Proceedings Volume 9900

Quantum Optics

cover
Proceedings Volume 9900

Quantum Optics

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 15 July 2016
Contents: 10 Sessions, 22 Papers, 28 Presentations
Conference: SPIE Photonics Europe 2016
Volume Number: 9900

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9900
  • Atom Sensors I
  • Quantum Technologies
  • Atom Sensors II
  • Quantum Communications I
  • Quantum Communications II
  • QT Applications and Instruments I
  • QT Applications and Instruments II
  • Quantum Information and Instruments
  • Poster Session
Front Matter: Volume 9900
icon_mobile_dropdown
Front Matter: Volume 9900
This PDF file contains the front matter associated with SPIE Proceedings Volume 9900 including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
Atom Sensors I
icon_mobile_dropdown
Development of a strontium optical lattice clock for the SOC mission on the ISS
S. Origlia, S. Schiller, M. S. Pramod, et al.
The ESA mission “Space Optical Clock” project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than 1 × 10-17 uncertainty and 1 × 10-15 τ-1/2 instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below 1 × 10-15 τ-1/2 and fractional inaccuracy 5 × 10-17. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in 88Sr was observed with linewidth as small as 9 Hz.
Development of compact cold-atom sensors for inertial navigation
B. Battelier, B. Barrett, L. Fouché, et al.
Inertial sensors based on cold atom interferometry exhibit many interesting features for applications related to inertial navigation, particularly in terms of sensitivity and long-term stability. However, at present the typical atom interferometer is still very much an experiment—consisting of a bulky, static apparatus with a limited dynamic range and high sensitivity to environmental effects. To be compliant with mobile applications further development is needed. In this work, we present a compact and mobile experiment, which we recently used to achieve the first inertial measurements with an atomic accelerometer onboard an aircraft. By integrating classical inertial sensors into our apparatus, we are able to operate the atomic sensor well beyond its standard operating range, corresponding to half of an interference fringe. We report atom-based acceleration measurements along both the horizontal and vertical axes of the aircraft with one-shot sensitivities of 2.3 × 10−4 g over a range of ∼ 0.1 g. The same technology can be used to develop cold-atom gyroscopes, which could surpass the best optical gyroscopes in terms of long-term sensitivity. Our apparatus was also designed to study multi-axis atom interferometry with the goal of realizing a full inertial measurement unit comprised of the three axes of acceleration and rotation. Finally, we present a compact and tunable laser system, which constitutes an essential part of any cold-atom-based sensor. The architecture of the laser is based on phase modulating a single fiber-optic laser diode, and can be tuned over a range of 1 GHz in less than 200 μs.
Continuous cold atom inertial sensor with 1 nrad.s^-1 rotation stability (Conference Presentation)
Remi Geiger, Indranil Dutta, Denis Savoie, et al.
We report the first operation of a cold atom inertial sensor without dead time. Dead times in conventional cold atom interferometers originate from the preparation of a cold atom source prior to its injection in the interferometer and where information on inertial signals is lost. We use a sequence where we simultaneously prepare a cold atom source and operate a light pulse atom interferometer to circumvent the dead time limitation. Therefore the sensor continuously captures all the dynamics with respect to an inertial frame. We show that the continuous operation does not degrade the sensitivity and stability of the atom interferometer, by demonstrating a rotation sensitivity level of less than 1 nrad/s after 10 000 s of integration time. Such a sensitivity level improves previous results by more than an order of magnitude and opens applications of cold atom gyroscopes in inertial navigation and geophysics.
A new generation of high-performance operational quantum sensors (Conference Presentation)
Jean Lautier-Gaud, Bruno Desruelle, Vincent Ménoret, et al.
After 30 years of academic research in cold atom sciences, intensive developments are being conducted to improve the compactness and the reliability of experimental set-ups in order to transfer such devices from laboratory-based research to an operational utilization outside of the laboratory. We will present the long-lasting developments that we have been carrying to provide the first industrial cold-atom absolute gravimeter and the first industrial cold-atom atomic clock. We will present in detail the principles of operation and the main features of our instruments. Their performances in terms of sensitivity, stability and accuracy and the latest results they achieved will be reviewed. We will then discuss their use to support other research activities. One of the key technology elements of such instruments that need to be addressed is the laser system used to cool down and manipulate the atoms. A specific focus on our latest developments in this area in terms of performances will be proposed.
Towards rotation sensing with a single atomic clock
Thomas Fernholz, Robin Stevenson, Michael R. Hush, et al.
