal-to-noise observations of emission lines from planet-hosting dwarf stars with moderate spectral resolution (R ~ 10,000) and sub-arcsecond angular imaging. In this proceedings, we present the scientific motivation for a moderate resolution imaging spectrograph, the design of SISTINE, and the enabling technologies that make SISTINE, and future advanced FUV-sensitive instrumentation, possible.
Solar/UV III
icon_mobile_dropdown
Ultraviolet imaging detectors for the GOLD mission
O. H. W. Siegmund, J. McPhate, T. Curtis, et al.
The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are “open face” with CsI photocathodes, providing ~30% efficiency at 130.4 nm and ~15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide ~600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.
The FOXSI solar sounding rocket campaigns
Lindsay Glesener, Säm Krucker, Steven Christe, et al.
The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of are-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.
Flight production of Caliste-SO: the hard x-ray spectrometers for solar orbiter/STIX instrument
Olivier Limousin, Aline Meuris, Olivier Gevin, et al.
Caliste-SO are CdTe hybrid detectors that will be used as spectrometer units in the Spectrometer Telescope for Imaging X-rays (STIX) on-board the Solar Orbiter space mission. Each unit is placed below one collimator of this Fourier telescope to measure one visibility of the image in the 4-150 keV energy range, with a spectral resolution of 1 keV FWHM at 6 keV. The paper presents the scientific requirements, the design, the fabrication and the tests of the Caliste- SO devices before mounting them onto printed circuits boards. Spectral response was characterized on the 98 spacegrade units for various operating parameters. The devices will equip the different instrument validation models, including 32 units for the final instrument flight model to be launched in 2018.
Detector I
icon_mobile_dropdown
Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models
K. Lacombe, J.-P. Dezalay, B. Houret, et al.
ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate gamma-ray bursts in near real time in the 4 - 150 keV energy band in a large field of view. The design of ECLAIRs has been driven by the objective to reach an unprecedented low-energy threshold of 4 keV. The detection plane is an assembly of 6400 Schottky CdTe detectors of size 4x4x1 mm3, biased from -200V to -500V and operated at -20°C. The low-energy threshold is achieved thanks to an innovative hybrid module composed of a thick film ceramic holding 32 CdTe detectors ("Detectors Ceramics"), associated to an HTCC ceramic housing a low-noise 32-channel ASIC ("ASIC Ceramics"). We manage the coupling between Detectors Ceramics and ASIC Ceramics in order to achieve the best performance and ensure the uniformity of the detection plane.

In this paper, we describe the complete hybrid XRDPIX, of which 50 flight models have been manufactured by the SAGEM company. Afterwards, we show test results obtained on Detectors Ceramics, on ASIC Ceramics and on the modules once assembled. Then, we compare and confront detectors leakage currents and ASIC ENC with the energy threshold values and FWHM measured on XRDPIX modules at the temperature of -20°C by using a calibrated radioactive source of 241Am. Finally, we study the homogeneity of the spectral properties of the 32-detector hybrid matrices and we conclude on general performance of more than 1000 detection channels which may reach the lowenergy threshold of 4 keV required for the future ECLAIRs space camera.
Fast event recognition for x-ray silicon imagers
David N. Burrows, Eli Hughes, Tyler Anderson, et al.
Future X-ray astronomy observatories will employ high-speed silicon-based active pixel sensors to obtain wide fields of view with good radiation hardness and low levels of detector saturation (pileup). Detector readout rates envisioned for missions such as Athena and X-ray Surveyor are far too high for existing software-based event recognition techniques to be able to extract the X-ray events from the data stream. We report on the development of high-speed event recognition electronics tailored to the requirements of these new detectors.
Development of wide-field low-energy x-ray imaging detectors for HiZ-GUNDAM
Kazuki Yoshida, Daisuke Yonetoku, Tatsuya Sawano, et al.
We are planning a future gamma-ray burst (GRB) mission HiZ-GUNDAM to probe the early universe beyond the redshift of z > 7. Now we are developing a small prototype model of wide-field low-energy X-ray imaging detectors to observe high-z GRBs, which cover the energy range of 1 – 20 keV. In this paper, we report overview of its prototype system and performance, especially focusing on the characteristics and radiation tolerance of high gain analog ASIC specifically designed to read out small charge signals.
Detector II
icon_mobile_dropdown
Front-end ASICs for high-energy astrophysics in space
O. Gevin, O. Limousin, A. Meuris
In most of embedded imaging systems for space applications, high granularity and increasing size of focal planes justify an almost systematic use of integrated circuits. . To fulfill challenging requirements for excellent spatial and energy resolution, integrated circuits must fit the sensors perfectly and interface the system such a way to optimize simultaneously noise, geometry and architecture. Moreover, very low power consumption and radiation tolerance are mandatory to envision a use onboard a payload in space. Consequently, being part of an optimized detection system for space, the integrated circuit is specifically designed for each application and becomes an Application Specific Integrated Circuits (ASIC). The paper focuses on mixed analog and digital signal ASICs for spectro-imaging systems in the keVMeV energy band.

The first part of the paper summarizes the main advantages conferred by the use of front-end ASICs for highenergy astrophysics instruments in space mission. Space qualification of ASICs requires the chip to be radiation hard. The paper will shortly describe some of the typical hardening techniques and give some guidelines that an ASIC designer should follow to choose the most efficient technology for his project.

The first task of the front-end electronics is to convert the charge coming from the detector into a voltage. For most of the Silicon detectors (CCD, DEPFET, SDD) this is conversion happens in the detector itself. For other sensor materials, charge preamplifiers operate the conversion. The paper shortly describes the different key parameters of charge preamplifiers and the binding parameters for the design. Filtering is generally mandatory in order to increase the signal to noise ratio or to reduce the duration of the signal. After a brief review on the main noise sources, the paper reviews noise-filtering techniques that are commonly used in Integrated circuits designs.