We discuss a scheme to implement a gyroscopic atom sensor with magnetically trapped ultra-cold atoms. Unlike standard light or matter wave Sagnac interferometers no free wave propagation is used. Interferometer operation is controlled only with static, radio-frequency and microwave magnetic fields, which removes the need for interferometric stability of optical laser beams. Due to the confinement of atoms, the scheme may allow the construction of small scale portable sensors. We discuss the main elements of the scheme and report on recent results and efforts towards its experimental realization.
MIGA: combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy
B. Canuel, S. Pelisson, L. Amand, et al.
The Matter-Wave laser Interferometer Gravitation Antenna, MIGA, will be a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods for geophysics for the characterization of spatial and temporal variations of the local gravity field and will also be a demonstrator for future low frequency Gravitational Wave (GW) detections. MIGA will enable a better understanding of the coupling at low frequency between these different signals. The detector will be installed underground in Rustrel (FR), at the “Laboratoire Souterrain Bas Bruit” (LSBB), a facility with exceptionally low environmental noise and located far away from major sources of anthropogenic disturbances. We give in this paper an overview of the operating mode and status of the instrument before detailing simulations of the gravitational background noise at the MIGA installation site.
Quantum Technologies
icon_mobile_dropdown
The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper)
K. Bongs, V. Boyer, M. A. Cruise, et al.
The UK National Quantum Technology Hub in Sensors and Metrology is one of four flagship initiatives in the UK National of Quantum Technology Program. As part of a 20-year vision it translates laboratory demonstrations to deployable practical devices, with game-changing miniaturized components and prototypes that transform the state-of-the-art for quantum sensors and metrology. It brings together experts from the Universities of Birmingham, Glasgow, Nottingham, Southampton, Strathclyde and Sussex, NPL and currently links to over 15 leading international academic institutions and over 70 companies to build the supply chains and routes to market needed to bring 10–1000x improvements in sensing applications. It seeks, and is open to, additional partners for new application development and creates a point of easy open access to the facilities and supply chains that it stimulates or nurtures.
Recent progress of quantum communication in China (Conference Presentation)
Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.
Atom Sensors II
icon_mobile_dropdown
A Rydberg impurity in a dense background gas (Conference Presentation)
Tara Liebisch, Michael Schlagmüller, Felix Engel, et al.
A single Rydberg atom impurity excited in a BEC is a system that can be utilized to measure the quantum mechanical properties of electron - neutral scattering andthe electron probability density of a Rydberg atom. The Rydberg electron – neutral atom scattering process, is a fundamental scattering process, which can be described via Fermi’s pseudopotential as V{vec{r},vec{R} )=2pi textit{a}[k(R)]delta^{(3)}(vec{r}-vec{R}). The scattering length is dependent on the momentum of the Rydberg electron, and therefore is dependent on the separation of the Rydberg electron from the ion core. At the classical outermost turning point of the electron, it has the slowest momentum leading to s-wave dominated scattering potentials 10’s of MHz in depth for n<40 (Greene et al. PRL 85 2458 (2000), Bendkowsky et al. PRL 105 163201 (2010)). In alkali atoms there is a shape resonance for p-wave scattering, which becomes relevant at ion-neutral separations of ~75nm (I.I. Fabrikant J.Phys B 19, 1527 (1985)). This shape resonance potential is several GHz deep, spanning the energy level spacing between n and n-1 principal quantum numbers. At high BEC densities of 5x10^14cm-3 the nearest neighbor spacing is less than 70nm. A Rydberg atom excited within a BEC, is an excitation of the Rydberg atom and all N neutral atoms located within the Rydberg orbit, described as nS+N x 5S. The nS+N x 5S state is density shifted from the Rydberg resonance. Not only does the distribution of atoms within the Rydberg orbit lead to a density shift, but, at these high densities, atoms excited in the nS+N x 5S state near the shape resonance potential cause large perturbations to the density shift, leading to a line broadening. Therefore the spectroscopic line shape of a Rydberg atom in a BEC allows us to probe the theoretically calculated p-wave shape resonance potential. Furthermore, we can observe and measure the dynamics of neutrals excited in the nS+N x 5S state. In the ultracold regime of a BEC, the background neutral atoms within the Rydberg orbit have kinetic energies of a few kHz, and experience large forces due to the GHz-deep shape resonance potentials. An atom dragged into this deep potential leads to an exothermic state-changing collision. We measure the timescale of this state-changing collision and compare to semi-classical calculations of the neutral atoms evolving in the potential of the two-particle nS+ 5S system. We also measure the change in energy from the original nS state to the product state, (n-4)L (L<3). On time scales shorter than the state-changing collisions, which for n<100 is on the order of 10 microseconds, the neutral atoms will evolve and collect in the shallower electron-neutral potentials, which mimic the electron probability density of the Rydberg atom.With n<100, the Rydberg atom has a diameter greater than 2 micrometers. With an imaging system with <1 micrometer resolution, we expect to observe a macroscopic change in the density profile of the BEC indicating an nS versus nD Rydberg state. The BEC would serve as a contrast agent for observing textbook atomic wavefunctions (Karpiuk et al. New Journal of Physics 17, 053046 (2015)).
Optical atomic magnetometry for magnetic induction tomography of the heart
Cameron Deans, Luca Marmugi, Sarah Hussain, et al.
We report on the use of radio-frequency optical atomic magnetometers for magnetic induction tomography measurements. We demonstrate the imaging of dummy targets of varying conductivities placed in the proximity of the sensor, in an unshielded environment at room-temperature and without background subtraction. The images produced by the system accurately reproduce the characteristics of the actual objects. Furthermore, we perform finite element simulations in order to assess the potential for measuring low-conductivity biological tissues with our system. Our results demonstrate the feasibility of an instrument based on optical atomic magnetometers for magnetic induction tomography imaging of biological samples, in particular for mapping anomalous conductivity in the heart.
Quantum Communications I
icon_mobile_dropdown
Standardization of quantum technologies and QKD activities within ETSI (Conference Presentation)
In order to establish new ICT technologies successfully on the market it is essential to build trust within any potential users. This is especially true for technologies which are based upon paradigms that are not yet familiar to these users, such as quantum technologies. Technical standards are an excellent means to offer a certain degree of legal reliability and technical interoperability that is required by industry for commercial take up. While such standards on the one hand must be clear enough to provide strict rules for implementers, on the other hand they also must remain flexible enough to not restrict progress in further research and development on the standardized technology. Hence such standards have to be produced by a wide variety of stakeholders taking into account all their different needs. The paper will provide some insight into the general mechanisms of standardization and their relation to quantum technologies. Alongside with the relevance of standardization as an enabler for certification of quantum based technologies it will explain its potential for securing intellectual property. In its first part paper will concentrate on the advantages of standardization and discuss fears some of the stakeholders share, in detail. The second part will focus on the technical work going on in ETSI in relation to quantum technologies. In 2008 ETSI created a standards work group on Quantum Key Distribution, the ETSI ISG QKD and more recently a group on Quantum-Safe Cryptography, the ETSI ISG QSC. A significant part of the technical work of these groups has already been published and will be introduced in the following. However a big share of work is still ongoing and lot more is planned for the future, as are continuous revisions and updates of the published specifications. This standardization work covers several levels: It starts of by problem statements in the form of use cases, from which technical requirements can be derived. These requirements then form the base upon which a reference architecture is created. Various different specifications describe in detail components, protocols and interfaces. An ontology is developed in order to guarantee common understanding of the technical terms used in standardization for quantum technologies. Special emphasis is provided to security proofs.
Satellite quantum communication towards GEO distances
Giuseppe Vallone, Daniele Dequal, M. Tomasin, et al.
We report on several experiments of single photon transmission from space to ground realized at the Matera Laser Ranging Observatory (MLRO) of the Italian Space Agency in Matera (Italy). We simulated a source of coherent pulses attenuated to the single photon level by exploiting laser ranging satellites equipped with corner-cube retroreflectors (CCRs). By such technique we report QC with qubits encoded in polarization from low-Earth-orbit (LEO) at distance up to 2500km from the ground station, achieving a low quantum bit error ratio (QBER) for different satellites. The same technique is exploited to demonstrate single photon exchange with a medium-Earth-orbit (MEO) satellite, Lageos-2 at more than 7000 km of distance from the MLRO station. In both experiments the temporal jitter of the received counts is of the order of 1.2ns FWHM due to the intrinsic jitter of the single photon detectors. In order to improve the discrimination of signal from the background and reaching distances corresponding to GEO satellites, we improved the detection scheme by using fast single photon detectors with 40 ps FWHM jitter. We report improved single photon detection jitter from Beacon-C and Ajisai, obtaining 340 ps FWHM in the best case.
Aerospace laser communications technology as enabler for worldwide quantum key distribution
Florian Moll, Harald Weinfurter, Markus Rau, et al.
A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an order of magnitude thereby simplifying its integration into future free-space optical communication links with CubeSats.