The way sensors and ASICs are interconnected together plays a major role in the noise performances of the detection systems. The geometry of a sensor is therefore critical and drives the ASIC design. The second part of the paper takes the geometry of the detector as a story line to explore different kinds of ASIC structures and architectures. From the simple single-channel ASIC for CCDs to the most advanced 3D ASIC prototypes used to build dead-zone free imaging systems, the paper reports on different families of circuits for spectro-imaging systems. It emphasizes a variety of designer choices, all around the word, in different space missions.
Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept
Four astrophysics missions are currently being studied by NASA as candidate large missions to be chosen in the 2020 astrophysics decadal survey.1 One of these missions is the “X-Ray Surveyor” (XRS), and possible configurations of this mission are currently under study by a science and technology definition team (STDT). One of the key instruments under study is an X-ray microcalorimeter, and the requirements for such an instrument are currently under discussion. In this paper we review some different detector options that exist for this instrument, and discuss what array formats might be possible. We have developed one design option that utilizes either transition-edge sensor (TES) or magnetically coupled calorimeters (MCC) in pixel array-sizes approaching 100 kilo-pixels. To reduce the number of sensors read out to a plausible scale, we have assumed detector geometries in which a thermal sensor such a TES or MCC can read out a sub-array of 20-25 individual 1” pixels. In this paper we describe the development status of these detectors, and also discuss the different options that exist for reading out the very large number of pixels.
Toward large µ-calorimeters x-ray matrices based on metal-insulator sensors and HEMTs/SiGe cryo-electronics
J. L. Sauvageot, C. Pigot, X. de la Broïse, et al.
The launch of ASTRO-H/ITOMI ,the X-ray Japanese/US mission, in February 2016 with μ-calorimeters based on Metal-Insulator-Sensors (M.I.S) experiment with a 4.5eV spectral resolution, would certainly generate renewed interest on the high impedance M.I.S based on Si P:B. Since 2009 we are involved in a large program to build a camera consisting of a 2x2 mosaic of 32x32 pixel matrices using this sensor type. Since we rely on very similar approach of ASTRO-H/ITOMI design, we have concentred our efforts on the use of collective all-silicon technologies only. We have already presented the building block such as thermometers, sensors and cryo-electronics. Now, thanks to our new 32x32 CAD, we are today in the process of building 4 32x32 matrices per wafer. ASTRO-H/SXS uses degenerated Si as output wiring of the pixel and an HgTe semi-conductor absorber. Thanks to the use of superconducting wiring and composite superconducting Tantalum absorber, we hope to enhance the spectral resolution of this matrix onto that of SXS. Moreover, our development benefits of an ultra low power consumption Cryo-Electronics chain. This chain is based on High Electron Mobility Transistors (HEMTs, with an AsGa/AlAsGa hetero-junction) and SiGe ASICs, and handles 34:1 multiplexing. It has been successfully tested under cryogenic conditions. The composite Tantalum absorber have been tested with 6keV X-rays, and our M.I.S. exhibit good and homogeneous sensitivity. To be compatible with the 1μW at 50mK thermal budget allowed in present day spatial cryo-coolers, we have also developed new thermal insulation techniques that will allow us to easily handle more than 4000 independent pixels within this tiny power budget.
ASTRO-H I
icon_mobile_dropdown
The ASTRO-H (Hitomi) x-ray astronomy satellite
The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The Astro-H high resolution soft x-ray spectrometer
Richard L. Kelley, Hiroki Akamatsu, Phillipp Azzarello, et al.
We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.
In-flight performance of the Soft X-ray Spectrometer detector system on Astro-H
Frederick S. Porter, Kevin R. Boyce, Meng P. Chiao, et al.
The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.
Vibration isolation system for cryocoolers of Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
Yoh Takei, Susumu Yasuda, Kosei Ishimura, et al.
Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a microcalorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.
In-orbit operation of the ASTRO-H SXS
We summarize all the in-orbit operations of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H (Hit- omi) satellite. The satellite was launched on 2016/02/17 and the communication with the satellite ceased on 2016/03/26. The SXS was still in the commissioning phase, in which the setups were progressively changed. This article is intended to serve as a reference of the events in the orbit to properly interpret the SXS data taken during its short life time, and as a test case for planning the in-orbit operation for future micro-calorimeter missions.
First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance
Takashi Okajima, Yang Soong, Peter Serlemitsos, et al.
ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXA's H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by NASA's Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beamline at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm2 at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm2 at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions). The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X-ray mirror, which is extremely light-weight and very low cost, yet produces large effective area over a wide energy-band. Its area-mass ratio is the largest, 16 cm2/kg, among ASTRO-H, Chandra, and XMM-Newton mirrors. The aluminum foil mirror is a still compelling technology depending on the mission science goal.
ASTRO-H II
icon_mobile_dropdown
Soft x-ray imager (SXI) onboard ASTRO-H
We report here the performance of the SXI on ASTRO-H that was started its operation from March,02 2016. The SXI consists of 4 CCDs that cover 38' X 38' sky region. They are P-channel back-illumination type CCD with a depletion layer of 200 μm. Charge injection (CI) method is applied from its beginning of the mission. Two single stage sterling coolers are equipped with the SXI while one of them has enough power to cool the CCD to -110°C. There are two issues in the SXI performance: one is a light-leak and the other is a cosmic-ray echo. The light-leak is due to the fact that the day-Earth irradiates visible lights onto the SXI body through holes in the satellite base plate. It can be avoided by selecting targets not on the anti-day-Earth direction. The cosmic-ray echo is due to the improper parameter values that is fixed by revising them with which the cosmic-ray echo does not affect the image. Using the results of RXJ1856.5-3754, we confirm that the possible contaminants on the CCD is well within our expectation.
The hard x-ray imager (HXI) onboard ASTRO-H
Kazuhiro Nakazawa, Goro Sato, Motohide Kokubun, et al.
Hitomi X-ray observatory launched in 17 February 2016 had a hard X-ray imaging spectroscopy system made of two hard X-ray imagers (HXIs) coupled with two hard X-ray telescopes (HXTs). With 12 m focal length, they provide fine (2' half-power diameter; HPD) imaging spectroscopy at 5 to 80 keV. The HXI main imagers are made of 4 layers of Si and a CdTe semiconductor double-sided strip detectors, stacked to enhance detection efficiency as well as to enable photon interaction-depth sensing. Active shield made of 9 BGO scintillators surrounds the imager to provide with low background. Following the deployment of the Extensible Optical Bench (EOB) on 28 February, the HXI was gradually turned on. Two imagers successfully started observation on 14 March, and was operational till the incident lead to Hitomo loss, on 26 March. All detector channels, 1280 ch of imager and 11 channel of active shields and others each, worked well and showed performance consistent with those seen on ground. From the first light observation of G21.5-0.9 and the following Crab observations, 5-80 keV energy coverage and good detection efficiency were confirmed. With blank sky observations, we checked our background level. In some geomagnetic region, strong background continuum, presumably caused by trapped electron with energy ~100 keV, is seen. But by cutting the high-background time-intervals, the background became significantly lower, typically with 1-3 x 10-4 counts s-1 keV-1 cm-2 (here cm2 is shown with detector geometrical area). Above 30 keV, line and continuum emission originating from activation of CdTe was significantly seen, though the level of 1-4 x 10-4 counts s-1 keV-1 cm-2 is still comparable to those seen in NuSTAR. By comparing the effective area and background rate, preliminary analysis shows that the HXI had a statistical sensitivity similar to NuSTAR for point sources, and more than twice better for largely extended sources.
Performance of ASTRO-H hard x-ray telescope (HXT)
The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and the focal plane detectors (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with Pt/C depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8/ BL20B2 Japan, and found that total effective area of two HXTs was about 350 cm2 at 30 keV, and the half power diameter of HXT was about 1.’9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomi’s data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that obtained by the ground calibrations.
The soft gamma-ray detector (SGD) onboard ASTRO-H
The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.
Astro-H data analysis, processing and archive
Lorella Angelini, Yukitatsu Terada, Michael Loewenstein, et al.
Astro-H (Hitomi) is an X-ray/Gamma-ray mission led by Japan with international participation, launched on February 17, 2016. The payload consists of four different instruments (SXS, SXI, HXI and SGD) that operate simultaneously to cover the energy range from 0.3 keV up to 600 keV. This paper presents the analysis software and the data processing pipeline created to calibrate and analyze the Hitomi science data along with the plan for the archive and user support. These activities have been a collaborative effort shared between scientists and software engineers working in several institutes in Japan and USA.
Polarization
icon_mobile_dropdown
XIPE: the x-ray imaging polarimetry explorer
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden.
The Polarimeter for Relativistic Astrophysical X-ray Sources
Keith Jahoda, Timothy R. Kallman, Chryssa Kouveliotou, et al.
The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.
The Imaging X-ray Polarimetry Explorer (IXPE)
The Imaging X-ray Polarimetry Explorer (IXPE) expands observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions—such as neutron stars and black holes. Polarization singularly probes physical anisotropies—ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin—that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.
Hard x-ray imaging polarimeter for PolariS
Kiyoshi Hayashida, Juyong Kim, Masaaki Sadamoto, et al.
Hard X-ray imaging polarimeters are developed for the X-ray γ-ray polaeimtery satellite PolariS. The imaging polarimter is scattering type, in which anisotropy in the direction of Compton scattering is employed to measure the hard X-ray (10-80 keV) polarization, and is installed on the focal planes of hard X-ray telescopes. We have updated the design of the model so as to cover larger solid angles of scattering direction. We also examine the event selection algorithm to optimize the detection efficiency of recoiled electrons in plastic scintillators. We succeed in improving the efficiency by factor of about 3-4 from the previous algorithm and criteria for 18-30 keV incidence. For 23 keV X-ray incidence, the recoiled electron energy is about 1 keV. We measured the efficiency to detect recoiled electrons in this case, and found about half of the theoretical limit. The improvement in this efficiency directly leads to that in the detection efficiency. In other words, however, there is still a room for improvement. We examine various process in the detector, and estimate the major loss is primarily that of scintillation light in a plastic scintillator pillar with a very small cross section (2.68mm squared) and a long length (40mm). Nevertheless, the current model provides the MDP of 6% for 10mCrab sources, which are the targets of PolariS.
The x-ray polarimeter instrument on board the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) mission
J. E. Hill, J. K. Black, K. Jahoda, et al.
The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study. The PRAXyS observatory carries an X-ray Polarimeter Instrument (XPI) capable of measuring the linear polarization from a variety of high energy sources, including black holes, neutron stars, and supernova remnants. The XPI is comprised of two identical mirror-Time Projection Chamber (TPC) polarimeter telescopes with a system effective area of 124 cm2 at 3 keV, capable of photon limited observations for sources as faint as 1 mCrab. The XPI is built with well-established technologies. This paper will describe the performance of the XPI flight mirror with the engineering test unit polarimeter.
ASTROSAT
icon_mobile_dropdown
Large Area X-ray Proportional Counter (LAXPC) instrument onboard ASTROSAT
J. S. Yadav, P. C. Agrawal, H. M. Antia, et al.
ASTROSAT, India's first dedicated astronomy space mission was launched on September 28, 2015. The Large Area X-ray Proportional Counter (LAXPC) is one of the major payloads on ASTROSAT. A cluster of three co-aligned identical LAXPC detectors provide large area of collection .The large detection volume (15 cm depth) filled with mixture of xenon gas (90(%) and methane (10%) at ~ 2 atmospheres pressure, results in detection efficiency greater than 50%, above 30 keV. The LAXPC instrument is best suited for X-ray timing and spectral studies. It will provide the largest effective area in 3-80 keV range among all the satellite missions flown so far worldwide and will remain so for the next 5-10 years. The LAXPC detectors have been calibrated using radioactive sources in the laboratory. GEANT4 simulation for LAXPC detectors was carried out to understand detector background and its response. The LAXPC instrument became fully operational on 19th October 2015 for the first time in space. We have performed detector calibration in orbit. The LAXPC instrument is functioning well and has achieved all detector parameters proposed initially. In this paper, we will describe LAXPC detector calibration in lab as well as in orbit along with first results.
In-orbit performance of SXT aboard AstroSat
Kulinder Pal Singh, Gordon C. Stewart, Sunil Chandra, et al.
A soft X-ray focusing Telescope (SXT) was launched in a near Earth, near equatorial orbit aboard the AstroSat on September 28th, 2015. The SXT electronics was switched on within 3 days of the launch and the first light was seen on October 26th, 2015 after a sequence of operations involving venting of the camera, cooling of the CCD, opening of the telescope door followed by the opening of the camera door. Several cosmic X-ray sources have been observed since then during the Performance Verification phase. A few near-simultaneous observations have also been carried out with the Swift observatory. The in-orbit performance of the SXT based on these observations is presented here.
In-orbit performance of UVIT on ASTROSAT
Annapurni Subramaniam, Shyam N. Tandon, John Hutchings, et al.
We present the in-orbit performance and the first results from the ultra-violet Imaging telescope (UVIT) on ASTROSAT. UVIT consists of two identical 38cm coaligned telescopes, one for the FUV channel (130-180nm) and the other for the NUV (200-300nm) and VIS (320-550nm) channels, with a field of view of 28 arcmin. The FUV and the NUV detectors are operated in the high gain photon counting mode whereas the VIS detector is operated in the low gain integration mode. The FUV and NUV channels have filters and gratings, whereas the VIS channel has filters. The ASTROSAT was launched on 28th September 2015. The performance verification of UVIT was carried out after the opening of the UVIT doors on 30th November 2015, till the end of March 2016 within the allotted time of 50 days for calibration. All the on-board systems were found to be working satisfactorily. During the PV phase, the UVIT observed several calibration sources to characterise the instrument and a few objects to demonstrate the capability of the UVIT. The resolution of the UVIT was found to be about 1.4 - 1.7 arcsec in the FUV and NUV. The sensitivity in various filters were calibrated using standard stars (white dwarfs), to estimate the zero-point magnitudes as well as the flux conversion factor. The gratings were also calibrated to estimate their resolution as well as effective area. The sensitivity of the filters were found to be reduced up to 15% with respect to the ground calibrations. The sensitivity variation is monitored on a monthly basis. At the end of the PV phase, the instrument calibration is almost complete and the remaining calibrations will be completed by September 2016. UVIT is all set to roll out science results with its imaging capability with good resolution and large field of view, capability to sample the UV spectral region using different filters and capability to perform variability studies in the UV.
In-orbit performance AstroSat CZTI
Santosh V. Vadawale, A. R. Rao, Dipankar Bhattacharya, et al.
Cadmium-Zinc-Telluride Imager (CZTI) is one of the five payloads on-board recently launched Indian astronomy satellite AstroSat. CZTI is primarily designed for simultaneous hard X-ray imaging and spectroscopy of celestial X-ray sources. It employs the technique of coded mask imaging for measuring spectra in the energy range of 20 - 150 keV. It was the first scientific payload of AstroSat to be switched on after one week of the launch and was made operational during the subsequent week. Here we present preliminary results from the performance verification phase observations and discuss the in-orbit performance of CZTI.
NICER
icon_mobile_dropdown
The Neutron star Interior Composition Explorer (NICER): design and development
Keith C. Gendreau, Zaven Arzoumanian, Phillip W. Adkins, et al.
During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded success- fully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "con- centrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.
NICER instrument detector subsystem: description and performance
An instrument called Neutron Star Interior Composition ExploreR (NICER) will be placed on-board the Inter- national Space Station in 2017. It is designed to detect soft X-ray emission from compact sources and to provide both spectral and high resolution timing information about the incoming ux. The focal plane is populated with 56 customized Silicon Drift Detectors. The paper describes the detector system architecture, the electronics and presents the results of the laboratory testing of both ight and engineering units, as well as some of the calibration results obtained with synchrotron radiation in the laboratory of PTB at BESSY II.
SRG
icon_mobile_dropdown
Status of ART-XC/SRG instrument
M. Pavlinsky, V. Akimov, V. Levin, et al.
Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in 2017 from Baikonur and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescope arrays – a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The ART-XC flight mirror modules have been developed and fabricated at the NASA Marshall Space Flight Center (MSFC). Each mirror module will be aligned with a focal plane CdTe double-sided strip detector which will operate over the energy range of 6−30 keV, with an angular resolution of <1′, a field of view of ~34′ and an expected energy resolution of about 12% at 14 keV. The current status of the ART-XC/SRG instrument is presented here.
eROSITA on SRG
Peter Predehl, Robert Andritschke, Vladimir Babyshkin, et al.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian/German Spektrum-Roentgen-Gamma (SRG) mission which is now officially scheduled for launch on September 2017, eROSITA will perform a deep survey of the entire X-ray sky. Within the first 4 years of the mission the sky will be scanned 8 times. In the soft band (0.5-2 keV), it will be about 30 times more sensitive than ROSAT, while in the hard band (2-8 keV) it will provide the first ever true imaging survey of the sky. eROSITA is currently (June 2016) in its final integration and test phase. All seven FM Mirror Assemblies and Camera Assemblies (+ 1 spare) have been tested and calibrated. All subsystems and components are well within their expected performances.
New Missions
icon_mobile_dropdown
Localization algorithms for micro-channel x-ray telescope on board SVOM space mission
L. Gosset, D. Götz, J. Osborne, et al.
SVOM is a French-Chinese space mission to be launched in 2021, whose goal is the study of Gamma-Ray Bursts, the most powerful stellar explosions in the Universe. The Micro-channel X-ray Telescope (MXT) is an X-ray focusing telescope, on board SVOM, with a field of view of 1 degree (working in the 0.2-10 keV energy band), dedicated to the rapid follow-up of the Gamma-Ray Bursts counterparts and to their precise localization (smaller than 2 arc minutes). In order to reduce the optics mass and to have an angular resolution of few arc minutes, a Lobster-Eye" configuration has been chosen. Using a numerical model of the MXT Point Spread Function (PSF) we simulated MXT observations of point sources in order to develop and test different localization algorithms to be implemented on board MXT. We included preliminary estimations of the instrumental and sky background. The algorithms on board have to be a combination of speed and precision (the brightest sources are expected to be localized at a precision better than 10 arc seconds in the MXT reference frame). We present the comparison between different methods such as barycentre, PSF fitting in one or two dimensions. The temporal performance of the algorithms is being tested using the X-ray afterglow data base of the XRT telescope on board the NASA Swift satellite.
The Transient High Energy Sky and Early Universe Surveyor (THESEUS)
Lorenzo Amati, Paul T. O'Brien, Diego Götz
The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift ~9–10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.
DIOS: the dark baryon exploring mission
T. Ohashi, Y. Ishisaki, Y. Ezoe, et al.
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA’s Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30' diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth’s magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.
A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission
Koji Mori, Takeshi Go Tsuru, Kazuhiro Nakazawa, et al.
We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102–104 M) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.
eXTP: Enhanced X-ray Timing and Polarization mission
S. N. Zhang, M. Feroci, A. Santangelo, et al.
eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of ∼0.9 m2 and 0.6 m2 at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering <180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of ∼3.4 m2, between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) – a set of 2 X-ray telescope, for a total effective area of 250 cm2 at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.
The LOFT mission concept: a status update
M. Feroci, E. Bozzo, S. Brandt, et al.
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
Optics I
icon_mobile_dropdown
Lightweight and high-resolution single crystal silicon optics for x-ray astronomy
We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.
Beyond Chandra (towards the X-ray Surveyor mission): possible solutions for the implementation of very high angular resolution X-ray telescopes in the new millennium based on fused silica segments
An important challenge for the X-ray astronomy of the new millennium is represented by the implementation of an Xray telescope able to maintain the exquisite angular resolution of Chandra (with a sub-arcsec HEW, on-axis) but, at the same time, being characterized by a much larger throughput and grasp. A mission with similar characteristics is represented by the X-ray Surveyor Mission. The project has been recently proposed in USA and is being currently studied by NASA. It will host an X-ray telescope with an effective area of more than 2 square meters at 1 keV (i.e. 30 times greater than Chandra) and a 15-arcminutes field-of-view, with 1-arcsecond or better half-power diameter (versus the 4 arcmin diameter of Chandra). While the scientific reasons for implementing a similar mission are clear, being related to compelling problems like e.g. the formation and subsequent growth of black hole seeds at very high redshift or the identification of the first galaxy groups and proto-clusters, the realization of a grazing-angle optics system able to fulfil these specs remain highly challenging. Different technologies are being envisaged, like e.g. the use of adjustable segmented mirrors (with use of piezoelectric or magneto-restrictive film actuators on the back surface) or the direct polishing of a variety of thin substrates or the use of innovative correction methods like e.g. differential deposition, ionfiguring or the correction of the profile via controlled stress films. In this paper we present a possible approach based on the direct polishing (with final ion figuring correction of the profile) of thin SiO2 segmented substrates (typically 2 mm thick), discussing different aspects of the technology under implementation and presenting some preliminary results.
Development of a direct fabrication technique for full-shell x-ray optics
M. Gubarev, J. K. Kolodziejczak, C. Griffith, et al.
Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. A model of the wear pattern as a function of numerous physical parameters is developed and verified using a mandrel sample. The results of the polishing experiments are presented.
Critical-angle x-ray transmission grating spectrometer with extended bandpass and resolving power > 10,000
Ralf K. Heilmann, Alexander R. Bruccoleri, Jeffery Kolodziejczak, et al.
A number of high priority subjects in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the missing baryon problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, largearea (> 1,000 cm2), high resolving power (R =λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Still, significantly higher performance can be provided by a CAT grating spectrometer on an X-ray- Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (lowmass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimalmission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band, and existing silicon CAT gratings can exceed 30% absolute diffraction efficiency, with clear paths for further improvement. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles, thus enabling higher resolving power at shorter wavelengths. We show x-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition, and demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. We also report on measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing mirror pair from Goddard Space Flight Center and CAT gratings, performed at the Marshall Space Flight Center Stray Light Facility. Measurement of the Al Kα doublet in 18th diffraction order shows resolving power > 10,000, based on conservative preliminary analysis. This demonstrates that currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions.
Optics II
icon_mobile_dropdown
Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes
R. Willingale, J. F. Pearson, A. Martindale, et al.
We identify all the significant aberrations that limit the performance of square pore micro-channel plate optics (MPOs) used as an X-ray lobster eye. These include aberrations intrinsic to the geometry, intrinsic errors associated with the slumping process used to introduce a spherical form to the plates and imperfections associated with the plate manufacturing process. The aberrations are incorporated into a comprehensive software model of the X-ray response of the optics and the predicted imaging response is compared with the measured X-ray performance obtained from a breadboard lobster eye. The results reveal the manufacturing tolerances which limit the current performance of MPOs and enable us to identify particular intrinsic aberrations which will limit the ultimate performance we can expect from MPO-lobster eye telescopes.
Development of x-ray multilayer telescope optics for XTP mission
Zhengxiang Shen, Xiaoqiang Wang, Kun Wang, et al.
The X-ray Timing and Polarization (XTP) satellite is dedicated to study black hole, neutron star and magnetar and then get more information in the physics under extreme gravity, density and magnetism. With an effective area of about 1 square meter and angular resolution of 1 arcminute, XTP is expected to make the most sensitive temporal and polarization observations with good energy resolution in 1-30 keV. Large collecting areas are obtained by tightly nesting layers of grazing incidence mirrors in a conical approximation Wolter-I design. The segmented mirrors that form these layers are formed by thermally slumping glass substrates coated with depth-graded W/Si multilayers for enhanced reflectivity in higher energy region. In order to force the overall shape of the nominally cylindrical substrates to the appropriate conic form, an over-constraint method was used to assemble the mirrors to a telescope. We will present performance on the XTP optics and report the current status of the telescope.
Progress on the fabrication of high resolution and lightweight monocrystalline silicon x-ray mirrors
Raul E. Riveros, Michael P. Biskach, Kim D. Allgood, et al.
Monocrystalline silicon is an excellent X-ray mirror substrate material due to its high stiffness, low density, high thermal conductivity, zero internal stress, and commercial availability. Our work at NASA Goddard Space Flight Center focuses on identifying and developing a manufacturing process to produce high resolution and lightweight X-ray mirror segments in a cost and time effective manner. Previous efforts focused on demonstrating the feasibility of cylindrical silicon mirror polishing and lightweighting. Present efforts are aimed towards producing true paraboloidal and hyperboloidal mirror surfaces on the lightweight silicon segments. This paper presents results from these recent investigations, including a mirror which features a surface quality sufficient for a 3 arcsecond telescope.
Gas bearing slumping and figure correction of x-ray telescope mirror substrates
Brandon Chalifoux, Heng Zuo, Graham Wright, et al.
Figure correction of thin x-ray telescope mirrors may be critical for future missions that require high angular resolution and large collecting areas. One promising method of providing figure correction is to use stress generated via ion implantation. Since stress-based figure correction strategies cannot correct high spatial frequency errors, it is critical to obtain glass with only low spatial frequency error. One method is thermal gas bearing slumping, where glass is softened while floating on thin films of gas. This method avoids introducing mid- or high- spatial frequency errors by eliminating contact between the glass and mandrel. Together, these two methods form a promising approach to fabricating mirrors for a high angular resolution, large-area x-ray observatory. In this paper we report on progress in understanding gas bearing slumping, and advancing the technology to curved geometry. We also report on continued progress on advancing the ion implantation technology toward correcting flight-sized mirror substrates.
Slumped glass optics development with pressure assistance
Thin glass mirrors are a viable solution to build future X-ray telescopes with high angular resolution and large collecting area. This approach is very attractive for the optics implementation of future X-ray astronomy projects like the X-ray Surveyor Missions in USA, the XTP mission in China and the FORCE mission in Japan (all this projects could have an European participation). In the case of the X-ray Surveyor Mission, where a sub-arcsec angular resolution is requested, the use of actuators or post correction with sputtering deposition is envisaged. The hot slumping assisted by pressure is an innovative technology developed in our laboratories to replicate a mould figure. Our hot slumping process is based on thin substrates of Eagle XG glass to be thermally formed on Zerodur K20 moulds. This technology is coupled with an integration process able to damp low frequency errors. A continuous improvement in the reduction of the mid-frequency errors led to slumped glass foils with a potential angular resolution evaluated from the metrological data of a few arcsec. High frequency errors have been for a long time a critical point of our technology. In particular, the pressure assistance was leading to a partial replication of the mould micro-roughness, causing a non-negligible contribution to the Point Spread Function (PSF), in the incidence angle and X-ray energy range of operation. Therefore, we developed a new process to further reduce the micro-roughness of slumped glass foils, making now the technology attractive also for telescopes sensitive at higher X-ray energies. This paper provides the latest status of our research.
New lithographic techniques for x-ray spectroscopy
Off-plane reflection gratings require high-fidelity, custom groove profiles to perform with high spectral resolution in a Wolter-I optical system. This places a premium on exploring lithographic techniques in nanofabrication to produce state-of-the-art gratings. The fabrication recipe currently being pursued involves electron-beam lithography (EBL) and reactive ion etching (RIE) to define the groove profile, wet anisotropic etching in silicon to achieve blazed grooves and UV-nanoimprint lithography (UV-NIL) to replicate the final product. A process involving grayscale EBL and thermal reflow known as thermally activated selective topography equilibration (TASTE) is also being investigated as an alternative method to fabricate these gratings. However, a master grating fabricated entirely in soft polymeric resist through the TASTE process requires imprinting procedures other than UV-NIL to explored. A commerically available process called substrate conformal imprint lithography (SCIL) has been identified as a possible solution to this problem. SCIL also has the ability to replicate etched silicon gratings with reduced trapped air defects as compared to UV-NIL, where it is difficult to achieve conformal contact over large areas. As a result, SCIL has the potential to replace UV-NIL in the current grating fabrication recipe.
ATHENA I
icon_mobile_dropdown
ATHENA: system studies and optics accommodation
ATHENA is currently in Phase A, with a view to adoption upon a successful Mission Adoption Review in 2019/2020. After a brief presentation of the reference spacecraft (SC) design, this paper will focus on the functional and environmental requirements, the thermo-mechanical design and the Assembly, Integration, Verification & Test (AIVT) considerations related to housing the Silicon Pore Optics (SPO) Mirror Modules (MM) in the very large Mirror Assembly Module (MAM).

Initially functional requirements on the MM accommodation are presented, with the Effective Area and Half Energy Width (HEW) requirements leading to a MAM comprising (depending on final mirror size selected) between ~700-1000 MMs, co-aligned with exquisite accuracy to provide a common focus. A preliminary HEW budget allocated across the main error-contributors is presented, and this is then used as a reference to derive subsequent requirements and engineering considerations, including: The procedures and technologies for MM-integration into the Mirror Structure (MS) to achieve the required alignment accuracies in a timely manner; stiffness requirements and handling scheme required to constrain deformation under gravity during x-ray testing; temperature control to constrain thermo-elastic deformation during flight; and the role of the Instrument Switching Mechanism (ISM) in constraining HEW and Effective Area errors.