Encoding M classical bits in the relative arrival time of dense-coded photons
We present a scheme to encode M extra classical bits to a dense-coded pair of photons. By tuning the delay of an entangled pair of photons to one of 2M time-bins and then applying one of the quantum dense coding protocols, a receiver equipped with a synchronized clock of reference is able to decode M bits (via classical time-bin encoding) + 2 bits (via quantum dense coding). This protocol, yet simple, does not dispense several special features of the used programmable delay apparatus to maintain the coherence of the two-photon state. While this type of time-domain encoding may be thought to be ideally of boundless photonic capacity (by increasing the number of available time-bins), errors due to the environmental noise and the imperfect devices and channel evolve with the number of time-bins.
Quantum Communications II
icon_mobile_dropdown
A long-lived and solid-state quantum memory for photons (Conference Presentation)
Mikael Afzelius
A major challenge in quantum technologies is to build an efficient and long-lived quantum memory, particularly using solid-state devices. I will here report on an experiment where we combine the AFC optical memory with spin-echo techniques to extend the memory time from a few microseconds to about 1 ms, using an Europium-doped crystal. In general the spin-echo technique allows one to control the inhomogeneous spin dephasing which often sets the storage-time limit both in solid-state systems and laser-cooled gases. However, theoretically it is has been argued that spin-echo techniques would be extremely difficult to apply without creating noise in the case of a single quanta stored in a large spin ensemble. We here show how this noise can be limited and demonstrate high signal-to-noise ratio in the output mode when storing pulses at the single-photon level. Furthermore we stored polarization qubits encoded onto weak coherent , with fidelities surpassing a classical storage scheme.
Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling
D. Farfurnik, A. Jarmola, L. M. Pham, et al.
In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ∼ 0.7 ms up to ∼ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the concatenated sequences to demonstrate an immediate improvement of the AC magnetic sensitivity up to a factor of two at 250 kHz. For future work, similar protocols may be used to increase coherence times up to NV-NV interaction time scales, a major step toward the creation of quantum collective NV spin states.
High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)
Lothar Ratschbacher, Jose Gallego, Sutapa Ghosh, et al.
Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. The performance of this novel approach is compared to a more traditional, piezomechanically-actuated resonator that is feedback stabilized to a reference laser based on the Pound-Drever-Hall locking technique. Finally, with the application of single photon interfacing in mind we discuss the issue of fiber-generated background photons in Fiber Fabry-Perot cavities. We believe that, due to their simplicity, compactness and robustness, rigid fiber cavities could be a promising solution for miniaturized, integratable and scalable cavity quantum electrodynamic devices and further applications of FFPC with similar requirements.
Demonstration of a coexistence scheme between polarization-entangled QKD and classical data channels
Florian Hipp, Michael Hentschel, Slavisa Aleksic, et al.
Incorporating single photon links used for quantum communication applications like quantum key distribution is a challenging task. Direct contamination from the strong classical signal and induced Raman scattering easily obscures the weak quantum signal. Generating entangled photons in the O-band might allow the coexistence of classical and quantum signals. We present results demonstrating the feasibility of transmitting entangled photons and strong classical communication signals over the same fiber.
Toward efficient fiber-based quantum interface (Conference Presentation)
Vladimir Soshenko, Vadim V. Vorobyov, Stepan Bolshedvorsky, et al.
NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one “donor” tapered fiber to the “target” clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports, vol. 528, no. 1, p. 1–45, 2013. [2] A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park and M.D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, vol. 450, p. 402–406, 2007. [3] Michael J. Burek , Yiwen Chu, Madelaine S.Z. Liddy, Parth Patel, Jake Rochman , Srujan Meesala, Wooyoung Hong, Qimin Quan, Mikhail D. Lukin and Marko Loncar High quality-factor optical nanocavities in bulk single-crystal diamond, Nature communications 6718 (2014) [4] Tim Schroder, Andreas W. Schell, Gunter Kewes, Thomas Aichele, and Oliver Benson Fiber-Integrated Diamond-Based Single Photon Source, Nano Lett. 2011, 11, 198-202 [5]Lars Liebermeister, et. al. “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center”, Appl. Phys. Lett. 104, 031101 (2014)
QT Applications and Instruments I
icon_mobile_dropdown
Initialization and measurement of nitrogen-vacancy centers in diamond with plasmonic Purcell enhancement
Sigal A. Wolf, Itamar Rosenberg, Ronen Rapaport, et al.
Nitrogen-Vacancy (NV) color centers in diamond have emerged as promising quantum solid-state systems, with applications ranging from quantum information processing to magnetic sensing. One of the most useful properties of NVs is the ability to read their ground-state spin projection optically at room temperature. In this work we consider the effect of the Purcell enhancement on the ability to initialize the NV state and analyze the effect to imperfect initialization on the measurement SNR. We demonstrate that even with feasible initial conditions the combined increase in spontaneous emission (through Purcell enhancement) and in optical excitation could significantly increase the readout SNR.
Coherent two-photon excitation of quantum dots
L. Ostermann, T. Huber, M. Prilmüller, et al.
Single semiconductor quantum dots, due to their discrete energy structure, form single photon and twin photon sources that are characterized by a well-defined frequency of the emitted photons and inherently sub-Poissonian statistics. The single photons are generated through a recombination of an electron-hole pair formed by an electron from the conduction band and a hole from the valence band. When excited to the biexciton state quantum dots can provide pairs of photons emitted in a cascade. It has been shown that this biexciton-exciton cascade can deliver entangled pairs of photons. To achieve a deterministic generation of photon pairs from a quantum dot system one requires exciting it using a two-photon resonant excitation of the biexciton. Particularly, an efficient and coherent excitation of the biexciton requires the elimination of the single exciton probability amplitude in the excitation pulse and reaching the lowest possible degree of dephasing caused by the laser excitation. These two conditions impose contradictory demands on the excitation pulse-length and its intensity. We addressed this problem from a point of view that does not include interaction of the quantum dot with the semiconductor environment. We found an optimized operation regime for the system under consideration and provide guidelines on how to extend this study to other similar systems. In particular, our study shows that an optimal excitation process requires a trade-off between the biexciton binding energy and the excitation laser pulse length.
Free-space single-photon transistor based on Rydberg interaction
Asaf Paris-Mandoki, Hannes Gorniaczyk, Christoph Tresp, et al.
An all-optical transistor working on the single-photon level is implemented using an ultracold atomic cloud as a medium. The interaction mechanism between gate and source photons is achieved by mapping these photons onto strongly interacting Rydberg excitations. Using a single gate photon more than 100 source photons can be switched. As an application of this transistor, we demonstrate nondestructive detection of a single Rydberg atom with a fidelity of 0.79.
Integrated photonics with quantum emitters: a new hybrid integration platform (Conference Presentation)
David J. P. Ellis, Eoin Murray, Thomas Meany, et al.
The creation of a quantum photonic integrated circuit, bringing together quantum light sources; detectors; and elements for routing and modulating the photons; is a fundamental step towards a compact and self-contained quantum information processor. Here we report on the realisation of a new hybrid integration platform for InAs Quantum Dot-based quantum light sources and waveguide-based photonic circuits. In this scheme, GaAs devices containing embedded quantum dots are bonded to a silicon oxynitride waveguide circuit such that the quantum dot emission is coupled to the waveguide mode. The output from the waveguide element is coupled into optical fibre (also bonded to the waveguide chip) and the whole assembly is cooled to cryogenic temperatures. Integrated tuneable Mach-Zehnder interferometers permit on-chip photon routing to be achieved and allow the device to act as a path-encoded qubit preparation device. By utilising one such interferometer as a reconfigurable beam splitter, the single photon nature of the emission was confirmed by a Hanbury Brown and Twiss measurement on chip.
QT Applications and Instruments II
icon_mobile_dropdown
Dating water with trace analysis at the quantum limit (Conference Presentation)
Markus Oberthaler
General dating schemes rely on the radioactive decay of elements. For dating of water the isotope 39Ar is very interesting since it is inert and has a halflife of 265 years, with which is matches the natural timescales of underground and deep ocean circulation. Applying atom optical techniques we could demonstrate that this very rare isotope, which is 15 orders of magnitude less abundant than the stable isotope can be detect one by one.
On-chip RF-to-optical transducer (Conference Presentation)
Anders Simonsen, Yeghishe Tsaturyan, Yannick Seis, et al.
Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system’s behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low-noise detection of electromagnetic signals, including sensitive measurements of magnetic fields in an MRI detector. Suppression of thermomechanical noise is a key feature of electro-optomechanical transducers, and, more generally, hybrid systems involving mechanical degrees of freedom. We have shown that engineering of the phononic density of states allows improved isolation of the relevant mechanical modes from their thermal bath [2], enabling coherence times sufficient to realize quantum-coherent optomechanical coupling. This proves the potential of the employed platform for complex transducers all the way into the quantum regime. References: [1] Bagci et al, Nature 507, 81–85, (06 March 2014) [2] Tsaturyan, et al., Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)
Chipscale optical frequency combs: from soliton physics to coherent communication (Conference Presentation)
Victor Brasch, Michael Geiselmann, Tobias Herr, et al.