Next, we present the key environmental requirements of the MMs, and the need to minimise shock-loading of the MMs is stressed. Methods to achieve this Ø are presented, including: Selection of a large clamp-band launch vehicle interface (LV I/F); lengthening of the shock-path from the LV I/F to the MAM I/F; modal-tuning of the MAM to act as a low-pass filter during launch shock events; use of low-shock HDRMs for the MAM; and the possibility to deploy a passive vibration solution at the LV I/F to reduce loads.
The ATHENA optics development
Marcos Bavdaz, Eric Wille, Brian Shortt, et al.
ATHENA (Advanced Telescope for High ENergy Astrophysics) is being studied by the European Space Agency (ESA) as the second large science mission, with a launch slot in 2028. System studies and technology preparation activities are on-going. The optics of the telescope is based on the modular Silicon Pore Optics (SPO), a novel X-ray optics technology significantly benefiting from spin-in from the semiconductor industry. Several technology development activities are being implemented by ESA in collaboration with European industry and institutions. The related programmatic background, technology development approach and the associated implementation planning are presented.
Silicon pore optics for the ATHENA telescope
Maximilien J. Collon, Giuseppe Vacanti, Ramses Günther, et al.
Silicon Pore Optics is a high-energy optics technology, invented to enable the next generation of high-resolution, large area X-ray telescopes such as the ATHENA observatory, a European large (L) class mission with a launch date of 2028. The technology development is carried out by a consortium of industrial and academic partners and focuses on building an optics with a focal length of 12 m that shall achieve an angular resolution better than 5”. So far we have built optics with a focal length of 50 m and 20 m. This paper presents details of the work carried out to build silicon stacks for a 12 m optics and to integrate them into mirror modules. It will also present results of x-ray tests taking place at PTB’s XPBF with synchrotron radiation and the PANTER test facility.
Mass production of silicon pore optics for ATHENA
Silicon Pore Optics (SPO) provide high angular resolution with low effective area density as required for the Advanced Telescope for High Energy Astrophysics (Athena). The x-ray telescope consists of several hundreds of SPO mirror modules. During the development of the process steps of the SPO technology, specific requirements of a future mass production have been considered right from the beginning. The manufacturing methods heavily utilise off-the-shelf equipment from the semiconductor industry, robotic automation and parallel processing. This allows to upscale the present production flow in a cost effective way, to produce hundreds of mirror modules per year. Considering manufacturing predictions based on the current technology status, we present an analysis of the time and resources required for the Athena flight programme. This includes the full production process starting with Si wafers up to the integration of the mirror modules. We present the times required for the individual process steps and identify the equipment required to produce two mirror modules per day. A preliminary timeline for building and commissioning the required infrastructure, and for flight model production of about 1000 mirror modules, is presented.
ATHENA II
icon_mobile_dropdown
The wide field imager instrument for Athena
Norbert Meidinger, Josef Eder, Tanja Eraerds, et al.
The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA’s next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (≥ 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be ≤ 170 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec half energy width (HEW) of the mirror system. Each DEPFET pixel is a combined sensor-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics (DE) for supply and data acquisition. Due to the high frame rate in combination with the large pixel array, signal correction and event filtering have to be done on-board and in real-time as the raw data rate would by far exceed the feasible telemetry rate. The data streams are merged and compressed in the Instrument Control and Power distribution Unit (ICPU). The ICPU is the data, control and power interface of the WFI to the Athena spacecraft. The WFI instrument comprises in addition a filter wheel (FW) in front of the camera as well as an optical stray-light baffle. In the current phase A of the Athena project, the technology development is performed. At its end, breadboard models will be developed and tested to demonstrate a technical readiness level (TRL) of at least 5 for the various WFI subsystems before mission adoption in 2020.
Athena Wide Field Imager key science drivers
Arne Rau, Kirpal Nandra, James Aird, et al.
The Wide Field Imager (WFI) is one of two instruments for the Advanced Telescope for High-ENergy Astrophysics (Athena). In this paper we summarise three of the many key science objectives for the WFI { the formation and growth of supermassive black holes, non-gravitational heating in clusters of galaxies, and spin measurements of stellar mass black holes { and describe their translation into the science requirements and ultimately instrument requirements. The WFI will be designed to provide excellent point source sensitivity and grasp for performing wide area surveys, surface brightness sensitivity, survey power, and absolute temperature and density calibration for in-depth studies of the outskirts of nearby clusters of galaxies and very good high-count rate capability, throughput, and low pile-up, paired with very good spectral resolution, for detailed explorations of bright Galactic compact objects.
Studies of prototype DEPFET sensors for the wide field imager of Athena
Wolfgang Treberspurg, Robert Andritschke, Alexander Bähr, et al.
The Wide Field Imager of the Athena telescope will combine an excellent spectroscopic performance and high count rate capability with a large field of view. For these purposes, its focal plane consists of two complementary detectors, using DEPFET active pixel sensors. One is the high count rate detector with a small field of view, which has to be operated with a readout speed of 80 μs per frame. In contrast, the large area detector will cover a large field of view and has to be read out with a frame rate ≤ 5 ms. Its sensitive area is covered by four identical active pixel arrays, consisting of 512 x 512 pixels, each. Since a column parallel readout will be used, 512 pixels are connected to one single channel of a readout ASIC. The readout will be accomplished by either sensing a voltage step on the source node or a change of the transistor drain current. The former so-called source follower mode requires long settling times - proportional to the load capacitances - but can cope with local inhomogeneities. Alternatively, the latter so-called drain current mode provides a fast readout - independent to the load capacitance - but implicates a higher sensitivity on local variations of the DEPFETs bias currents. Both modes are implemented in the VERITAS 2.1 readout ASIC and were studied with 64 x 64 pixels arrays. Drain current devices could be operated with significantly smaller settling times but suffer from a slightly increased noise at similar shaping times in comparison to the source follower ones. By using an optimized timing with dedicated settling and shaping times, the devices of both modes feature a comparable spectral performance.
WFI electronics and on-board data processing
Markus Plattner, Sebastian Albrecht, Jörg Bayer, et al.
The Wide Field Imager is one of two instruments on-board the future ATHENA X-ray observatory. Its main scientific objective is to perform a sky survey in the energy range of 0.2 keV up to 15 keV with an end-of-life spectral resolution (FWHM) better than 170 eV (at 7 keV) and a frame rate of at least 200 Hz. The field of view will be 40 arcmin squared wherefore a focal plane array with 4 large sensors each with a size of 512 times 512 pixels will be developed. Additionally, a fast detector with a size of 64 times 64 pixels and a frame rate of 12.5 kHz will be implemented in order to enhance the instrument with high count rate detection of bright sources.

The data processing electronics within the WFI instrument is distributed over several subsystems: DEPFET sensors sensitive in the x-ray energy regime and front-end electronics are located inside the Camera Head. Data pre-processing inside the Detector Electronics will be performed in an FPGA-based frame-processor. FPGA external memory will be used to store offset and noise maps wherefore memory controllers have to be developed. Fast read and write access to the maps combined with robustness against radiation damage (e.g. bit-flips) has to be ensured by the frame-processor design.
Thermal analysis of the WFI on the ATHENA observatory
Maria Fürmetz, Daniel Pietschner, Norbert Meidinger
The WFI (Wide-Field Imager) instrument is one of two instruments of the ATHENA (Advanced Telescope for High- ENergy Astrophysics) mission. ATHENA is the second L-class mission in ESA’s Cosmic Vision plan with launch in 2028 and will address the science theme “The Hot and Energetic Universe” by measuring hot gas in clusters and groups of galaxies as well as matter flow in black holes.

A moveable mirror assembly focusses the X-ray light to the focal plane of the WFI. The instrument consists of two separate detectors, one with a large DEPFET array of 512x512 pixels and one small and fast detector with 64x64 DEPFET pixels and a readout time of only 80 μs. The mirror system will achieve an angular resolution of 5” HEW. The rather large field of view of 40’x40’ in combination with rather high power consumption is challenging not only for the thermal control system.

DEPFET sensors as well as front-end electronics and electronics boxes have to be cooled, where a completely passive cooling system with radiators and heat pipes is highly favored. In order to reduce the necessary radiator area, three separate cooling chains with three different temperature levels have been foreseen. So only the DEPFET sensors are cooled down to the lowest temperature of about 190K, while the front-end electronics is supposed to be operated between 250K and 290K. The electronics boxes can be operated at room temperature, nevertheless the excess heat has to be removed.

After first estimations of heat loads and radiator areas, a more detailed model of the camera head has been used to identify gradients between the cooling interfaces and the components to be cooled. This information is used within phase A1 of the project to further optimize the design of the instrument, e.g. material selection.
ATHENA III
icon_mobile_dropdown
The Athena X-ray Integral Field Unit (X-IFU)
Didier Barret, Thien Lam Trong, Jan-Willem den Herder, et al.
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with ~ 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we brie y describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution).
X-IFU technical challenge
Thien Lam Trong
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High Energy Astrophysics (Athena), will provide high spectral resolution (2.5 eV up to 7 keV) over a 5 arc minute (equivalent diameter) field of view. The X-IFU is currently in the middle of its Phase A study phase. In this paper, we review the technical challenges (system level issues, TES array, readout, cooling, …) as identified during the first year of the study. This instrument is developed by a large international consortium under a French leadership. The Netherlands and Italy, as Co-PIs, with ESA member state from Belgium, Finland, Germany, Poland, Spain, Switzerland, are the European contributors, with additional contributions from the United States and Japan.
Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena
The focal plane of the X-ray integral field unit (X-IFU) for ESA’s Athena X-ray observatory will consist of ~ 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of ~ 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28” pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2” pixels in the central ~ 36” region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.
The focal plane assembly for the Athena X-ray Integral Field Unit instrument
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including straylight from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.
Preliminary thermal architecture of the X-IFU instrument dewar
Ivan Charles, Christophe Daniel, Jérome André, et al.
The ESA Athena mission will implement 2 instruments to study the hot and energetic universe. The X-ray Integral Field Unit (X-IFU) will provide spatially resolved high resolution spectroscopy. This high energy resolution of 2.5 eV at 7 keV could be achieved thanks to TES (Transition Edge Sensor) detectors that need to be cooled to very low temperature. To obtain the required 50 mK temperature level, a careful design of the cryostat and of the cooling chain including different technologies in cascade is needed. The preliminary cryogenic architecture of the X-IFU instrument that fulfils the TES detector thermal requirements is described. In particular, the thermal design of the detector focal plane assembly (FPA), that uses three temperature stages (from 2 K to 50 mK) to limit the thermal loads on the lowest temperature stage, is described. The baseline cooling chain is based on European and Japanese mechanical coolers (Stirling, Pulse tube and Joule Thomson coolers) that precool a sub Kelvin cooler made of a 3He sorption cooler coupled with a small ADR (Adiabatic Demagnetization Refrigerator). Preliminary thermal budgets of the X-IFU cryostat are presented and discussed regarding cooling chain performances.
The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview
The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015 - 2025, scheduled to be launched on 2028 at L2 orbit. One of the two on-board instruments is the X-IFU (X-ray Integral Field Unit): it is a TES-based kilo-pixels order array able to perform simultaneous high-grade energy spectroscopy (2.5 eV at 6 keV) and imaging over the 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background which is induced by primary protons of both solar and Cosmic Rays origin, and secondary electrons. The studies performed by Geant4 simulations depict a scenario where it is mandatory the use of reduction techniques that combine an active anticoincidence detector and a passive electron shielding to reduce the background expected in L2 orbit down to the goal level of 0.005 cts/cm2/s/keV, so enabling the characterization of faint or diffuse sources (e.g. WHIM or Galaxy cluster outskirts). From the detector point of view this is possible by adopting a Cryogenic AntiCoincidence (CryoAC) placed within a proper optimized environment surrounding the X-IFU TES array. It is a 4-pixels detector made of wide area Silicon absorbers sensed by Ir TESes, and put at a distance < 1 mm below the TES-array. On October 2015 the X-IFU Phase A program has been kicked-off, and about the CryoAC is at present foreseen on early 2017 the delivery of the DM1 (Demonstration Model 1) to the FPA development team for integration, which is made of 1 pixel “bridgessuspended” that will address the final design of the CryoAC. Both the background studies and the detector development work is on-going to provide confident results about the expected residual background at the TES-array level, and the single pixel design to produce a detector for testing activity on 2016/2017. Here we will provide an overview of the CryoAC program, discussing some details about the background assessment having impact on the CryoAC design, the last single pixel characterization, the structural issues, followed by some programmatic aspects.
Gamma
icon_mobile_dropdown
MeV gamma-ray observation with a well-defined point spread function based on electron tracking
A. Takada, T. Tanimori, H. Kubo, et al.
The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of ~1 cm2 at 300 keV, a PSF of ~10° at FWHM for 662 keV, and a large field of view of ~3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of ~5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.
The e-ASTROGAM gamma-ray space mission
V. Tatischeff, M. Tavani, P. von Ballmoos, et al.
e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2 { 100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.
The development of a low energy Compton imager for GRB polarization studies
Mark L. McConnell, Peter F. Bloser, Jason S. Legere, et al.
Theoretical models show that a more complete understanding of the inner structure of -ray bursts (GRBs), including the geometry and physical processes close to the central engine, requires the exploitation of -ray polarimetry. Over the past several years, we have developed the Gamma Ray Polarization Experiment (GRAPE) to measure the polarization of -rays from GRBs over the energy range of 50 to 500 keV. GRAPE is a large FoV instrument with a sensitive energy range covering the peak energy distribution of GRBs. The design is based on an array of independent modules, each of which consists of an array of (high-Z and low-Z) scintillator elements read out by a multi-anode PMT (MAPMT). Our eventual goal is to y GRAPE on a long duration balloon (LDB) platform to collect data on a significant sample of GRBs. Our experience with two balloon flights (in 2011 and 2014), coupled with further design efforts focused on orbital payloads, has led to an improved polarimeter concept that represents a natural evolution of the current design. The new concept employs a large number of optically-isolated scintillator elements, each of which is designed to provide a depth-of-interaction (DOI) using two (or perhaps more) readout sensors. The resulting three-dimensional location data provides a moderate level of Compton imaging capability (1 angular resolution of ~ 10 - 15°. Even this level of imaging can be used to significantly reduce the instrumental background by limiting the impact of the cosmic diffuse flux, dramatically improving the polarization sensitivity. Here we shall describe this concept and the expected performance for GRB polarization measurements.
Performance study of the gamma-ray bursts polarimeter POLAR
J. C. Sun, B. B. Wu, T. W. Bao, et al.
The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB’s polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV ~ 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory “Tiangong-2 (TG-2)”. With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.
First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument
Nicole Duncan, P. Saint-Hilaire, A. Y. Shih, et al.
The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument is a balloon-borne telescope designed to study solar- are particle acceleration and transport. We describe GRIPS's first Antarctic long-duration flight in January 2016 and report preliminary calibration and science results. Electron and ion dynamics, particle abundances and the ambient plasma conditions in solar flares can be understood by examining hard X-ray (HXR) and gamma-ray emission (20 keV to 10 MeV). Enhanced imaging, spectroscopy and polarimetry of are emissions in this energy range are needed to study particle acceleration and transport questions. The GRIPS instrument is specifically designed to answer questions including: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? GRIPS's key technological improvements over the current solar state of the art at HXR/gamma-ray energies, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), include 3D position-sensitive germanium detectors (3D-GeDs) and a single-grid modulation collimator, the multi-pitch rotating modulator (MPRM). The 3D-GeDs have spectral FWHM resolution of a few hundred keV and spatial resolution <1 mm3. For photons that Compton scatter, usually ⪆150 keV, the energy deposition sites can be tracked, providing polarization measurements as well as enhanced background reduction through Compton imaging. Each of GRIPS's detectors has 298 electrode strips read out with ASIC/FPGA electronics. In GRIPS's energy range, indirect imaging methods provide higher resolution than focusing optics or Compton imaging techniques. The MPRM gridimaging system has a single-grid design which provides twice the throughput of a bi-grid imaging system like RHESSI. The grid is composed of 2.5 cm deep tungsten-copper slats, and quasi-continuous FWHM angular coverage from 12.5-162 arcsecs are achieved by varying the slit pitch between 1-13 mm. This angular resolution is capable of imaging the separate magnetic loop footpoint emissions in a variety of are sizes. In comparison, RHESSI's 35-arcsec resolution at similar energies makes the footpoints resolvable in only the largest ares.
First measurement of the polarisation asymmetry of a gamma-ray beam between 1.7 to 74 MeV with the HARPO TPC
P. Gros, S. Amano, D. Attié, et al.
Current γ-ray telescopes suffer from a gap in sensitivity in the energy range between 100 keV and 100 MeV, and no polarisation measurement has ever been done on cosmic sources above 1 MeV. Past and present e+e- pair telescopes are limited at lower energies by the multiple scattering of electrons in passive tungsten converter plates. This results in low angular resolution, and, consequently, a drop in sensitivity to point sources below 1 GeV. The polarisation information, which is carried by the azimuthal angle of the conversion plane, is lost for the same reasons.

HARPO is an R&D program to characterise the operation of a gaseous detector (a Time Projection Chamber or TPC) as a high angular-resolution and sensitivity telescope and polarimeter for γ-rays from cosmic sources. It represents a first step towards a future space instrument in the MeV-GeV range.

We built and characterised a 30cm cubic demonstrator [SPIE 91441M], and put it in a polarised γ-ray beam at the NewSUBARU accelerator in Japan. Data were taken at photon energies from 1.74MeV to 74MeV and with different polarisation configurations.

We describe the experimental setup in beam. We then describe the software we developed to reconstruct the photon conversion events, with special focus on low energies. We also describe the thorough simulation of the detector used to compare results. Finally we will present the performance of the detector as extracted from this analysis and preliminary measurements of the polarisation asymmetry.

This beam-test qualification of a gas TPC prototype in a γ-ray beam could open the way to high-performance -ray astronomy and polarimetry in the MeV-GeV energy range in the near future.
Poster Session: Solar/UV
icon_mobile_dropdown
Correcting for errors due to walk and geometric distortion in the COS FUV detector
David J. Sahnow, Steven Penton, Thomas Ake, et al.
The Far Ultraviolet detector of the Cosmic Origin Spectrograph (COS) on the Hubble Space Telescope (HST) is subject to distortions on a range of spatial scales in its two-dimensional format due to its analog nature. Incomplete correction of these effects can lead to errors in wavelength scales and flux measurements in the calibrated spectra. Two of the largest sources of error are geometric distortion and walk. Although they are accounted for separately in the CalCOS calibration pipeline, they are highly coupled and can be considered as manifestations of the same effect.