In our experiment we use silicon nitride waveguides embedded in silicon dioxide on a silicon chip. The cross section of the waveguide is approximately 1.8µm width by 0.8µm height and the ring resonator has a radius of 120µm. This resonator is coupled to a bus waveguide that is used to couple the continuous wave pump light into the resonator and the light from the resonator out again. The pump laser is an amplified diode laser which provides around 2W of pump power in the bus waveguide on the photonic chip. If the pump light is in resonance with one of the resonances of the resonator we can generate a frequency comb from the pump light via the Kerr nonlinearity of the material. The spacing in between the lines of the frequency comb is close to the free spectral range of the resonator, which is 190 GHz for the resonator used. By tuning the pump laser through the resonance and modulating the power of the pump light we can achieve a stable state with a pulsed-shape waveform circulating inside the microresonator. These states are known as dissipative Kerr soliton states and they are solutions to the Lugiato-Lefever equation, which describes the nonlinear physics of the system. So far they had been experimentally demonstrated in fiber-ring cavities as well as crystalline microresonators. The main benefits of these states for Kerr frequency combs is that they allow for low-noise but broadband frequency combs with low modulation in the spectrum. In our case we report a 3-dB bandwidth of 10THz which is equivalent to sub-30fs pulses inside the resonator. Because of the chosen geometry of the waveguide cross section we also observe an effect which is caused by higher-order dispersion. Higher-order dispersion are terms that describe the dispersion beyond the quadratic group velocity dispersion. In order for dissipative Kerr solitons to form, anomalous group velocity dispersion is required. If higher-order terms are present as well, the soliton can still exist but additional dynamics come into play resulting in so called soliton Cherenkov radiation or a dispersive wave. In our measured spectrum this feature can be easily identified as a local maximum offset from the pump wavelength. In the time domain the soliton Cherenkov radiation manifests itself as an oscillating tail that is attached to the soliton pulse inside the microresonator. Using simulated values for the dispersion and coupled-mode equations to numerically simulate the physics inside the microresonator we can achieve a very good agreement between the experimentally observed and the simulated spectrum. In order to demonstrate that our frequency comb can be used for metrological applications we implement a full stabilization of the frequency comb and achieve a relative stability of 1e-15. Additionally we use the large bandwidth of 2/3 of an octave to implement a 2f-3f-scheme in order to monitor the carrier envelope offset of the frequency comb in a self-referenced manner. In summary we have observed for the first time a soliton-based, broadband frequency comb in integrated microresonators. These frequency combs are perfectly suited for spectroscopy and data communication applications.
Quantum Information and Instruments
icon_mobile_dropdown
Quantum noise in energy-efficient slow light structures for optical computing: sqeezed light from slow light
Due to their strong light confinement, waveguides with optical nonlinearities may be a promising platform for energy-efficient optical computing. Slow light can enhance a waveguide’s effective nonlinearity, which could result in devices that operate in low-power regimes where quantum fluctuations are important, and may also have quantum applications including squeezing and entanglement generation. In this manuscript, slow-light structures based on the Kerr (χ(3)) nonlinearity are analyzed using a semi-classical model to account for the quantum noise. We develop a hybrid split-step / Runge-Kutta numerical model to compute the mean field and squeezing spectrum for pulses propagating down a waveguide, and use this model to study squeezing produced in optical waveguides. Scaling relations are explored, and the benefits and limitations of slow light are discussed in the context of squeezing.
Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)
Benjamin Kambs, Jan Kettler, Matthias Bock, et al.
Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.
Rydberg excitation of trapped strontium ions (Conference Presentation)
Markus Hennrich, Gerard Higgins, Fabian Pokorny, et al.
Trapped Rydberg ions are a novel approach for quantum information processing [1,2]. This idea joins the advanced quantum control of trapped ions with the strong dipolar interaction between Rydberg atoms. For trapped ions this method promises to speed up entangling interactions [3] and to enable such operations in larger ion crystals [4]. We report on the first experimental realization of trapped strontium Rydberg ions. A single ion was confined in a linear Paul trap and excited to Rydberg states (25S to 37S) using a two-photon excitation with 243nm and 308nm laser light. The transitions we observed are narrow and the excitation can be performed repeatedly which indicates that the Rydberg ions are stable in the ion trap. Similar results have been recently reported on a single photon Rydberg excitation of trapped calcium ions [5]. The tunability of the 304-309nm laser should enable us to excite our strontium ions to even higher Rydberg levels. Such highly excited levels are required to achieve a strong interaction between neighboring Rydberg ions in the trap as will be required for quantum gates using the Rydberg interaction. References [1] M. Müller, L. Liang, I. Lesanovsky, P. Zoller, New J. Phys. 10, 093009 (2008). [2] F. Schmidt-Kaler, et al., New J. Phys. 13, 075014 (2011). [3] W. Li, I. Lesanovsky, Appl. Phys. B 114, 37-44 (2014). [4] W. Li, A.W. Glaetzle, R. Nath, I. Lesanovsky, Phys. Rev. A 87, 052304 (2013). [5] T. Feldker, et al., arXiv:1506.05958
Electro-optic bandwidth manipulation of quantum light (Conference Presentation)
Michal Karpinski, Michal Jachura, Laura J. Wright, et al.