The current calibration pipeline does not apply any walk correction in the dispersion direction even though walk-induced errors can be more than a resolution element in some cases. The current geometric correction, which was derived without considering walk effects, is also known to have inaccuracies. As part of our efforts to improve the wavelength calibration of COS, we have revisited the existing walk and geometric correction using both prelaunch and on-orbit data.
In-flight performance of the polarization modulator in the CLASP rocket experiment
Shin-nosuke Ishikawa, Toshifumi Shimizu, Ryohei Kano, et al.
We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman‐alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman‐alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non‐ uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.
The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results
Keri Hoadley, Kevin France, Nicholas Kruczek, et al.
In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates ~ 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.
Alignment and calibration of the ICON-FUV instrument: development of a vacuum UV facility
Jerome Loicq, Pascal Blain, Christian Kintziger, et al.
The optical calibration of the ICON-FUV instrument requires designing specific ground support equipment (GSE). The ICON-FUV instrument is a spectrographic imager that operates on two specific wavelengths in the UV (135.6 nm and 157 nm). All the operations have to be performed under vacuum UV light. The optical setup is based on a VUV monochromator coupled with a collimator that illuminates the FUV entrance slit. The instrument is placed on a manipulator providing fields pointing. Image quality and spectral properties can be then characterized for each field. OGSE, MGSE, optical calibration plan and vacuum alignment of the instrument are described.
The qualification campaign of the EUI instrument of Solar Orbiter
The Extreme Ultraviolet Imager (EUI) instrument is one of the ten scientific instruments on board the Solar Orbiter mission to be launched in October 2018. It will provide full-sun and high-resolution images of the solar corona in the extreme ultraviolet (17.1 nm and 30.4 nm) and in the vacuum ultraviolet (121.6 nm). The validation of the EUI instrument design has been completed with the Assembly, Integration and Test (AIT) of the instrument two-units Qualification Model (QM). Optical, electrical, electro-magnetic compatibility, thermal and mechanical environmental verifications were conducted and are summarized here. The integration and test procedures for the Flight Model (FM) instrument and sub-systems were also verified. Following the Qualification Review, the flight instrument activities were started with the assembly of the flight units. The mechanical and thermal acceptance tests and an end-to-end final calibration in the (E)UV will then be conducted before delivery for integration on the Solar Orbiter Spacecraft by end of 2016.
Full-Stokes polychromatic polarimeter design for Arago
Martin Pertenais, Coralie Neiner, Pascal Petit
The UVMag consortium will propose the Arago space mission to the ESA call Cosmic Vision M5. This mission aims at characterizing all kind of stars and their environment simultaneously, to better understand the cycle of matter in our galaxy. It carries a single instrument, a spectropolarimeter, acquiring data from 119 to 888 nm and enabling the determination of the magnetic field of stars thanks to the Zeeman effect. One of the key instrumental point of this project is the development of an efficient polarimeter over the large spectral range and in space. We chose to use a polychromatic temporal modulation to achieve a measurement of all four Stokes parameters: I the intensity, Q and U the linear polarization states, and V the circular polarization. The modulator is composed by several birefringent Magnesium Fluoride plates, optimized to achromatize the extraction efficiency of the Stokes parameters from the FUV to the NIR. This polarization modulator is followed by a polarization beam-splitter to analyze the state of the light. After the polarization analysis, the light goes through a high-resolution spectrograph. We present the theoretical optimization and design of the polarimeter and of the whole instrument, as well as the first laboratory results on this concept.
UVESP: ultraviolet visible Echellé spectropolarimeter for stellar astrophysics
Maxim Yushkin, Vladimir Panchuk, Belén Perea Abarca, et al.
In this contribution, we describe the optical design of UVESP, an efficient instrument designed for mid resolution (30.000) spectropolarimetric observations in the 119-888nm wavelength range. Spectropolarimetry introduces challenging constraints in the image quality of the echellé design that are addressed via the introduction special optical elements. UVESP design is significantly optimized with respect to previous similar instruments, such as the spectrograph proposed for the UVMag mission, and it is the current baseline spectropolarimeter for the ARAGO mission.
Simulations of the WUVS instrument
The performance of the WUVS (WSO-UV Spectrographs) can be evaluated through simulations of the expected observations. Here we discuss the implementation details and the noise models applied in the simulation software tool developed to carry on these simulations. The WUVS Simulator has been implemented as a further development of the PLATO Simulator, adapting it to the WUVS specific characteristics. It is designed to generate synthetic time-series of images by including models of all important noise sources. The expected overall noise budget of the output images is evaluated as a function of different sets of input parameters describing the instrument properties.
Fireball multi object spectrograph: as-built optic performances
R. Grange, B. Milliard, G. Lemaitre, et al.
Fireball (Faint Intergalactic Redshifted Emission Balloon) is a NASA/CNES balloon-borne experiment to study the faint diffuse circumgalactic medium from the line emissions in the ultraviolet (200 nm) above 37 km flight altitude. Fireball relies on a Multi Object Spectrograph (MOS) that takes full advantage of the new high QE, low noise 13 μm pixels UV EMCCD. The MOS is fed by a 1 meter diameter parabola with an extended field (1000 arcmin2) using a highly aspherized two mirror corrector. All the optical train is working at F/2.5 to maintain a high signal to noise ratio. The spectrograph (R~ 2200 and 1.5 arcsec FWHM) is based on two identical Schmidt systems acting as collimator and camera sharing a 2400 g/mm aspherized reflective Schmidt grating. This grating is manufactured from active optics methods by double replication technique of a metal deformable matrix whose active clear aperture is built-in to a rigid elliptical contour. The payload and gondola are presently under integration at LAM. We will present the alignment procedure and the as-built optic performances of the Fireball instrument.
An ultraviolet imager to study bright UV sources
Joice Mathew, Ajin Prakash, Mayuresh Sarpotdar, et al.
We have designed and developed a compact ultraviolet imaging payload to y on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and electrical design of the instrument. We have adopted an all spherical optical design which would make the system less complex to realize and a cost effective solution compared to other telescope configuration. The structural design has been chosen in such a way that it will ensure that the instrument could withstand all the launch load vibrations. An FPGA based electronics board is used for the data acquisition, processing and CCD control. We will also brie y discuss about the hardware implementation of the detector interface and algorithms for the detector readout and data processing.
A near ultraviolet solar-blind telescope design using silicon CCD detectors
We propose a novel approach to constructing a solar-blind near ultraviolet telescope using specialized mirror coatings. Each mirror in a three or four element optical system would have a coating reflective in the 200-300nm bandpass and transmissive at wavelengths longer than 300nm. This telescope can thus use CCD detectors providing high quantum efficiency, low noise, and a large pixel count. We have procured, from Materion Corporation, sample coatings with greater than 90% reflectance in the 200-300nm bandpass and less than 10% at wavelengths longer than 300nm. With three surfaces, these coatings provide <75% in band transmission for a telescope with better than 10,000 rejection at visible wavelengths. The use of ultraviolet optimized CCD detectors, combined with a three or four element telescope, would enable an Explorer class mission with near ultraviolet survey efficiency more than 100 times that of the recent GALEX mission. We will present measured reflectance and transmission curves from 200 - 1100nm for multiple samples. We will also show simulations of the expected performance of both 3 and 4 mirror systems for a conceptual space mission.
Concept study for a compact homodyne astrophysics spectrometer for exoplanets (CHASE)
Sona Hosseini, Chris Webster, Debra Fischer, et al.
In this concept study, we are targeting to build a new instrument to sequentially observe exoplanet atmospheres and their parent’s stellar spectra over a significant time in NUV and FUV. The Compact Homodyne Astrophysics Spectrometer for Exoplanets (CHASE) offers integrated spectra over a wide field-of-view (FOV~40arcsec) in high spectral resolution (R>105) in a miniaturized architecture using no (or a small < 1m) primary mirror. CHASE’s wide FOV is compatible with the relaxed pointing requirements of current CubeSats and SmallSats which makes it readily qualifiable for space in a compact format and have the potential to enable major scientific breakthroughs.
Numerical simulation of space UV spectrographs
Maksim Yushkin, Timur Fatkhullin, Vladimir Panchuk, et al.
Based on the ray tracing method, we developed algorithms for constructing numerical model of spectroscopic instrumentation. The Software is realized in C ++ using nVidia CUDA technology. The software package consists of three separate modules: the ray tracing module, a module for calculating energy efficiency and module of CCD image simulation. The main objective of this work was to obtain images of the spectra for the cross-dispersed spectrographs as well as segmented aperture Long Slit Spectrograph. The software can be potentially used by WSO-UV project. To test our algorithms and the software package we have performed simulations of the ground cross-dispersed Nasmyth Echelle Spectrometer (NES) installed on the platform of the Nasmyth focus of the Russian 6-meter BTA telescope. The comparison of model images of stellar spectra with observations on this device confirms that the software works well. The high degree of agreement between the theoretical and real spectra is shown.
WSO-UV ground segment for observation optimisation
O. Basargina, M. Sachkov, Y. Kazakevich, et al.
The World Space Observatory--Ultraviolet (WSO--UV) is a Russian-Spanish space mission born as a response to the growing up demand for UV facilities by the astronomical community. Main components of the WSO-UV Ground Segment, Mission Control Centre and Science Operation Centre, are being developed by international cooperation In this paper the fundamental components of WSO-UV ground segment are described. Also approaches to optimize observatory scheduling problem are discussed.
Optical design of WUVS instrument: WSO-UV spectrographs
Mikhail Sachkov, Vladimir Panchuk, Maxim Yushkin, et al.
World Space Observatory - Ultraviolet project is an international space observatory for spectroscopy and imaging in 115-310 nm spectral range. The WSO-UV telescope feeds in its focal plane two main instruments for spectroscopy (unit of spectrographs - WUVS) and imaging (field camera unit - FCU) as well as Fine Guidance System (FGS). Significant progress in the CCD development allows to use the back illuminated CCD detectors with anti-reflection coating for spectroscopic observations in this ultraviolet domain instead of wide used MCP detectors. In this paper we present the final optical design of the WUVS instrument.
Design of a wide field far-UV spectrometer for a mission to Mars
Edward Wishnow, Tim Miller, Matthew Fillingim, et al.
An imaging spectrometer for observations of the Martian corona and the Martian thermosphere is presented. The corona extends over 10 Martian radii and its measurement requires observations over a very wide field. The spectrometer covers the wavelength region 120-170 nm where this band includes coronal spectral lines of hydrogen Lyman alpha and oxygen, and thermospheric spectral lines from atomic oxygen and carbon and the 4th positive band of CO. Stellar occultation observations will provide atmospheric density measurements. These scientific requirements are fulfilled by an Offner-type spectrometer with a 110 degree instantaneous field of view and no moving mechanisms. Both the spectral and imaging resolution vary across the field, from higher resolution across the planet body, to lower resolution required at the diffuse outer parts of the corona. This Offner-type design has not been previously used in the FUV.
Near UV imager with an MCP-based photon counting detector
S. Ambily, Joice Mathew, Mayuresh Sarpotdar, et al.
We are developing a compact UV Imager using light weight components, that can be own on a small CubeSat or a balloon platform. The system has a lens-based optics that can provide an aberration-free image over a wide field of view. The backend instrument is a photon counting detector with off-the-shelf MCP, CMOS sensor and electronics. We are using a Z-stack MCP with a compact high voltage power supply and a phosphor screen anode, which is read out by a CMOS sensor and the associated electronics. The instrument can be used to observe solar system objects and detect bright transients from the upper atmosphere with the help of CubeSats or high altitude balloons. We have designed the imager to be capable of working in direct frame transfer mode as well in the photon-counting mode for single photon event detection. The identification and centroiding of each photon event are done using an FPGA-based data acquisition and real-time processing system.
Spectral calibration of CCDs and multilayer filters intended for future space applications
Eugene A. Vishnyakov, Alexey S. Kirichenko, Anton A. Reva, et al.
We present measurements of spectral sensitivity of CCD-matrices designed for future space missions. Three wavebands were under investigation: UV-visible range (300-600 nm), UV (250-300 nm) and VUV (110-250 nm). We used a halogen lamp, a deuterium lamp and a tungsten laser-driven plasma as sources of radiation. IRD UV silicon photodiodes and a photomultiplier tube fulfilled the function of calibrated detectors. Using a calibrated CCD, we measured initial spectral effectivity of the tungsten laser-driven plasma radiation source in the 110-250 nm waveband. Afterwards we experimentally evaluated spectral transmittance functions of three VUV multilayer filters for future space telescopes.
A technique for selectable band imaging in the ultraviolet and optical
James C. Green, Kevin France
We present a design concept that provides selectable band imaging in the optical and ultraviolet. The bandpass is created through reconstructive spectroscopy, utilizing crossed gratings, and creates an image, not a spectrum. The bandpass depends upon the field of view, the object location within that field, and the illuminated area of the second grating. All three factors are in principle selectable in real time, so that an instrument utilizing this technique is extremely flexible in its application. The technique utilizes no transmitting optics, and therefore is usable down to the limits of normal incidence reflectivity (~ 40 nm).
Optical alignment of the Chromospheric Lyman-Alpha Spectro-Polarimeter using sophisticated methods to minimize activities under vacuum
G. Giono, Y. Katsukawa, R. Ishikawa, et al.
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The instrument main scientific goal is to achieve polarization measurement of the Lyman-α line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. The optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly-α profiles. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-α is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.
An optimized Fresnel array for a test space mission in UV
W. Roux, L. Koechlin
The Fresnel Diffractive Imager is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP) in Toulouse, France. We propose it for space missions dedicated to science cases in the Ultra-Violet with aperture ranges from 6 to 30 meters. Instead of a classical mirror to focus light, this concept uses very light-weight diffractive optics : the Fresnel array. Our project has already proved its performances in terms of resolution and high dynamic range in the laboratory, in the visible and near IR. It has been tested successfully on real astrophysical sources from the ground.

At present, the project has reached the stage where a probatory mission is needed to validate its operation in space. In collaboration with institutes in Spain and Russia, we will propose a mission to the Russian space agency Roscosmos, to board a small prototype Fresnel imager on the International Space Station (ISS) for a UV astronomy program.

We have improved the Fresnel array design to get a better Point Spread Function (PSF), 2 different ways. Numerical simulations have first allowed us to confirm these optical improvements, before manufacturing the diffractive optics and using them for new lab tests.

In our previous setups, the opaque Fresnel zones in the primary Fresnel array (playing the role of the telescope objective) were maintained with an orthogonal bars mesh, following the pseudo-period of the Fresnel zones. We show that the PSF improves when these bars are regularly spaced. Furthermore, the optical system is apodized to get a better peaked PSF, and increase its high contrast performances.

In our case, to apodize a binary mask the solution is to modulate the Fresnel zones in relative thickness ratio (opaque versus void), thus driving the local light transmission ratio. In earlier implementations, our Fresnel arrays were apodized with a circularly symmetric law, but an orthogonal apodization law is more efficient. That is why we are developing this particular type of apodized square aperture Fresnel arrays.
Development of a flight qualified 100 x 100 mm MCP UV detector using advanced cross strip anodes and associated ASIC electronics
Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last three decades (e.g. EUVE, FUSE, COS on Hubble etc.) and been mentioned for instruments on future large telescopes in space such as LUVOIR14. Using cross strip anodes, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x10) resulting in lower high voltage requirements and longer MCP lifetimes.

A crossed strip anode MCP readout starts with a set of orthogonal conducting strips (e.g. 80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital converter (ADC). All of the ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T) and pass this information to a downstream computer.

Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a NASA Strategic Astrophysics Technology (SAT) grant to raise the TRL of a cross strip detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass, and volume requirements of the detector electronics. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration).

ASICs designed for this program have been successfully fabricated and are undergoing extensive testing. We will present the latest progress on these ASIC designs and their performance. We will also show our preliminary work on scaling these designs (detector and electronics) to a flight qualified 100 x 100 mm cross strip detector, which has recently been funded through a follow on SAT grant.
Ultraviolet detector with CMOS-coupled microchannel plates for future space missions
Go Murakami, Masaki Kuwabara, Kazuo Yoshioka, et al.
The extreme ultraviolet (EUV) telescopes and spectrometers have been used as powerful tools in a variety of space applications, especially in planetary science. Many EUV instruments adopted microchannel plate (MCP) detection systems with resistive anode encoders (RAEs). An RAE is one of the position sensitive anodes suitable for space-based applications because of its low power, mass, and volume coupled with very high reliability. However, this detection system with RAE has limitations of resolution (up to 512 x 512 pixels) and incident count rate (up to ~104 count/sec). Concerning the future space and planetary missions, a new detector with different position sensitive system is required in order to a higher resolution and dynamic range of incident photons. One of the solutions of this issue is using a CMOS imaging sensor. The CMOS imaging sensor with high resolution and high radiation tolerance has been widely used. Here we developed a new CMOS-coupled MCP detector for future UV space and planetary missions. It consists of MCPs followed by a phosphor screen, fiber optic plate, and a windowless CMOS. We manufactured a test model of this detector and performed vibration, thermal cycle, and performance tests. The test sample of FOP-coupled CMOS image sensor achieved the resolving limit of 32 lp/mm and the PSF of 28 um, corresponds to the spatial resolution of 1024 x 1024 pixels. Our results indicate that this new type of UV detector can be widely used for future space applications.
Optical and structural characterization of reflective quarter wave plates for EUV range
A. E. H. Gaballah, P. Zuppella, A. J. Corso, et al.
The high demand to understand the optical, electronic, and structure properties of materials has fostered to extend the investigation down to shorter wavelengths in the far ultraviolet (FUV) and extreme ultraviolet (EUV) range. This has pushed scientists to investigate and design new optical tools as wave retarder (QWR) which, coupled with other techniques, can provide valuable information about physical, like magnetic and optical properties of materials. We have designed and studied an EUV polarimetric apparatus based on multilayer structures as QWR with a protective capping layer to avoid oxidation and contamination to improve stability and reflectivity efficiency. This device works within a suitably wide spectral range (88-160 nm) where some important spectral emission lines are as the hydrogen Lyman alpha 121.6 and Oxygen VI (103.2 nm) lines. Such design could be particularly useful as analytical tools in EUV-ellipsometry field. The system can be a relatively simple alternative to Large Scale Facilities and can be applied to test optical components by deriving their efficiency and their phase effect, i.e. determining the Mueller Matrix terms, and even to the analysis of optical surface and interface properties of thin films. In addition, the phase retarder element could be used in other experimental applications for generating EUV radiation beams of suitable polarization or for their characterization.
Design and improvements of the Attitude Control System of the FIREBall balloon experiment
Johan Montel, Frédéri Mirc, Etienne Pérot, et al.
FIREBALL (the Faint Intergalactic Redshifted Emission Balloon, funded by CNES-NASA, PI C.Martin, Caltech) is a balloon-borne 1m telescope coupled to an ultraviolet Multi Object Spectrometer (MOS), designed to study the faint and diffuse emission of the circumgalactic medium. The third flight of the experiment is planned in summer 2017. The goal of this paper is to describe the accurate pointing system of the 5-metres high / 1500kg gondola - that has been designed to fulfill stringent pointing requirements: less than 1 arcsec in elevation and cross elevation, and about 1 arcmin in field rotation (around the line of sight axis), over long integration time (a few hours). The pointing system is based on a multi stage closed loop scheme (4 Degrees Of Freedom), relying on a 1DOF gondola azimuth controller, a 2DOF gimbal frame supporting a 1.2-meter plano siderostat, and a 1DOF field rotation control system. The attitude determination is based on the hybridization of two accurate sensors: a Fiber Optic Gyrometer measurement unit and a star sensor integrated inside the instrument. The manuscript presents the design of the ACS. We also focus on flight train stability issues - due to the pendulum and torsion modes -, on the geometric equations specific to a siderostat pointing system, and on the description of the tests facilities.
The effects of dust outbursts on the anomalistic features observed by Rosetta Alice around 67P/Churyumov-Gerasimenko
John Noonan, Eric Schindhelm, Joel Wm. Parker, et al.
The Alice far-ultraviolet spectrograph on board the Rosetta spacecraft currently operating around the comet 67P/Churyumov-Gerasimenko experiences an anomalistic feature (AF) that has proven nearly constant at comet separations below 450 km.1 This feature varies rapidly on the second time scale and displays no relation to any measured parameters with the exception of comet separation. Simulations showed that nanograins and ions could create the feature through a range of possible masses, velocities, charges, and energies. This paper builds on research published in Reference 1 that explored the behaviors and morphology of the AF. Observations taken on February 19th, 2016 during a dust outburst observed by several other instruments (Eberhard Grun, in prep) verified that the most common morphology of the AF is linked to dust and charged nanograins.
Poster Session: ASTRO-H
icon_mobile_dropdown
The design, implementation, and performance of the Atro-H SXS calorimeter array and anti-coincidence detector
Caroline A. Kilbourne, Joseph S. Adams, Regis P. Brekosky, et al.
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.
System design and implementation of the detector assembly for the Astro-H soft x-ray spectrometer
M. P. Chiao, J. Adams, P. Goodwin, et al.
The soft x-ray spectrometer (SXS) onboard Astro-H presents to the science community unprecedented capability (> 7 eV at 6 keV) for high-resolution spectral measurements in the range of 0.5 – 12 keV to study extended celestial sources. At the heart of this SXS is the x-ray calorimeter spectrometer (XCS) where detectors (calorimeter array and anticoincidence detector) operate at 50 mK, the bias circuit operates at nominal 1.3 K, and the first stage amplifiers operate at 130 K, all within a nominal 20 cm envelope. The design of the detector assembly in this XCS originates from the Astro-E x-ray spectrometer (XRS) and lessons learned from Astro-E and Suzaku. After the production of our engineering model, additional changes were made in order to improve our flight assembly process for better reliability and overall performance. In this poster, we present the final design and implementation of the flight detector assembly, show comparison of parameters and performance to Suzaku’s XRS, and list susceptibilities to other subsystems as well as our lessons learned.
Cryogen-free operation of the Soft X-ray Spectrometer instrument
Gary A. Sneiderman, Peter J. Shirron, Ryuichi Fujimoto, et al.
The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at ~1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.
Design and on-orbit operation of the adiabatic demagnetization refrigerator on the Hitomi Soft X-ray Spectrometer instrument
Peter J. Shirron, Mark O. Kimball, Bryan L. James, et al.
The Soft X-ray Spectrometer instrument on the Astro-H observatory contains a 6x6 array of x-ray microcalorimeters, which is cooled to 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consists of three stages in order to provide stable detector cooling using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. When liquid helium is present, two of the ADR’s stages are used to single-shot cool the detectors while rejecting heat to the helium. After the helium is depleted, all three stages are used to cool both the helium tank (to about 1.5 K) and the detectors (to 50 mK) using the JT cryocooler as its heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried approximately 36 liters of helium into orbit. On day 5, the helium had cooled sufficiently (<1.4 K) to allow operation of the ADR. This paper describes the design, operation and on-orbit performance of the ADR.
Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard ASTRO-H
Suppression of super fluid helium flow is critical for the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi). In nominal operation, a small helium gas flow of ~30 μg/s must be safely vented and a super fluid film flow must be sufficiently small <2 μg/s. To achieve a life time of the liquid helium, a porous plug phase separator and a film flow suppression system composed of an orifice, a heat exchanger, and knife edge devices are employed. In this paper, design, on-ground testing results and in-orbit performance of the porous plug and the film flow suppression system are described.
The design, implementation, and performance of the Astro-H SXS aperture assembly and blocking filters
Caroline A. Kilbourne, Joseph S. Adams, Petar Arsenovic, et al.
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The properties that make the SXS array a powerful x-ray spectrometer also make it sensitive to photons from the entire electromagnetic band, and particles as well. If characterized as a bolometer, it would have a noise equivalent power (NEP) of < 4x10-18 W/(Hz)0.5. Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. Both of these needs are addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that block long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three outer filters also have been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.
Thermal analyses for initial operations of the Soft X-Ray Spectrometer (SXS) onboard ASTRO-H
Hirofumi Noda, Kazuhisa Mitsuda, Atsushi Okamoto, et al.
The Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi) achieved a high energy resolution of ~ 4.9 eV at 6 keV with an X-ray microcalorimeter array kept at 50 mK in the orbit. The cooling system utilizes liquid helium, and a porous plug phase separator is utilized to confine it. Therefore, it is required to keep the helium temperature always lower than the λ point of 2.17 K in the orbit. To clarify the maximum allowable helium temperature at the launch also considering the uncertainties of the initial operation in the orbit, we constructed a thermal mathematical model of the SXS dewar which properly implements the helium mass flow rate through the porous plug, and carried out time-series thermal simulations. Based on the results, the maximum allowable helium temperature at the launch was set at 1.7 K. We also conducted a transient thermal calculation using the actual temperatures at the launch as initial conditions. As a result, the helium mass flow rate when the helium temperature was in equilibrium is estimated to be 34–42 μg/s, and the life time of the helium mode is predicted to be ~ 3.9–4.7 years. The present paper reports model structures, simulation results, and the comparisons with temperatures measured in the orbit.
Performance of the helium dewar and cryocoolers of ASTRO-H SXS
Ryuichi Fujimoto, Yoh Takei, Kazuhisa Mitsuda, et al.
The Soft X-ray Spectrometer (SXS) is a cryogenic high-resolution X-ray spectrometer onboard the ASTRO-H satellite, that achieves energy resolution better than 7 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator. The cooling chain from room temperature to the ADR heat sink is composed of 2-stage Stirling cryocoolers, a 4He Joule-Thomson cryocooler, and super uid liquid He, and is installed in a dewar. It is designed to achieve a helium lifetime of more than 3 years with a minimum of 30 liters. The satellite was launched on 2016 February 17, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the He tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and cryocoolers.
In-flight performance of pulse processing system of the ASTRO-H soft x-ray spectrometer
Yoshitaka Ishisaki, Shinya Yamada, Hiromi Seta, et al.
We summarize results of the initial in-orbit performance of the pulse shape processor (PSP) of the soft x-ray spectrometer instrument onboard ASTRO-H (Hitomi). Event formats, kind of telemetry, and the pulse processing parameters are described, and the parameter settings in orbit are listed. PSP was powered-on two days after launch, and the event threshold was lowered in orbit. PSP worked fine in orbit, and there were no memory error nor SpaceWire communication error until the break-up of spacecraft. Time assignment, electrical crosstalk, and the event screening criteria are studied. It is confirmed that the event processing rate at 100% CPU load is ~200 c/s/array, compliant with the requirement on PSP.
In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer
Maurice A. Leutenegger, Marc Audard, Kevin R. Boyce, et al.
The Soft X-ray Spectrometer (SXS) onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3-12 keV band. Extensive pre- flight calibration measurements are the basis for our modeling of the pulse-height-energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse-height-energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source, and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsars to validate our models of the telescope area and detector efficiency, and to derive a more accurate value for the thickness of the gate valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab pulsar to refine the pixel-to-pixel timing and validate the absolute timing.
Ground calibration of the Astro-H (Hitomi) soft x-ray spectrometer
M. E. Eckart, J. S. Adams, K. R. Boyce, et al.
The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0:3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.
The ASTRO-H SXT performance to the large off-set angles
The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to ~ 12 keV. Although the field of view of the SXT is ~150' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as "stray light". Owing to investigation of the stray light so far, "secondary reflection" is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a "pre-collimator" is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line.

ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (<5 X 10-4 times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (~3'x3') at large off-axis angles (>15') are ~10-4 times smaller than the on-axis effective area (~590 cm2 at 1.49 keV).
Reflectivity around the gold M-edges of x-ray reflector of the Soft X-ray Telescope onboard ASTRO-H
Sho Kurashima, Akihiro Furuzawa, Toshiki Sato, et al.
The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3{12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique (Okajima et al. in this volume). A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.
Reflectivity around the gold L-edges of x-ray reflector of the soft x-ray telescope onboard ASTRO-H
We report the atomic scattering factor in the 11.2{15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2{15.4 keV band with the energy pitch of 0.4 { 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold′s L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.
Ray-tracing simulation and in-orbit performance of the ASTRO-H hard x-ray telescope (HXT)
H. Matsumoto, H. Awaki, A. Furuzawa, et al.
A ray-trace simulation code for the Hard X-ray Telescope (HXT) on board the Hitomi (ASTRO-H) satellite is being developed. The half power diameter and effective area simulated based on the code are consistent with ground measurements within 10%. The HXT observed the pulsar wind nebula G21.5-0.9 for 105 ksec. We confirmed that the encircled energy function and the half power diameter obtained from the data are consistent with the ground measurements.
A laboratory test setup to study the stability of operation of the CdTe detectors within Astro-H HXI
Daniel Maier, Benoit Horeau, Philippe Laurent, et al.
Astro-H1 is a JAXA/NASA X-ray satellite launched in 17th Feb. 2016. The hard X-ray imager (HXI)2 is a Si/CdTe stacked detector system which is placed in the focus of a hard x-ray telescope. HXI constitute one of the four different instruments onboard Astro-H.

We are presenting the current status of a stacked detector setup which consists of two mini-HXI double sided CdTe strip detectors (CdTe DSDs)|similar to those used in HXI|that are read out with the low-noise readout ASIC IDeF-X BD. We describe the configuration of the setup, its spectroscopic performance, and a long-term operation of the setup. The long-term test simulates the orbital operation of HXI using identical detector temperatures, bias voltages, and switch-on/switch-off cycles with the goal to study the detector stability and the evolution of its performance during operation.
Poster Session: Detectors
icon_mobile_dropdown
The evolution of the ACIS contamination layer over the 16-year mission of the Chandra X-ray Observatory
Paul P. Plucinsky, Akos Bogdan, Gregg Germain, et al.
The Chandra X-ray Observatory (CXO) was launched 16 years ago and has been delivering spectacular science over the course of its mission. The Advanced CCD Imager Spectrometer (ACIS) is the prime instrument on the satellite, conducting over 90% of the observations. The CCDs operate at a temperature of -120 C and the optical blocking filter (OBF) in front of the CCDs is at a temperature of approximately −60 C. The surface of the OBF has accumulated a layer of contamination over the course of the mission, as it is the coldest surface exposed to the interior to the spacecraft. We have been characterizing the thickness, chemical composition, and spatial distribution of the contamination layer as a function of time over the mission. All three have exhibited significant changes with time. The calibration team within the Chandra X-ray Center (CXC) generates calibration files that describe the additional absorption produced by the contamination layer as a function of time, position, and energy. We have verified the accuracy of this contamination file for the on-axis aimpoints using the standard model spectrum for the Supernova Remnant 1E 0102.2-7219 in the Small Magellanic Cloud developed by the International Consortium for High Energy Calibration (IACHEC), but we show the model is less accurate for the off-axis positions after 2013. In 2015, the ACIS Detector Housing heater was turned on to increase the temperature of the OBF in the hope that the accumulation rate of the contamination layer would decrease. We show that the accumulation rate of the contaminant is unchanged since the DH heater was turned on.
Evolution of temperature-dependent charge transfer inefficiency correction for ACIS on the Chandra X-ray Observatory
Catherine E. Grant, Marshall W. Bautz, R. Nick Durham, et al.
As ACIS on the Chandra X-ray Observatory enters its seventeenth year of operation, it continues to perform well and produce spectacular scientific results. The response of ACIS has evolved over the lifetime of the observatory due to radiation damage and aging of the spacecraft. The ACIS instrument team developed a software tool which applies a correction to each X-ray event and mitigates charge transfer inefficiency (CTI) and spectral resolution degradation. The behavior of the charge traps that cause CTI are temperature dependent, however, and warmer temperatures reduce the effectiveness of the correction algorithm. As the radiator surfaces on Chandra age, ACIS cooling has become less efficient and temperatures can increase by a few degrees. A temperature-dependent component was added to the CTI correction algorithm in 2010. We present an evaluation of the effectiveness of this algorithm as the radiation damage and thermal environment continue to evolve and suggest updates to improve the calibration fidelity.
Front-end readout ASIC for charged particle counting with the RADEM instrument on the ESA JUICE mission
Timo A. Stein, Philip Påhlsson, Dirk Meier, et al.
The detector readout for the Radiation-hard Electron Monitor (RADEM) aboard the JUpiter ICy moons Explorer (JUICE) uses a custom-made application-specific integrated circuit (ASIC, model: IDE3466) for the charge signal readout from silicon radiation sensors. RADEM measures the total ionizing dose and dose rate for protons (5 MeV to 250 MeV), electrons (0.3 MeV to 40 MeV) and ions. RADEM has in total three chips of the same design: one chip for the proton and ion detector, one for the electron detector, and one for the directional detector. The ASIC has 36 chargesensitive pre-amplifiers (CSA), 36 counters of 22-bits each, and one analogue output for multiplexing the pulse heights from all channels. The counters count pulses from charged particles in the silicon sensors depending on the charge magnitude and the coincidence trigger pattern from the 36 channels. We have designed the ASIC in 0.35-μm CMOS process and an ASIC wafer lot has been manufactured at AMS. This article presents the ASIC design specifications and design validation results. The preliminary results from tests with bare chips indicate that the design meets the technical requirements.
Developments in calibration of EUV and VUV detectors for solar orbiter instrumentation using synchrotron radiation
Thomas Reichel, Alexander Gottwald, Udo Kroth, et al.
Space-based missions exploring the spectral ranges of extreme- and vacuum-ultraviolet radiation (EUV, VUV) require on-ground, at-wavelength calibration of their detectors and imaging systems. With the use of monochromatized synchrotron radiation, traceable calibrations regarding the spectral responsivity of the instruments can be provided. A dedicated vacuum chamber is used to house space instruments up to 100 kg weight for calibration measurements. Currently, the development of calibration procedures for the EUI instrument of the Solar Orbiter is still underway.
Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application
J.-L. Galvèz, M. Hernanz, L. Álvarez, et al.
Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of novae and supernovae in X and gamma-rays, with the use of space missions. We have also been involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae and Classical Novae. In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm with a pixel pitch of 1mm x 1mm. Two kinds of CdTe pixel detectors with different contacts have been tested: ohmic and Schottky. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout VATAGP7.1 ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. The study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the detector design. We will report on the spectroscopy characterisation of the CdTe detector module as well as the study of charge sharing.
Directly-deposited blocking filters for high-performance silicon x-ray detectors
M. Bautz, S. Kissel, R. Masterson, et al.
Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.
Line profile modelling for multi-pixel CZT detectors
T. Chattopadhyay, S. V. Vadawale, A. R. Rao, et al.
Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).
Poster Session: Polarization
icon_mobile_dropdown
Performance of the Gas Pixel Detector: an x-ray imaging polarimeter for upcoming missions of astrophysics
Fabio Muleri, Paolo Soffitta, Luca Baldini, et al.
X-ray polarimetry is a hot topic and, as a matter of fact, a number of missions dedicated to the measurement of the polarization in the ∼2-8 keV energy range with photoelectric devices are under advanced study by space agencies. The Gas Pixel Detector (GPD), developed and continuously improved in Italy by Pisa INFN in collaboration with INAF-IAPS, is the only instrument able to perform imaging polarimetry; moreover, it can measure photon energy and time of arrival. In this paper, we report on the performance of a GPD prototype assembled with flight-like materials and procedures. The remarkably uniform operation over a long period of time assures a straightforward operation in orbit and support the high readiness level claimed for this instrument.
The on-board calibration system of the X-ray Imaging Polarimetry Explorer (XIPE)
Silvia Zane, Berend Winter, Craig Theobalds, et al.
The calibration system for XIPE is aimed at providing a way to check and correct possible variations of performance of the Gas Pixel Detector during the three years of operation in orbit (plus two years of possible extended operation), while facilitating the observation of the celestial sources. This will be performed by using a filter wheel with a large heritage having a set of positions for the calibration and the observation systems. In particular, it will allow for correcting possible gain variation, for measuring the modulation factor using a polarized source, for removing non interesting bright sources in the field of view and for observing very bright celestial sources. The on-board calibration system is composed of three filter wheels, one for each detector and it is expected to operate for a small number of times during the year. Moreover, since it operates once at a time, within the observation mode, it allows for simultaneous calibration and acquisition from celestial sources on different detectors. In this paper we present the scope and the requirements of the on-board calibration system, its design, and a description of its possible use in space.
Geometrical tools for the analysis of x-ray polarimetric signals
E. Massaro, E. Del Monte, F. Massa, et al.
X-ray polarimetric measurements are based on the study of distributions of the directions of scattered photons or photoelectrons and the search of a sinusoidal modulation with a period of π. We present a new simple tool based on a scatter plot of the modulation curve in which the counts in each angular bin are reported after a shifting by 1/4 of the period. The sinusoidal pattern is thus transformed in a circular plot whose radius is equal to the amplitude of the modulation, while for a not polarized radiation the scatter plot is reduced to a random point distribution centred at the mean frequency value. The advantage of this tool is that one can easily evaluate the statistical significance of the polarimetric detection and can obtain useful information on the quality of the measurement.
Poster Session: New Missions
icon_mobile_dropdown
The microchannel x-ray telescope status
D. Götz, A. Meuris, F. Pinsard, et al.
We present design status of the Microchannel X-ray Telescope, the focussing X-ray telescope on board the Sino- French SVOM mission dedicated to Gamma-Ray Bursts. Its optical design is based on square micro-pore optics (MPOs) in a Lobster-Eye configuration. The optics will be coupled to a low-noise pnCCD sensitive in the 0.2{10 keV energy range. With an expected point spread function of 4.5 arcmin (FWHM) and an estimated sensitivity adequate to detect all the afterglows of the SVOM GRBs, MXT will be able to provide error boxes smaller than 60 (90% c.l.) arc sec after five minutes of observation.
Arcus: the x-ray grating spectrometer explorer
R. K. Smith, M. H. Abraham, R. Allured, et al.
Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity – effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.
Multi-directional measurements of high energy particles from the Sun-Earth L1 point with STEPS
S. K. Goyal, M. Shanmugam, A. R. Patel, et al.
Aditya Solar wind Particle EXperiment (ASPEX) is one of the scientific experiments onboard the Aditya-L1 mission, the first Indian solar mission planned to be launched in the year of 2019. The primary objective of the ASPEX experiment is to carry out in-situ, multi-directional measurements of solar wind ions in the energy range of 100 eV/n to 5 MeV/n. ASPEX instrument has been configured into two subsystems: Solar Wind Ion Spectrometer (SWIS) and Supra Thermal & Energetic Particle Spectrometer (STEPS). SWIS will measure the angular and energy distribution of solar wind ions in the energy range of 100 eV to 20 keV and STEPS will measure the energy spectrum of high energetic particles from six directions covering the energy range of 20 keV/n to 5 MeV/n. This paper presents the overall configuration of the STEPS subsystem with preliminary results obtained from the bread board model.
Optical design considerations and raytracing results for the Arcus grating spectrometer concept
Ryan Allured, Randall L. McEntaffer, Edward Hertz, et al.
Arcus is a mission concept for a next generation X-ray grating spectrometer. It will offer spectral resolution (λ/▵λ) greater than 2000 combined with over 500 cm2 of effective area in the 2.1-2.4 nm bandpass. These capabilities will elucidate the cycle of baryonic matter in and out of galaxies, the means by which supermassive black holes influence their surroundings, and the early formation and evolution of solar systems. We present the overall optical design of the mission, which features four arrays of silicon pore optics modules with four matching arrays of off-plane reflection grating modules. These optics disperse the incident X-rays over the 12 m focal length in four separate conical diffraction patterns onto CCD arrays at the focal plane. Each array of optics is an azimuthal sub-aperture of the typical Wolter telescope design, enabling enhanced spectral resolution due to an asymmetric point spread function. The theoretical spectral resolution, effective area, and alignment tolerances have been determined via raytrace modeling.
The evolution of structure and feedback with Arcus
Laura W. Brenneman, Randall K. Smith, J. Bregman, et al.
Arcus is a NASA/MIDEX mission under development in response to the anticipated 2016 call for proposals. It is a freeflying, soft X-ray grating spectrometer with the highest-ever spectral resolution in the 8-51 Å (0.24 – 1.55 keV) energy range. The Arcus bandpass includes the most sensitive tracers of diffuse million-degree gas: spectral lines from O VII and O VIII, H- and He-like lines of C, N, Ne and Mg, and unique density- and temperature-sensitive lines from Si and Fe ions. These capabilities enable an advance in our understanding of the formation and evolution of baryons in the Universe that is unachievable with any other present or planned observatory. The mission will address multiple key questions posed in the Decadal Survey1 and NASA’s 2013 Roadmap2: How do baryons cycle in and out of galaxies? How do black holes and stars influence their surroundings and the cosmic web via feedback? How do stars, circumstellar disks and exoplanet atmospheres form and evolve? Arcus data will answer these questions by leveraging recent developments in off-plane gratings and silicon pore optics to measure X-ray spectra at high resolution from a wide range of sources within and beyond the Milky Way. CCDs with strong Suzaku heritage combined with electronics based on the Swift mission will detect the dispersed X-rays. Arcus will support a broad astrophysical research program, and its superior resolution and sensitivity in soft X-rays will complement the forthcoming Athena calorimeter, which will have comparably high resolution above 2 keV.
Status of the micro-X sounding rocket x-ray spectrometer
D. C. Goldfinger, J. S. Adams, R. Baker, et al.
Micro-X is a sounding rocket borne X-ray telescope that utilizes transition edge sensors to perform imaging spectroscopy with a high level of energy resolution. Its 2.1m focal length X-ray optic has an effective area of 300 cm2, a field of view of 11.8 arcmin, and a bandpass of 0.1–2.5 keV. The detector array has 128 pixels and an intrinsic energy resolution of 4.5 eV FWHM. The integration of the system has progressed with functional tests of the detectors and electronics complete, and performance characterization of the detectors is underway. We present an update of ongoing progress in preparation for the upcoming launch of the instrument.
Fast simulation of the NICER instrument
John P. Doty, Matthew P. Wampler-Doty, Gregory Y. Prigozhin, et al.
The NICER1 mission uses a complicated physical system to collect information from objects that are, by x-ray timing science standards, rather faint. To get the most out of the data we will need a rigorous understanding of all instrumental effects. We are in the process of constructing a very fast, high fidelity simulator that will help us to assess instrument performance, support simulation-based data reduction, and improve our estimates of measurement error. We will combine and extend existing optics, detector, and electronics simulations. We will employ the Compute Unified Device Architecture (CUDA2) to parallelize these calculations. The price of suitable CUDA-compatible multi-giga op cores is about $0.20/core, so this approach will be very cost-effective.
Ground calibration of the Silicon Drift Detectors for NICER
Beverly LaMarr, Gregory Prigozhin, Ronald Remillard, et al.
The Neutron star Interior Composition ExploreR (NICER) is set to be deployed on the International Space Station (ISS) in early 2017. It will use an array of 56 Silicon Drift Detectors (SDDs) to detect soft X-rays (0.2 - 12 keV) with 100 nanosecond timing resolution. Here we describe the effort to calibrate the detectors in the lab primarily using a Modulated X-ray Source (MXS).