Spectral-temporal manipulation of optical pulses has enabled numerous developments within a broad range of research topics, ranging from fundamental science to practical applications. Within quantum optics spectral-temporal degree of freedom of light offers a promising platform for integrated photonic quantum information processing. An important challenge in experimentally realizing spectral-temporal manipulation of quantum states of light is the need for highly efficient manipulation tools. In this context the intrinsically deterministic electro-optic methods show great promise for quantum applications. We experimentally demonstrate application of electro-optic platform for spectral-temporal manipulation of ultrashort pulsed quantum light. Using techniques analogous to serrodyne frequency shifting we show active spectral translation of few-picosecond single photon pulses by up to 0.5 THz. By employing an approach based on an electro-optic time lens we demonstrate up to 6-fold spectral compression of heralded single photon pulses with efficiency that enables us to significantly increase single photon flux through a narrow bandpass filter. We realize the required temporal phase manipulation by driving a lithium niobate waveguided electrooptic modulator with 33 dBm sinusoidal RF field at the frequency of either 10 GHz or 40 GHz. We use a phase lock loop to temporally lock the RF field to the 80 MHz repetition rate of approximately 1 ps long optical pulses. Heralded single photon wavepackets are generated by means of spontaneous parametric down-conversion in potassium dihydrogen phosphate (KDP) crystal, which enables preparation of spectrally pure single photon wavepackets without the need for spectral filtering. Spectral shifting is achieved by locking single-photon pulses to the linear slope of sinusoidal 40 GHz RF phase modulation. We verify the spectral shift by performing spectrally resolved heralded single photon counting, using frequency-to-time conversion by means of a highly dispersive chirped fiber Bragg grating. We verify the non-classicality of spectrally shifted single photons by measuring high-visibility Hong-Ou-Mandel interference using a reference single photon pulse. Spectral compression is based on the time lens principle, which requires locking optical pulses to approximately quadratic region of sinusoidal phase modulation. We utilize both 10 GHz and 40 GHz RF driving frequencies. Bandwidth compression is achieved by chirping the single photon pulse using an appropriate length of single-mode fibre and subsequently subjecting it to the action of the time lens. We verify spectral compression directly using the aforementioned spectrally-resolved heralded single photon counting method. We achieve 3-fold spectral compression of 2 nm bandwidth single photon pulses using 40 GHZ modulation frequency, and 6-fold spectral compression of 0.9 nm bandwidth single photon pulses using 10 GHz modulation frequency. Overall transmission of our set-up exceeding 30% enables practical usability of our spectral compression method which we demonstrate experimentally by showing an increased photon flux through a narrowband filter. Our results present an important contribution towards implementing quantum information processing in the spectral-temporal degree of freedom of a photon. In the context of quantum networks they present an enabling tool towards efficient photonic interfacing of different quantum information processing platforms.
Preparation of 5.6dB vacuum squeezing on 795nm rubidium D1 line via an OPO (Conference Presentation)
Junmin Wang, Yashuai Han, Xin Wen, et al.
We report on experimental preparation of the second-harmonic-wave laser and the single-mode squeezed vacuum state of 795 nm (rubidium atom D1 line) with periodically-poled KTiOPO4 (PPKTP) bulk crystals. By using a four-mirror bow-tie type ring doubling cavity we achieved ~111 mW of continuous-wave single-frequency ultra-violet (UV) laser radiation at 397.5 nm with ~191 mW of 795 nm fundamental-wave laser input. The corresponding doubling efficiency is 58.1%. To our knowledge, this is the highest doubling efficiency at 795 nm so far. Employing the 397.5 nm UV laser as a pump source of an optical parametric oscillator (OPO) with a PPKTP crystal, we achieved 5.6 dB of 795 nm single-mode squeezed vacuum output at analyzing frequency of 2 MHz. To our knowledge, this is the highest squeezing level of 795 nm single-mode squeezed vacuum so far. We analyzed the pump power dependence of the squeezing level, and concluded that UV laser induced losses of PPKTP crystal are main limiting factors for further improving the squeezing level. The generated 795 nm vacuum squeezing has huge potential applications in quantum memory and ultra-precision measurement with rubidium atoms.