The MXS that was customized for NICER provides more than a dozen emission lines spread over the instrument bandwidth, providing calibration measurements for detector gain and spectral resolution. In addition, the fluorescence source in the MXS was pulsed at high frequency to enable measurement of the delay due to charge collection in the silicon and signal processing in the detector electronics. A second chamber, designed to illuminate detectors with either 55Fe, an optical LED, or neither, provided additional calibration of detector response, optical blocking, and effectiveness of background rejection techniques. The overall ground calibration achieved total operating time that was generally in the range of 500-1500 hours for each of the 56 detectors.
Performance of NICER flight x-ray concentrator
Takashi Okajima, Yang Soong, Erin R. Balsamo, et al.
Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.
Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study
Colleen A. Wilson-Hodge, Paul S. Ray, Deepto Chakrabarty, et al.
LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE (~ 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.
ART-XC/SRG: results of qualification thermo-vacuum tests
N. Semena, M. Pavlinsky, M. Buntov, et al.
ART-XC – a medium-x-ray-energy survey instrument of “Spectrum-Roentgen-Gamma” (SRG) project is being developed in Russia under the leadership of the Space Research Institute (IKI). Main requirements to the telescope temperature control system are provided by two key elements – module of seven semiconductor DSSD CdTe detectors which have to operate at the temperature −22.5±2.5 °C to prevent CdTe crystals fast polarization (large polarization time allows to keep detector energy spectral characteristics during continuous 2 – 3 days expositions) and the module of seven mirror systems which have to operate at a temperature 20±2 °C (which is the temperature used in the on Earth mirror systems calibration tests).Thermal control system ART-XC consists of 36 tunable film heaters placed in different places on the telescope structure and controlled according to indications of thermal sensors. The maximum power of each heater is 10 W. There are 21 heaters located on seven mirror systems. Each mirror system case is equipped with two heaters, additional one is located on the mirror system baffle. Seven heaters are placed on detectors. Remaining eight heaters are placed in different telescope parts – one on the protective cover, one on the explosive pin, one under the star tracker, three on the mirror system and star tracker mount plate, one on the detector block mount plate and one on the calibration sources control system block. Thermal control system constantly checks temperature from 36 thermal sensors and regulate the heater’s power supply. There is one passive thermal control element in the telescope – radiator, which is connected to detectors via three heat pipes and cools them down. The QM (qualification model) of ART-XC was manufacture and tested. QM completely corresponds to flight model. Conditions of thermo-vacuum tests were corresponded to real external thermal conditions in flight. The vacuum, cold of space, temperature of mounting planes and shielding by eRosita telescope were reproduced at this test. During the test operating and calibration thermal telescope modes were simulated. Results of the QM thermo-vacuum test are presented in this paper.
Results of ground tests and calibration of x-ray focal plane detectors for ART-XC/SRG instrument
Vasily Levin, Mikhail Pavlinsky, Valery Akimov, et al.
The Russian Space Research Institute (IKI) has developed seven flight models and three spare models of the X-ray detectors for the ART-XC/SRG telescope. Each detector situated in the focal plane of ART-XC X-ray optics and includes CdTe die, front-end electronics, data processing, storage and telemetry units. In the Space Research Institute performed a vibration, thermal cycling and thermal vacuum tests of X-ray detectors. During this tests have been studied the leakage current stability, polarization rate, spectroscopic and imaging performance in the working temperature range. The current status of the X-ray detectors development and testing presented.
An updated approach to the study of proton propagation in the eROSITA mirror system
E. Perinati, T. Mineo, M. Freyberg, et al.
The German telescope eROSITA will be the first X-ray instrument orbiting around the L-2 lagrangian point. Therefore, modelling the radiation environment in that region of space and its interaction with the instrument is particularly important, as no measured data of other X-ray detectors can be used as a reference to predict how the space conditions will impact the instrumental capabilities. The orbit around L-2 extends well beyond the Earth´s magnetosphere, where the flux of galactic cosmic particles is cut by the geomagnetic field, and fluxes of energetic particles one order of magnitude higher than in low Earth orbits are expected. Furthermore, as experienced by Chandra and XMM-Newton, softer protons may be scattered through the mirror shells and funneled to the focal plane, representing a potential additional source of background. To investigate and assess this component we are developing a ray tracing simulator for protons, that follows the track of each proton from the entrance pupil down to the focal plane. In this paper we report on an updated version of the code that allows to propagate protons in both the polar and azimuthal directions in elastic regime.
Laboratory demonstration of the piezoelectric figure correction of a cylindrical slumped glass optic
Ryan Allured, Edward Hertz, Vanessa Marquez, et al.
The X-ray Surveyor is a mission concept for a next generation X-ray observatory. This mission will feature roughly 30 times the effective area of the Chandra Observatory while matching its sub-arcsecond angular resolution. The key to meeting these requirements is lightweight, segmented optics. To ensure these optics achieve and maintain sub-arcsecond performance, we propose to use piezoelectric coatings for post-bonding and on-orbit figure correction. We have fabricated a cylindrical prototype optic with piezoelectric adjusters and measured its performance using optical metrology. We present the results of this experiment and discuss their implications for an observatory featuring adjustable X-ray optics.
A performance budget for the x-ray surveyor telescope
This paper uses an budgeting approach to examine the proposed X-ray Surveyor’s imaging quality. The paper presents a budget which is the same structure as that of the Chandra X-ray Observatory. The budget is populated with terms that can be expected to be the same as that of Chandra, namely the contributions due to aspect solution and alignment between the mirrors and focal plane detectors. An allocation for dynamic induced image degradation is then introduced, to allow for contribution due to the optics from all sources to be determined, ~0.44 arcseconds. This value is compared with the current state of the art, which is considerably in excess of 0.5 arcesconds. The role and possibility of adjustable optics for the X-ray Surveyor is discussed.
Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions
We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.
A new type of multiple image x-ray interferometer for arcseconds and sub-arcseconds sources
Kiyoshi Hayashida, Hiroyuki Kurubi, Hiroshi Nakajima, et al.
A new type of X-ray interferometer consisting of a grating and an X-ray spectral imaging detector is proposed. Parallel X-ray beam irradiating a grating makes the fringes on the X-ray detector. Each fringe represents the profiles of the X-ray source, and superposition of those fringe images makes the accurate source profile, when diffraction is negligible. We estimate the angular resolution of this system with 1m distance between the grating and the detector is limited to about 6.5" for 12.4 keV X-rays in the condition that the diffraction is negligible. However, even when the diffraction is significant, e.g., with a finer pitch grating, interference, or more specifically the Talbot effect, make the clear fringes at a specific distance known as the Talbot distance. If we place the X-ray detector at a distance and select X-ray events meeting the Talbot condition, we expect the fringes that is a self image of the grating, representing the source profile. If we employ, for example, 5 μm pitch grating 25 cm apart from the detector and select 12.4 keV X-rays, the angular resolution of 2" or better is expected. We consider there are significant room to improvement. We also show the experimental setup we have started in our laboratory.
Compact hard x-ray imaging system with a large FOV
Miho Katsuragawa, Shin'ichiro Takeda, Goro Sato, et al.
We have developed a compact hard X-ray imaging system composed of a cadmium telluride double-sided strip detector (CdTe-DSD) and a coded mask. We investigate the imaging performance using two different coded masks with different sizes and patterns. In our system, a CdTe-DSD of pitch 250μm is used in conjunction with a coded mask is placed 70-100 mm above the detector to form a compact imaging system. We obtained an angular resolution of up to 11.8 arc min, as measured from gamma-ray lines of point-like radioactive isotope sources. This is consistent with that expected from the geometry. The energy resolution is 1.7 keV (FWHM) at 60 keV and the energy range of imaging is from 5 keV to 122 keV. These results agree very well with Monte Carlo simulations of the detector.
Point spread function of ASTRO-H Soft X-ray Telescope (SXT)
ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of ~42 kgmodule-1 and have large on-axis effective area (EA) of ~450 cm2 at 4.5 keV module-1 by themselves, their angular resolutions are moderate ~1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 x 3.05 arcmin2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm2 for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from -4.5 to 27 arcmin were acquired at intervals of 4.5 arcmin for the SXI FOV of 38 x 38 arcmin2. The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of ~18 arcmin distant from the image center.
Development of X-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate
Ryo Iizuka, Takanori Izumiya, Yohko Tsuboi
The light from celestial objects includes four important quantities; images, time variation, energy spectrum, and polarization. In the field of X-ray astronomy, the capabilities of the former three have remarkably developed. On the other hand, the progress for the polarimetry is considerably delayed because of technical difficulties. In order to make a breakthrough in the field of X-ray polarimetry, we have developed a new type of optics for X-ray polarimetry. The system is collecting Bragg crystal with large area and very high sensitivity for the polarization dedicated to Fe-K lines. We adopt the 400 re ection of Si(100) crystals with high sensitivity for the polarization around Fe-K lines (6 ~ 7 keV), and bent the crystals with the wide X-ray band and high S/N ratio. Furthermore, to install small area of CCD to non-focal plane, it also has the spectroscopic capability with the better resolution than that of general X-ray CCD.

Our previous development was to bent Si crystals to the cylindrical shape of circle and parabola with the DLC deposition. However, for the better optics for the X-ray polarimetry, the shape should be the paraboloid of revolution to collect X-rays with high S/N ratio. We searched for the method to bent the Si crystals to the shape of the paraboloid of revolution. We devised the method to mold the crystal and the CFRP substrate simultaneously pushed to the sophisticated foundation with the paraboloid of revolution. We developed the prototype of about 8 inch in radius of one-quater size. The crystals was also bent in the circumferential direction. Therefore, the image capability examined with optical parallel beam is 0.6 degree. In this thesis, we discussed the new design for X-ray spectroscopic polarimetry, the evaluation of image capability.
Poster Session: ATHENA
icon_mobile_dropdown
Observing the WHIM with Athena
T. Brand, J. Wilms, T. Dauser, et al.
We present simulations of the detection probability for absorption lines from ions in the warm and hot ionized medium (WHIM) with Athena in the spectra of Gamma-ray burst afterglows. The simulations are based on Swift XRT lightcurves of these afterglows and are performed using the end-to-end simulation framework SIXTE. We simulate both the case of single and multiple absorption lines, as well as results for line searches in absorption structures from a more complex medium. We show that the Athena X-IFU can detect WHIM lines with strong Ovii lines (equivalent widths larger than 0.14 eV) in spectra containing 3 x 106 counts.
Detectability of exoplanet transits with Athena's WFI instrument: testing for white and correlated noise
One of the science goal of the Athena mission is to detect and characterise, in the X-ray domain, transits of hot Jupiter-like planets orbiting their parent stars. To date, the only candidate for this kind of studies is HD 189733b, a Jupiter-size planet in a 2d orbit, for which a transit depth of 6-8% has been observed accumulating several Chandra and XMM-Newton observations. We simulate in this work realistic light curves of exoplanet transits using the Athena end-to-end simulator, SIXTE, and derive the expected signal-to-noise ratios (SNR) for different instrument configurations and planetary system parameters. We first produce at light curves for the currently existing WFI instrument designs and for different source fluxes to extract the expected (white noise) standard deviation. Next, moderate levels of correlated noise and transits of different depths are added to the light curves. As expected, for pure white noise the SNR is proportional to the square root of the flux, to the light curve bin size and to the number of co-added transits, and by definition proportional to the transit depth. When correlated noise starts to be significant, rebinning the data will only slightly increase the SNR, depending on the noise characteristics. Considering only white noise, a transit observed in a source like HD 189733, that has a flux around 5x10-13 erg s-1 cm-2 and a transit depth of about 5% can be detected with a SNR>3 in a unique transit. With correlated noise, several transits might be necessary. We also simulate trapezoidal shaped transits and try to recover the ingress/egress times after addition of noise. The relative error on the fitted ingress times is below 10% for most of the light curves with SNR>1.
X-ray mirror development and testing for the ATHENA mission
Desiree Della Monica Ferreira, Anders C. Jakobsen, Sonny Massahi, et al.
This study reports development and testing of coatings on silicon pore optics (SPO) substrates including pre and post coating characterisation of the x-ray mirrors using Atomic Force Microscopy (AFM) and X-ray reflectometry (XRR) performed at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II. We report our findings on surface roughness and coating reflectivity of Ir/B4C coatings considering the grazing incidence angles and energies of ATHENA and long term stability of Ir/B4C, Pt/B4C, W/Si and W/B4C coatings.
New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics
Michael Krumrey, Peter Müller, Levent Cibik, et al.
A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.
Simulation and modeling of silicon pore optics for the ATHENA x-ray telescope
D. Spiga, F. E. Christensen, M. Bavdaz, et al.
The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with more than 1000 mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. Even if the current baseline design fulfills the required effective area of 2 m2 at 1 keV on-axis, alternative design solutions, e.g., privileging the field of view or the off-axis angular resolution, are also possible. Moreover, the stringent requirement of a 5 arcsec HEW angular resolution at 1 keV entails very small profile errors and excellent surface smoothness, as well as a precise alignment of the 1000 mirror modules to avoid imaging degradation and effective area loss. Finally, the stray light issue has to be kept under control. In this paper we show the preliminary results of simulations of optical systems based on SPO for the ATHENA X-ray telescope, from pore to telescope level, carried out at INAF/OAB and DTU Space under ESA contract. We show ray-tracing results, including assessment of the misalignments of mirror modules and the impact of stray light. We also deal with a detailed description of diffractive effects expected in an SPO module from UV light, where the aperture diffraction prevails, to X-rays where the surface diffraction plays a major role. Finally, we analyze the results of X-ray tests performed at the BESSY synchrotron, we compare them with surface finishing measurements, and we estimate the expected HEW degradation caused by the X-ray scattering.
Development and production of a multilayer-coated x-ray reflecting stack for the Athena mission
S. Massahi, D. D. M. Ferreira, F. E. Christensen, et al.
The Advanced Telescope for High-Energy Astrophysics, Athena, selected as the European Space Agency's second large-mission, is based on the novel Silicon Pore Optics X-ray mirror technology. DTU Space has been working for several years on the development of multilayer coatings on the Silicon Pore Optics in an effort to optimize the throughput of the Athena optics. A linearly graded Ir/B4C multilayer has been deposited on the mirrors, via the direct current magnetron sputtering technique, at DTU Space. This specific multilayer, has through simulations, been demonstrated to produce the highest reflectivity at 6 keV, which is a goal for the scientific objectives of the mission. A critical aspect of the coating process concerns the use of photolithography techniques upon which we will present the most recent developments in particular related to the cleanliness of the plates. Experiments regarding the lift-off and stacking of the mirrors have been performed and the results obtained will be presented. Furthermore, characterization of the deposited thin-films was performed with X-ray reflectometry at DTU Space and in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II.
Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory
J. van der Kuur, L. G. Gottardi, H. Akamatsu, et al.
Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes.

Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory.

This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.
Development of frequency domain multiplexing for the X-ray Integral Field unit (X-IFU) on the Athena
Hiroki Akamatsu, Luciano Gottardi, Jan van der Kuur, et al.
We are developing the frequency domain multiplexing (FDM) read-out of transition-edge sensor (TES) microcalorimeters for the X-ray Integral Field Unit (X-IFU) instrument on board of the future European X-Ray observatory Athena. The X-IFU instrument consists of an array of ~3840 TESs with a high quantum efficiency (>90 %) and spectral resolution ΔE=2.5 eV @ 7 keV (E/ ΔE ~2800). FDM is currently the baseline readout system for the X-IFU instrument. Using high quality factor LC filters and room temperature electronics developed at SRON and low-noise two stage SQUID amplifiers provided by VTT, we have recently demonstrated good performance with the FDM readout of Mo/Au TES calorimeters with Au/Bi absorbers. An integrated noise equivalent power resolution of about 2.0 eV at 1.7 MHz has been demonstrated with a pixel from a new TES array from NASA/Goddard (GSFC-A2). We have achieved X-ray energy resolutions ~2.5 eV at AC bias frequency at 1.7 MHz in the single pixel read-out. We have also demonstrated for the first time an X-ray energy resolution around 3.0 eV in a 6 pixel FDM read-out with TES array (GSFC-A1). In this paper we report on the single pixel performance of these microcalorimeters under MHz AC bias, and further results of the performance of these pixels under FDM.
The impact of crosstalk in the X-IFU instrument on Athena science cases
R. den Hartog, P. Peille, T. Dauser, et al.
In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-countrate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture.
Gain drift compensation with no-feedback-loop developed for the X-IFU/ATHENA readout chain
D. Prêle, F. Voisin, C. Beillimaz, et al.
The focal plane of the X-ray Integral Field Unit (X-IFU) instrument of the Athena observatory is composed of about 4000 micro-calorimeters. These sensors, based on superconducting Transition Edge Sensors, are read out through a frequency multiplexer and a base-band feedback to linearize SQUIDs. However, the loop gain of this feedback is lower than 10 in the modulated TES signal bandwidth, which is not enough to fix the gain of the full readout chain. Calibration of the instrument is planned to be done at a time scale larger than a dozen minutes and the challenging energy resolution goal of 2.5 eV at 6 keV will probably require a gain stability larger than 10-4 over a long duration. A large part of this gain is provided by a Low-Noise Amplifier (LNA) in the Warm Front-End Electronics (WFEE). To reach such gain stability over more than a dozen minutes, this non-cooled amplifier has to cope with the temperature and supply voltage variations. Moreover, mainly for noise reasons, common large loop gain with feedback can not be used. We propose a new amplifier topology using diodes as loads of a differential amplifier to provide a fixed voltage gain, independent of the temperature and of the bias fluctuations. This amplifier is designed using a 350 nm SiGe BiCMOS technology and is part of an integrated circuit developed for the WFEE. Our simulations provide the expected gain drift and noise performances of such structure. Comparison with standard resistive loaded differential pair clearly shows the advantages of the proposed amplifier topology with a gain drift decreasing by more than an order of magnitude. Performances of this diode loaded amplifier are discussed in the context of the X-IFU requirements.
Microcalorimeter pulse analysis by means of principle component decomposition
C. P. de Vries, R. M. Schouten, J. van der Kuur, et al.
The X-ray integral field unit for the Athena mission consists of a microcalorimeter transition edge sensor pixel array. Incoming photons generate pulses which are analyzed in terms of energy, in order to assemble the X-ray spectrum. Usually this is done by means of optimal filtering in either time or frequency domain. In this paper we investigate an alternative method by means of principle component analysis. This method attempts to find the main components of an orthogonal set of functions to describe the data. We show, based on simulations, what the influence of various instrumental effects is on this type of analysis. We compare analyses both in time and frequency domain. Finally we apply these analyses on real data, obtained via frequency domain multiplexing readout.
Performance assessment of different pulse reconstruction algorithms for the ATHENA X-ray Integral Field Unit
Philippe Peille, Maria Teresa Ceballos, Beatriz Cobo, et al.
The X-ray Integral Field Unit (X-IFU) microcalorimeter, on-board Athena, with its focal plane comprising 3840 Transition Edge Sensors (TESs) operating at 90 mK, will provide unprecedented spectral-imaging capability in the 0.2-12 keV energy range. It will rely on the on-board digital processing of current pulses induced by the heat deposited in the TES absorber, as to recover the energy of each individual events. Assessing the capabilities of the pulse reconstruction is required to understand the overall scientific performance of the X-IFU, notably in terms of energy resolution degradation with both increasing energies and count rates. Using synthetic data streams generated by the X-IFU End-to-End simulator, we present here a comprehensive benchmark of various pulse reconstruction techniques, ranging from standard optimal filtering to more advanced algorithms based on noise covariance matrices. Beside deriving the spectral resolution achieved by the different algorithms, a first assessment of the computing power and ground calibration needs is presented. Overall, all methods show similar performances, with the reconstruction based on noise covariance matrices showing the best improvement with respect to the standard optimal filtering technique. Due to prohibitive calibration needs, this method might however not be applicable to the X-IFU and the best compromise currently appears to be the so-called resistance space analysis which also features very promising high count rate capabilities.
The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype
M. D'Andrea, A. Argan, S. Lotti, et al.
The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme “The Hot and Energetic Universe”, by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV.

The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes.

The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV.

To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source.

First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.
The mechanical and EM simulations of the CryoAC for the ATHENA X-IFU
D. Corsini, M. Biasotti, F. Gatti, et al.
The design phase of the CryoAC DM for the ATHENA X-IFU has concerned numerical simulations to exploit different fabrication possibilities. The mechanical simulations have accounted for the peculiar detector structure: 4 silicon chips asymmetrically suspended by means of 4 microbridges each. A preliminary study was performed to analyze the response to acceleration spectra in the frequency domain, shocks and time domain random displacement, prior to a real vibration test campaign. EM simulations to spot unwanted magnetic fields have been conducted as well. In this work we will show the latest advance in the design of the new detectors, showing the main results coming from various simulations.
The new cryogenic silicon monolithic micro-bridged Anticoincidence detector for the X-IFU of ATHENA
M. Biasotti, D. Corsini, M. De Gerone, et al.
The new monolithic micro-bridged Cryogenic Anticoincidence for the X-IFU instrument of ATHENA has been designed. It is a single pixel made of silicon with Ir-Au TES array that respond to all the requirements of the recently closed design review phase. It is the natural prosecutor of the previous version without micromachined bridges (predemonstration model) It has shape has been fully characterized and its data were used to improve the new design. In this paper, we report the overview of this work of fabrication test and design. A preliminary delivery test with 60 keV gamma ray is also described.
Temperature effects on the performances of the ATHENA X-IFU thermal filters
Marco Barbera, Ugo Lo Cicero, Luisa Sciortino, et al.
The X-Ray Integral Field Unit (X-IFU) detector on-board ATHENA is an array of TES micro-calorimeters that will operate at ~50 mK. In the current investigated design, five thermal filters (TF) will be mounted on the cryostat shields to attenuate IR radiative load and avoid energy resolution degradation due to photon shot noise. Each filter consists of a thin polyimide film (~50 nm thick) coated with aluminum (~30 nm thick).

Since the TF operate at different temperatures in the range 0.05-300 K, it is relevant to study how temperature affects their mechanical/optical performances (e.g. near edge absorption fine structures of the atomic elements in the filter material). Such results are crucial for the proper design of the filters as well as to establish the calibration program operating temperatures.

We report the preliminary results of visual inspections performed on test filters of polyimide/Al at different pressure and temperature conditions, IR transmission measurements (1-15 μm) performed in the temperature range 10- 300 K, and X-ray Absorption Spectroscopy measurements (175-1650 eV) performed in the temperature range 130-300 K.
The filter wheel and filters development for the X-IFU instruments onboard Athena
E. Bozzo, M. Barbera, L. Genolet, et al.
Athena is the large mission selected by ESA in 2013 to investigate the science theme “Hot and Energetic Universe” and presently scheduled for launch in 2028. One of the two instruments located at the focus of the 12 m-long Athena telescope is the X-ray Integral Field Unit (X-IFU). This is an array of TES microcalorimeters that will be operated at temperatures of 50 mK in order to perform high resolution spectroscopy with an energy resolution down to 2.5 eV at energies < 7 keV. In order to cope with the large dynamical range of X-ray fluxes spanned by the celestial objects Athena will be observing, the X-IFU will be equipped with a filter wheel. This will allow the user to fine tune the instrument set-up based on the nature of the target, thus optimizing the scientific outcomes of the observation. A few positions of the filter wheel will also be used to host a calibration source and to allow the measurement of the instrument intrinsic background.
Conceptual design of the X-IFU Instrument Control Unit on board the ESA Athena mission
L. Corcione, S. Ligori, V. Capobianco, et al.
Athena is one of L-class missions selected in the ESA Cosmic Vision 2015-2025 program for the science theme of the Hot and Energetic Universe. The Athena model payload includes the X-ray Integral Field Unit (X-IFU), an advanced actively shielded X-ray microcalorimeter spectrometer for high spectral resolution imaging, utilizing cooled Transition Edge Sensors. This paper describes the preliminary architecture of Instrument Control Unit (ICU), which is aimed at operating all XIFU’s subsystems, as well as at implementing the main functional interfaces of the instrument with the S/C control unit. The ICU functions include the TC/TM management with S/C, science data formatting and transmission to S/C Mass Memory, housekeeping data handling, time distribution for synchronous operations and the management of the X-IFU components (i.e. CryoCoolers, Filter Wheel, Detector Readout Electronics Event Processor, Power Distribution Unit). ICU functions baseline implementation for the phase-A study foresees the usage of standard and Space-qualified components from the heritage of past and current space missions (e.g. Gaia, Euclid), which currently encompasses Leon2/Leon3 based CPU board and standard Space-qualified interfaces for the exchange commands and data between ICU and X-IFU subsystems. Alternative architecture, arranged around a powerful PowerPC-based CPU, is also briefly presented, with the aim of endowing the system with enhanced hardware resources and processing power capability, for the handling of control and science data processing tasks not defined yet at this stage of the mission study.
Updates on the background estimates for the X-IFU instrument onboard of the ATHENA mission
S. Lotti, C. Macculi, M. D'Andrea, et al.
ATHENA is the second large mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme “The Hot and Energetic Universe”, by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these, the X-ray Integral Field Unit (X-IFU) is a TES based kilo-pixel array, providing spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV.

The background for this kind of detectors accounts for several components: the diffuse Cosmic Xray Background, the low energy particles (< ~100 keV) focalized by the mirrors and reaching the detector from inside the field of view, and the high energy particles (> ~100 MeV) crossing the spacecraft and reaching the focal plane from every direction. In particular, these high energy particles lose energy in the materials they cross, creating secondaries along their path that can induce an additional background component.

Each one of these components is under study of a team dedicated to the background issues regarding the X-IFU, with the aim to reduce their impact on the instrumental performances. This task is particularly challenging, given the lack of data on the background of X-ray detectors in L2, the uncertainties on the particle environment to be expected in such orbit, and the reliability of the models used in the Monte Carlo background computations. As a consequence, the activities addressed by the group range from the reanalysis of the data of previous missions like XMMNewton, to the characterization of the L2 environment by data analysis of the particle monitors onboard of satellites present in the Earth magnetotail, to the characterization of solar events and their occurrence, and to the validation of the physical models involved in the Monte Carlo simulations. All these activities will allow to develop a set of reliable simulations to predict, analyze and find effective solutions to reduce the particle background experienced by the X-IFU, ultimately satisfying the scientific requirement that enables the science of ATHENA.

While the activities are still ongoing, we present here some preliminary results already obtained by the group. The L2 environment characterization activities, and the analysis and validation of the physical processes involved in the Monte Carlo simulations are the core of an ESA activity named AREMBES (Athena Radiation Environment Models and Effects), for which the work presented here represents a starting point.
TESSIM: a simulator for the Athena-X-IFU
We present the design of tessim, a simulator for the physics of transition edge sensors developed in the framework of the Athena end to end simulation effort. Designed to represent the general behavior of transition edge sensors and to provide input for engineering and science studies for Athena, tessim implements a numerical solution of the linearized equations describing these devices. The simulation includes a model for the relevant noise sources and several implementations of possible trigger algorithms. Input and output of the software are standard FITS- files which can be visualized and processed using standard X-ray astronomical tool packages. Tessim is freely available as part of the SIXTE package (http://www.sternwarte.uni-erlangen.de/research/sixte/).
Background studies for ATHENA: status of the activities at IAAT
E. Perinati, S. Diebold, A. Guzman, et al.
We present an update on the status of the activities at IAAT for the assessment of the background and optimization of the camera design in the context of ATHENA/WFI.
Surface investigation and aluminum oxide estimation on test filters for the ATHENA X-IFU and WFI detectors
Luisa Sciortino, Ugo Lo Cicero, Elena Magnano, et al.
The ATHENA mission provides the demanded capabilities to address the ESA science theme "Hot and Energetic Universe". Two complementary instruments are foreseen: the X-IFU (X-ray Integral Field Unit) and WFI (Wide Field Imager). Both the instruments require filters to avoid that the IR radiation heats the X-IFU cryogenic detector and to protect the WFI detector from UV photons. Previous experience on XMM filters recommends to employ bilayer membrane consisting of aluminum deposited on polyimide. In this work, we use the X-ray Photoelectron Spectroscopy (XPS) to quantify the native aluminum oxide thickness that affects the spectral properties of the filter. The estimation of the oxide thickness of the prototype filter for ATHENA is a considerable information for the conceptual design of the filters.
Spectroscopic performance of DEPFET active pixel sensor prototypes suitable for the high count rate Athena WFI detector
Johannes Müller-Seidlitz, Robert Andritschke, Alexander Bähr, et al.
The focal plane of the WFI of Athena consists of two sensors. One features a large field of view of 40' X 40' and one is forseen to be used for bright point like sources. Both parts base on DEPFET active pixel sensors. To fulfil the count rate requirement for the smaller sensor of less than 1% pile-up for a one Crab source it has to have a sufficient high frame rate. Since therefore the readout becomes a large fraction of the total photon integration time, the probability of measurements with incomplete signals increases. A shutter would solve the problem of these so called misfits but is not in agreement with the required high throughput of more than 80%. The Infinipix design has implemented a storage in addition to separate the collection and the readout of the charges without discarding them. Its working principle was successfully shown by Bähr et al.1 on single pixel level. For the further development three layout variants were tested on a 32 X 32 pixel array scale. The measurements of the spectroscopic performance show very promising results even for the intended readout speed for the Athena WFI of 2:5 μs per sensor row. Although, there are still layout and technology improvements necessary to ensure the reliability needed for space missions. In this paper we present the measurement results on the comparison of the three prototype layout variants.
The filter and calibration wheel for the ATHENA wide field imager
M. Rataj, S. Polak, T. Palgan, et al.
The planned filter and calibration wheel for the Wide Field Imager (WFI) instrument on Athena is presented. With four selectable positions it provides the necessary functions, in particular an UV/VIS blocking filter for the WFI detectors and a calibration source. Challenges for the filter wheel design are the large volume and mass of the subsystem, the implementation of a robust mechanism and the protection of the ultra-thin filter with an area of 160 mm square. This paper describes performed trade-offs based on simulation results and describes the baseline design in detail. Reliable solutions are envisaged for the conceptual design of the filter and calibration wheel. Four different variant with different position of the filter are presented. Risk mitigation and the compliance to design requirements are demonstrated.
Poster Session: Gamma
icon_mobile_dropdown
Ex luna, scientia: lunar occultation as a paradigm for nuclear astrophysics
Richard S. Miller, David J. Lawrence, Patrick N. Peplowski, et al.
Next-generation nuclear astrophysics investigations must address a demanding set of requirements to probe the matter and energy life-cycle in our Galaxy and throughout the Cosmos. Enhanced flux sensitivity and (near) all-sky monitoring are just two of these requirements; cost effectiveness and other programmatic restrictions pose additional challenges. These competing goals can be addressed with a paradigm change, i.e. performing investigations from lunar orbit and utilizing a new detection and imaging technique. We report on our development of the Moon as a platform for nuclear astrophysics utilizing the Lunar Occultation Technique (LOT). Here source fluxes are temporally modulated as they are repeatedly occulted by the Moon; the modulation, as observed by a suitably configured instrument in lunar orbit, enables the detection, imaging, and characterization of both point- and extended-sources, narrow-line and broadband sources. Key benefits include maximizing the ratio of sensitive-to-total deployed mass and the operational simplicity relative to other detection schemes. A mission based on the LOT, the Lunar Occultation Explorer (LOX), will be the first to employ occultation as the principle method to characterize the intensity, variability, and spectra of detected sources.
GAMCOTE: a prototype for an advanced Compton Telescope
N. de Séréville, V. Tatischeff, P. Laurent, et al.
Astronomy in the MeV gamma-ray band (0.1 - 100 MeV) holds a rich promise for elucidating many fundamental questions concerning the most violent cosmic phenomena. The next generation of gamma-ray space instrument could be a Compton and pair-creation telescope made of two main parts: a silicon tracker optimized for Compton scattering of cosmic gamma rays and a calorimeter that absorbs the scattered photons. We present here the first results of GAMCOTE, a GAMma-ray COmpton TElescope prototype which includes thick double sided silicon strip detectors coupled to a LaBr3:Ce crystal read by a 64 multi-anode photomultiplier tube.
Experimental verification of the HERD prototype at CERN SPS
Yongwei Dong, Zheng Quan, Junjing Wang, et al.
The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic light house program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. Beam test with a HERD prototype, to verify the HERD specifications and the reading out method of wavelength shifting fiber and image intensified CCD, was taken at CERN SPS in November, 2015. The prototype is composed of an array of 5*5*10 LYSO crystals, which is 1/40th of the scale of HERD calorimeter. Experimental results on the performances of the calorimeter are discussed.
PANGU: a wide field gamma-ray imager and polarimeter
X. Wu, R. Walter, M. Su, et al.
PANGU (the PAir-productioN Gamma-ray Unit) is a gamma-ray telescope with a wide field of view optimized for spectro-imaging, timing and polarization studies. It will map the gamma-ray sky from 10 MeV to a few GeV with unprecedented spatial resolution. This window on the Universe is unique to detect photons produced directly by relativistic particles, via the decay of neutral pions, or the annihilation or decay light from anti-matter and the putative light dark matter candidates. A wealth of questions can be probed among the most important themes of modern physics and astrophysics. The PANGU instrument is a pair-conversion gamma-ray telescope based on an innovative design of a silicon strip tracker. It is light, compact and accurate. It consists of 100 layers of silicon micro-strip detector of 80 x 80 cm2 in area, stacked to height of about 90 cm, and covered by an anticoincidence detector. PANGU relies on multiple scattering effects for energy measurement, reaching an energy resolution between 30-50% for 10 MeV – 1 GeV. The novel tracker will allow the first polarization measurement and provide the best angular resolution ever obtained in the soft gamma ray and GeV band.
Gamma ray spectrometer for future Mars mission: design concept and simulation study
S. K. Goyal, D. Banerjee, S. Vadawale, et al.
One of the basic keys to understand the evolution and formation of any planet is the knowledge of the elemental composition of its surface. Gamma spectroscopy on Mars orbiter provides a unique opportunity to measure the elemental composition of its surface, with an atmosphere thin enough to allow detection of gamma rays produced from the near surface rock and soil materials. We are developing gamma ray spectrometer using High Purity Germanium (HPGe) detector for future Mars orbiter mission. The scientific objective of the instrument is to map the naturally occurring radioactive elements (Th, U, and K) and other major elements (Fe, Mg, Cl, Al, Si, S, Mg, Cl) over the entire Martian surface with a spatial resolution of better than 250 km. Gamma ray spectrometer will also have Anti - Coincidence Shield (ACS) detector for background subtraction from the surrounding material. This paper gives the details of the GEANT4 simulation, carried out to study the design requirements for a gamma ray spectrometer for a future Mars orbiter mission. This includes the selection of the size of HPGe detector, selection of the detector material and thickness for the ACS detector, and attenuation of gamma rays in the Martian atmosphere. Generation of gamma rays from the Martian surface due to Galactic Cosmic Rays (GCR) particles' interaction has also been simulated. Preliminary results from the standard off the shelf detector are also presented here.
A compact and modular x- and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors
R. Campana, F. Fuschino, C. Labanti, et al.
A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.
Characterization of a LaBr3 scintillator with multi-cell Silicon Drift Detector (SDD) readout
F. Fuschino, C. Labanti, R. Campana, et al.
A scintillation gamma-ray detector, composed of a commercial 0.5" thick, 0.5" diameter LaBr3(Ce) crystal coupled to a 7-cell hexagonal Silicon Drift Detector has been developed and tested. The characterization with X-rays and gamma rays is presented and discussed also within the context of the optical properties of the readout system. A final comparison between our results and state of the art is also discussed in order to propose this prototype for astrophysical applications.
The Advanced Scintillator Compton Telescope (ASCOT) balloon project
Peter F. Bloser, Tejaswita Sharma, Jason S. Legere, et al.
We describe a project to develop new medium-energy gamma-ray instrumentation by constructing and flying a balloon-borne Compton telescope using advanced scintillator materials combined with silicon photomultiplier readouts. There is a need in high-energy astronomy for a medium-energy gamma-ray mission covering the energy range from approximately 0.4 - 20 MeV to follow the success of the COMPTEL instrument on CGRO. We believe that directly building on the legacy of COMPTEL, using relatively robust, low-cost, off-the-shelf technologies, is the most promising path for such a mission. Fortunately, high-performance scintillators, such as Lanthanum Bromide (LaBr3), Cerium Bromide (CeBr3), and p-terphenyl, and compact readout devices, such as silicon photomultipliers (SiPMs), are already commercially available and capable of meeting this need. We have conducted two balloon flights of prototype instruments to test these technologies. The first, in 2011, demonstrated that a Compton telescope consisting of an liquid organic scintillator scattering layer and a LaBr3 calorimeter effectively rejects background under balloon-flight conditions, using time-of-flight (ToF) discrimination. The second, in 2014, showed that a telescope using an organic stilbene crystal scattering element and a LaBr3 calorimeter with SiPM readouts can achieve similar ToF performance. We are now constructing a much larger balloon instrument, an Advanced Scintillator Compton Telescope (ASCOT) with SiPM readout, with the goal of imaging the Crab Nebula at MeV energies in a one-day flight. We expect a ~4σ detection up to ~1 MeV in a single transit. We present calibration results of the first detector modules, and updated simulations of the balloon instrument sensitivity. If successful, this project will demonstrate that the energy, timing, and position resolution of this technology are sufficient to achieve an order of magnitude improvement in sensitivity in the mediumenergy gamma-ray band, were it to be applied to a ~1 cubic meter instrument on a long-duration balloon or Explorer platform.
A concept for a soft gamma-ray concentrator using thin-film multilayer structures
Peter F. Bloser, Farzane Shirazi, Olof Echt, et al.
We are investigating the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Following initial investigations conducted at Los Alamos National Laboratory, we have constructed and tested a prototype structure using spin coating combined with magnetron sputtering. We are now investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness more quickly by using magnetron sputter and pulsed laser deposition techniques. We present the latest results of our fabrication and gamma-ray channeling tests, and describe our modeling of the sensitivity of potential concentrator-based telescope designs. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.
In-depth calibration of a Laue lens prototype composed of Fe and Al mosaic crystals
Colin Wade, Nicolas Barrière, John A. Tomsick, et al.
The Laue lens is a developing technology for focusing soft gamma-rays, that is based on the principle of Bragg diffraction. A suitable arrangement of diffracting crystals is used to concentrate a set of parallel incoming photons onto a common focal spot. In late 2014, the Laue lens assembly station (LLAS) at UC Berkeley was used to construct a prototype lens segment, consisting of 48 5 x 5mm2 crystals - 36 iron and 12 aluminium. The segment is composed of 8 partial rings, each of which is aligned to diffract an energy between 90 and 130 keV. In December 2015 the prototype was tested and calibrated using the LLAS and results are presented here. The crystal mounting speed, accuracy of crystal position and orientation, and crystal reflectivity are addressed.
Poster Session: Optics
icon_mobile_dropdown
Multilayer coating of XTP telescope mirrors
Li Jiang, Runze Qi, Yang Yang, et al.
We present the coating of depth-graded W/Si multilayers on the thin glass substrates for telescopes in X-ray timing and polarization mission. The multilayer consists of several hundred bilayers in an optimized graded power law design with stringent requirements on uniformity and interface width. We introduce the details of the planar magnetron sputtering facility including the optimization of the deposition process. Results are presented on the uniformity, interface width, reflectivity and the fabrication of a 200-bilayers depth graded multilayer working at hard X-ray energies.
X-ray mirror module analytical design from field of view requirement and stray light tolerances
The design of an X-ray mirror module is a critical issue. In general, the design depends on requirements such as the effective area on-axis, the angular resolution, and the field of view, meant as the angular diameter at which the effective area halves the on-axis one. One has also to come to terms with constraints such as the maximum mass and size allocated in the spacecraft, and the mirror module design consists of fulfilling all these requirements by populating the module with decreasing diameters until the total effective area on-axis is reached without exceeding the mass limit. However, the separation between consecutive shells has to be properly chosen, to avoid excessive obstruction off-axis that would limit the field of view. We already know, in fact, that it is possible to analytically determine a diameter population that is obstruction-free within the field of view. Even though this solution enhances the off-axis effective area, it is not always optimal because it often leaves too much spacing for stray light. The optimal choice for the spacing should hence be the necessary and sufficient one to allow for the required field of view; but, while the computation of the total vignetting from the spacing of mirrors in the module can be done by ray-tracing, the inverse problem is difficult because it should be approached by repeated attempts. Fortunately, the geometric vignetting of a mirror shell can be analytically determined as a function of the off-axis angle and the obstruction parameter, and the expression can be solved for the mirror shell spacing in order to set the field of view to the desired value. In this paper we show how this can be done and how the residual stray light contamination can be computed analytically.
Cold and Hot Slumped Glass Optics with interfacing ribs for high angular resolution x-ray telescopes
The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, e.g. the approved Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5’’ HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration and then stacked in a Wolter-I configuration, through interfacing ribs. The latest advancements in the production of thin glass substrates may allow a great simplification of this process, avoiding the preforming step via hot slumping. In fact, the strength and the flexibility of glass foils with thickness lower than 0.1 mm allow their bending up to very small radius of curvature without breaking. In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we present the results obtained on several prototypes that have been assembled with different integration approaches.
Development of low-stress Iridium coatings for astronomical x-ray mirrors
Thorsten Döhring, Anne-Catherine Probst, Manfred Stollenwerk, et al.
Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.
Monte Carlo simulations of soft proton flares: testing the physics with XMM-Newton
Low energy protons (< 100 - 300 keV) in the Van Allen belt and the outer regions can enter the field of view of X-ray focusing telescopes, interact with the Wolter-I optics, and reach the focal plane. The funneling of soft protons was discovered after the damaging of the Chandra/ACIS Front-Illuminated CCDs in September 1999 after the first passages through the radiation belt. The use of special filters protects the XMM-Newton focal plane below an altitude of 70000 km, but above this limit the effect of soft protons is still present in the form of sudden ares in the count rate of the EPIC instruments that can last from hundreds of seconds to hours and can hardly be disentangled from X-ray photons, causing the loss of large amounts of observing time. The accurate characterization of (i) the distribution of the soft proton population, (ii) the physics interaction at play, and (iii) the effect on the focal plane, are mandatory to evaluate the background and design the proton magnetic diverter on board future X-ray focusing telescopes (e.g. ATHENA). Several solutions have been proposed so far for the primary population and the physics interaction, however the difficulty in precise angle and energy measurements in laboratory makes the smoking gun still unclear. Since the only real data available is the XMM-Newton spectrum of soft proton flares in orbit, we try to characterize the input proton population and the physics interaction by simulating, using the BoGEMMS framework, the proton interaction with a simplified model of the X-ray mirror module and the focal plane, and comparing the result with a real observation. The analysis of ten orbits of observations of the EPIC/pn instrument show that the detection of flares in regions far outside the radiation belt is largely influenced by the different orientation of the Earth's magnetosphere respect with XMM-Newton'os orbit, confirming the solar origin of the soft proton population. The Equator-S proton spectrum at 70000 km altitude is used for the proton population entering the optics, where a combined multiple and Firsov scattering is used as physics interaction. If the thick filter is used, the soft protons in the 30-70 keV energy range are the main contributors to the simulated spectrum below 10 keV. We are able to reproduce the proton vignetting observed in real data-sets, with a ~ 50% decrease from the inner to the outer region, but a maximum flux of ~ 0:01 counts cm2 s-1 keV-1 is obtained below 10 keV, about 5 times lower than the EPIC/MOS detection and 100 times lower than the EPIC/pn one. Given the high variability of the are intensity, we conclude that an average spectrum, based on the analysis of a full season of soft proton events is required to compare Monte Carlo simulations with real events.
Alignment and distortion-free integration of lightweight mirrors into meta-shells for high-resolution astronomical x-ray optics
Kai-Wing Chan, William W. Zhang, Mark J. Schofield, et al.
High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1” and bonding error 2” can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole “meta-shell”.
Indirect slumping of D263 glass on Fused Silica mould
Laura Proserpio, Mingwu Wen, Elias Breunig, et al.
The Slumped Glass Optic (SGO) group of the Max Planck Institute for Extraterrestrial physics (MPE) is studying the indirect slumping technology for its application to X-ray telescope manufacturing. Several aspects of the technology have been analyzed in the past. During the last months, we concentrated our activities on the slumping of Schott D263 glass on a precise machined Fused Silica mould: The concave mould was produced by the Italian company Media Lario Technologies with the parabola and hyperbola side of the typical Wolter I design in one single piece. Its shape quality was estimated by optical metrology to be around 6 arcsec Half Energy Width (HEW) in double reflection. The application of an anti-sticking Boron Nitride layer was necessary to avoid the adhesion of the glass on the mould during the forming process at high temperatures. The mould has been used for the slumping of seven mirror segments 200 mm long, 100 mm wide, and with thickness of 200 μm or 400 μm. The influence of the holding time at maximum temperature was explored in this first run of tests. The current results of the activities are described in the paper and plans for further investigations are outlined.
Analysis on the use of vacuum oven for the indirect slumping of glass x-ray mirror segments
Emanuel Madarasz, Laura Proserpio, Elias Breunig, et al.
The Max-Planck-Institute for Extraterrestrial Physics (MPE) is involved in the investigation and optimization of the indirect slumping technique for the manufacturing of thin glass mirror segments to be assembled in lightweight X-ray telescopes. During the last year, we started to analyze the influence of vacuum environment on the results of this thermal forming process. The realization of slumping in vacuum offers theoretically several advantages, like the absence of air between the glass and the mold and a cleaner process chamber. Furthermore, the heat exchange is different with respect to a standard air-oven and this might have positive effects during the important heating and cooling phases of the process. All these aspects will be considered in the paper and the current status in the development of the MPE vacuum-slumping approach will be outlined.
Development of an x-ray telescope using the carbon fiber reinforced plastic
Hisamitsu Awaki, Satoshi Sugita, Keiji Ogi, et al.
We are developing an X-ray mirror using the CFRP as substrate in order to improve the angular resolution of tightlynested type X-ray telescope on board future X-ray satellites. We have fabricated Wolter-I designed monolithic CFRP mirrors and made improvements in the fabrication process. In the updated CFRP mirror, the half-power width of the reflection image by optical measurement was 0.8 arc-minutes on average. The measurement of the characterization of the updated CFRP mirrors at ISAS X-ray beam-line was performed in December 2015, and confirmed that the imaging quality of the CFRP mirror changed with increasing duration in vacuum chamber. We also present a current status of development of more intricate-structure CFRP substrate such as four-stage X-ray optics.
On the alignment and focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
Patrick Champey, Amy Winebarger, Ken Kobayashi, et al.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 Å (0.5 - 2.0 keV energies) in the solar atmosphere. For the first time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mÅ spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a finite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being finalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) - a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.
Design of a medium size x-ray mirror module based on thin glass foils
The hot slumping glass technology for X-ray mirror is under development and in the last years the results have been improved. Nustar is the first X-ray telescope based on slumped glass foils and it benefit is the low cost compared to the direct polishing of glass. With the slumping technique it is possible to maintain the glass mass to low values with respect to the direct polishing, but in general the angular resolution is worst. A further technique based on glass is the cold shaping of foils. The improved capabilities of manufacturing thin glass foils, pushed by the industrial application for screens, open new possibilities for X-ray mirror. The increase in strength of thin tempered glasses, the reduction of thickness errors and the good roughness of flat foils are potentially great advantages. In this paper a design of a mediumsize X-ray mirror module is analysed. It is based on integration of glass foils, stacked directly on a supporting structure that is part of the X-ray telescope using stiffening ribs as spacer between foils. The alignment of each stack is performed directly into the integration machine avoiding the necessity of the alignment of different stacked modules. A typical module (glass optic and metallic structure) provides an effective area of 10 cm2/kg at 1 keV (with a mass of about 50- 100 kg and a focal length of 10 m).
Simulating x-ray telescopes with McXtrace: a case study of ATHENA’s optics
Desiree D. M. Ferreira, Erik B. Knudsen, Niels J. Westergaard, et al.
We use the X-ray ray-tracing package McXtrace to simulate the performance of X-ray telescopes based on Silicon Pore Optics (SPO) technologies. We use as reference the design of the optics of the planned X-ray mission Advanced Telescope for High ENergy Astrophysics (ATHENA) which is designed as a single X-ray telescope populated with stacked SPO substrates forming mirror modules to focus X-ray photons. We show that is possible to simulate in detail the SPO pores and qualify the use of McXtrace for in-depth analysis of in-orbit performance and laboratory X-ray test results.
Ion beam figuring of thin glass plates: achievements and perspectives
M. Civitani, M. Ghigo, J. Hołyszko, et al.
Different hot slumping techniques have been developed in the last decade to shape thin glass plates in Wolter-I configuration for high angular resolution x-ray telescopes. The required high quality surface characteristic, both in terms of figure error and of micro-roughness, is challenging and the best results achieved so far are compatible with an HEW of few arcseconds. In order to push forward the technology enabling x-ray optics with final HEW below 1 arcsec, we investigate the ion beam figuring as a deterministic technology which can correct the low frequency components of the residual error directly on thin glasses.

In this paper we present the tests performed so far, giving a first assessment on the deterministic process definition. In particular, we report on the results achieved on flat samples of D263 and Eagle glass, focusing on the removal function characterization, the micro-roughness evolution and the plate shape variation.
Adjustable integration molds for X-ray optics with cold shaping: requirements and conceptual design
The cold shaping of thin substrates is a worthwhile process for the realization of x-ray optics. The technique is based on the usage of integration molds to keep the substrate in the theoretical shape while it is fixed to a structure, which will limit at the desired level the residual spring back of the plate after the release of the constrain. Since some years, this process is in use at INAF/OAB to realize Slumped Glass Optics mirror modules by means of interfacing ribs. In principle, the optical design at a given focal length of each mirror shell is different for each radius and therefore several integration molds are necessary for an assembly of plates. Depending on the optical design of the mirror module to be realized and on the desired optical performances of the system, some simplifications can be introduced in order to reduce the number of integration molds to be realized. Nevertheless the most cost-efficient solution to the problem is to realize an adjustable integration mold pair that can be shaped to the different theoretical configurations needed for the plates. This is advantageous not only in terms of number of molds and parts to be realized but also for the reduction of integration time thanks to the simplification of the process procedure. In this paper we describe the conceptual design of the system, describing its optical design, analysing its requirements and we report on the achieved results.
Design and analysis of an x-ray mirror assembly using the meta-shell approach
Ryan S. McClelland, Joseph A. Bonafede, Timo T. Saha, et al.
Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in highenergy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton.

The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.
Development of manufacture of mirror glass substrate for x-ray timing and polarization observatory
Zhenbo Wei, Bing Ge, Xin Jin, et al.
In China, X-ray timing and polarization (XTP) observatory will have a collection area of 9,000 cm2 at 2~6 keV. The observatory consists of five identical hard X-ray telescopes and ten identical soft X-ray telescopes. The angular resolution is about 1 arcminute of HPD (half-power diameter). Each telescope consists of a large number of mirror segments precisely assembled together. Our development of the mirror glass substrate is presented in this manuscript. These substrates are produced by slumping commercially available thin glass sheets. Here, we report on our work of manufacturing these substrates. The optimization of the slumping procedure is described and optimal procedure parameters are reported. The figure error of slumped glass substrates was measured by a laser scanner and an interferometer with CGH. The measurement demonstrated that the figure error is lower enough for the construction of XTP telescopes.