Poster Session
icon_mobile_dropdown
Modeling cavities exhibiting strong lateral confinement using open geometry Fourier modal method
Teppo Häyrynen, Niels Gregersen
We have developed a computationally efficient Fourier-Bessel expansion based open geometry formalism for modeling the optical properties of rotationally symmetric photonic nanostructures. The lateral computation domain is assumed infinite so that no artificial boundary conditions are needed. Instead, the leakage of the modes due to an imperfect field confinement is taken into account by using a basis functions that expand the whole infinite space. The computational efficiency is obtained by using a non-uniform discretization in the frequency space in which the lateral expansion modes are more densely sampled around a geometry specific dominant transverse wavenumber region. We will use the developed approach to investigate the Q factor and mode confinement in cavities where top DBR mirror has small rectangular defect confining the modes laterally on the defect region.
Maximizing the information gain of a single ion microscope using bayes experimental design
Georg Jacob, Karin Groot-Berning, Ulrich G. Poschinger, et al.
We demonstrate nanoscopic transmission microscopy, using a deterministic single particle source, and compare the resulting images in terms of signal-to-noise ratio with those of conventional Poissonian sources. Our source is realized by deterministic extraction of laser-cooled calcium ions from a Paul trap. Gating by the extraction event allows for the suppression of detector dark counts by six orders of magnitude. Using the Bayes experimental design method, the deterministic characteristics of this source are harnessed to maximize information gain, when imaging structures with a parametrizable transmission function. We demonstrate such optimized imaging by determining parameter values of one and two dimensional transmissive structures.
Feasibility of two-photon rotational spectroscopy on trapped HD+
Florin L. Constantin
Calculations of frequencies, transition rates, lineshapes and lightshifts of two-photon rotational transitions of HD+ in the ground vibrational state are presented. Two-photon rotational transitions can be addressed at high transition rates despite of the scarcity of sources of radiation in the THz spectral domain. A resonance-enhanced multiphoton dissociation detection scheme addresses the two-photon rotational transition (v,J)=(0,1)-<(0,2)-<(0,3) at 3.268 THz, the two-photon rovibrational transition (v,J)=(0,3)->4,2)->(9,3) at 1.4 μm and the photodissociation of (v,J)=(9,3) level at 512 nm on trapped and sympathetically cooled HD+ ions in the Lamb-Dicke regime. The photodissociated fraction of HD+ ions, modeled by rate equations, increases significantly at two-photon resonances when the rotational levels are coupled with the two-photon transition. A REMPD scheme with narrow-linewidth optical and THz sources may push the resolution of rotational spectroscopy at 4×10-13.
Orthogonal frequency division multiplexed quantum key distribution in the presence of Raman noise
Sima Bahrani, Mohsen Razavi, Jawad A. Salehi
In this paper, we investigate the performance of orthogonal frequency division multiplexed quantum key distribution (OFDM-QKD) in an integrated quantum-classical wavelength-division-multiplexing system. The presence of an intense classical signal alongside the quantum one generates Raman background noise. Noise reduction techniques should, then, be carried out at the receiver to suppress this crosstalk noise. In this work, we show that OFDM-QKD enables efficient filtering, in time and frequency domains, making it an attractive solution for the high-rate links at the core of quantum-classical networks.
1THz synchronous tuning of two optical synthesizers
Rudolf Neuhaus, Felix Rohde, Erik Benkler, et al.
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets
Anja Kohfeldt, Christian Kürbis, Erdenetsetseg Luvsandamdin, et al.
We have realized a laser platform based on GaAs diode lasers that allows for an operation in mobile exper-imental setups in harsh environments, such as on sounding rockets. The platform comes in two versions: a master-oscillator-power-amplifier and an extended cavity diode laser. Our very robust micro-optical bench has a footprint of 80 x 25 mm2. It strictly omits any movable parts. Master-oscillator-power-amplifier systems based on distributed feedback master oscillators for 767 nm and 780 nm narrow linewidth emission have been implemented by now. A continuous wave optical output power of > 1 W with a power conversion efficiency of > 25% could be achieved. The continuous tuning range of these lasers is on the order of 100 GHz, the linewidth at 10 μs is about 1 MHz. For applications demanding a narrower linewidth we have developed an extended cavity diode laser that achieves a linewidth of 100 kHz at 10 μs. These lasers achieve a continuous spectral tuning range of about 50 GHz and an continuous wave optical power up to 30 mW. The modules have been successfully vibration tested up to 29 gRMS along all three axes and passed 1500 g shocks, again along all 3 axes. Both, master-oscillator-power-amplifiers and extended cavity diode lasers, have been employed in sounding rocket experiments.