Proceedings Volume 9890

Optical Micro- and Nanometrology VI

cover
Proceedings Volume 9890

Optical Micro- and Nanometrology VI

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 6 June 2016
Contents: 10 Sessions, 42 Papers, 0 Presentations
Conference: SPIE Photonics Europe 2016
Volume Number: 9890

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9890
  • Digital Holography
  • 3D Metrology
  • Optical Tomography
  • Nanoscale Metrology, Nanoimaging, and Near-field Microscopy
  • Scatterometry
  • Topography and Surface Measurements
  • Specialized Techniques
  • Interferometry Applications
  • Poster Session
Front Matter: Volume 9890
icon_mobile_dropdown
Front Matter: Volume 9890
This PDF file contains the front matter associated with SPIE Proceedings Volume 9890, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Digital Holography
icon_mobile_dropdown
Digital holographic microscopy for the characterization of microelectromechanical systems
Digital holography (DH) in microscopy became an important interferometric tool in optical metrology since when camera sensors reached a higher pixel number with smaller size allowing to acquire more defined images and high-speed computers became able to process such data. Consequently, it was possible the investigation of engineered surfaces on micro-scale, such as micro-electromechanical systems (MEMS) that are micro-devices composed by mechanical elements, electronics, sensors and actuators built in a small volume, realized using different material layers superimposed in various process steps, usually starting from a silicon substrate. In DH is necessary to perform the reconstruction of the wave field by means of numerical tools. This entails a computational burden but offers the possibility of retrieving not only the intensity of the acquired wave field, but also the phase distribution. This work describes the principles of DH and shows some interesting numerical tools suitable to process the holographic images in the field of MEMS. The use of different numerical tools is discussed and illustrated with examples taken from the literature.
Photon counting digital holography
Nazif Demoli, Hrvoje Skenderović, Mario Stipčević, et al.
Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.
Partial spatial coherence illumination in digital holographic microscopy: quantitative analysis of the resulting noise reduction
Jérôme Dohet-Eraly, Catherine Yourassowsky, Ahmed El Mallahi, et al.
Imaging applications needing illumination with sufficiently high power density often request coherent light such as provided by laser or super-luminescent diodes. However the very high spatial coherence of those sources can generate coherent speckle noise and multiple reflection effects that may degrade the resulting image quality. In order to overcome such issues, we have shown that using partial spatial coherence illumination in interferometric digital holographic microscopy (DHM) greatly improves the image quality. Two models are here proposed to quantitatively assess the noise reduction as a function of both the spatial coherence, and the distance between the noise source and the recorded plane. We emphasize that these approaches may be useful in numerous imaging situations not restricted to DHM systems. The first developed model uses the discretization of the field of view in the plane of the noise source. This model is more intuitive but encounters some limitations. The second model, based on a continuous approach, corroborates the discrete model and extends it when necessary. Experimental validation of both models has been performed with a DHM, whose illumination has an adjustable spatial coherence. The noise was generated using a microscope slide with de-agglomerated particles. The relative standard deviation of fluctuations due to noise is shown to be inversely proportional to the product D|d| when this quantity is high, where D is the diameter of a pupil leading the spatial coherence and d is the defocus distance of the noise source. The continuous model is applicable in any case.
Perspectives of multimode fibers and digital holography for optogenetics
Jürgen W. Czarske, Daniel Haufe, Nektarios Koukourakis, et al.
Optogenetic approaches allow the activation or inhibition of genetically prescribed populations of neurons by light. In principle, optogenetics offers not only the ability to elucidate the functions of neural circuitry, but also new approaches to a treatment of neurodegenerative diseases and recovery of vision and auditory perception. Optogenetics already has revolutionized research in neuroscience. However, new methods for delivering light to three-dimensionally distributed structures e.g. in the brain are necessary. A major hurdle for focusing light through biological tissue is the occurring scattering and scrambling of the light. We demonstrate the correction of the scrambling in a multimode fiber by digital optical phase conjugation with a perspective for optogenetics.
Digital holography with electron wave: measuring into the nanoworld
Dennis Gabor invented Holography in 1949. His main concern at the time was centered on the spherical aberration correction in the recently created electron microscopes, especially after O. Scherzer had shown mathematically that round electron optical lenses always have a positive spherical aberration coefficient and the mechanical requirements for minimizing the spherical aberration were too high to allow for atomic resolution. At the time the lack of coherent electron sources meant that in-line holography was developed using quasi-coherent light sources. As such Holography did not produce scientific good enough results to be considered a must use tool. In 1956, G. Moellenstedt invented a device called a wire-biprism that allowed the object and reference beams to be combined in an off-axis configuration. The invention of the laser at the end of the 1950s gave a great leap to Holography since this light source was highly coherent and hence led to the invention of Holographic Interferometry during the first lustrum of the 1960s. This new discipline in the Optics field has successfully evolved to become a trusted tool in a wide variety of areas. Coherent electron sources were made available only by the late 1970s, a fact that gave an outstanding impulse to electron holography so that today nanomaterials and structures belonging to a wide variety of subjects can be characterized in regards to their physical and mechanical parameters. This invited paper will present and discuss electron holography’s state of the art applications to study the shape of nanoparticles and bacteria, and the qualitative and quantitative study of magnetic and electric fields produced by novel nano-structures.
Measurement of hygroscopic strain in deodar wood during convective drying using lensless Fourier transform digial holography
In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.
3D Metrology
icon_mobile_dropdown
Structured light optical microscopy for three-dimensional reconstruction of technical surfaces
Johannes Kettel, Holger Reinecke, Claas Müller
In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.
Triangulation-based 3D surveying borescope
S. Pulwer, P. Steglich, C. Villringer, et al.
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of ± 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens
Katrin Philipp, André Smolarski, Andreas Fischer, et al.
We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.
Three-dimensional measurements with a novel technique combination of confocal and focus variation with a simultaneous scan
A. Matilla, J. Mariné, J. Pérez, et al.
The most common optical measurement technologies used today for the three dimensional measurement of technical surfaces are Coherence Scanning Interferometry (CSI), Imaging Confocal Microscopy (IC), and Focus Variation (FV). Each one has its benefits and its drawbacks. FV will be the ideal technology for the measurement of those regions where the slopes are high and where the surface is very rough, while CSI and IC will provide better results for smoother and flatter surface regions. In this work we investigated the benefits and drawbacks of combining Interferometry, Confocal and focus variation to get better measurement of technical surfaces. We investigated a way of using Microdisplay Scanning type of Confocal Microscope to acquire on a simultaneous scan confocal and focus Variation information to reconstruct a three dimensional measurement. Several methods are presented to fuse the optical sectioning properties of both techniques as well as the topographical information. This work shows the benefit of this combination technique on several industrial samples where neither confocal nor focus variation is able to provide optimal results.
Optical Tomography
icon_mobile_dropdown
Array-type miniature interferometer as the core optical microsystem of an optical coherence tomography device for tissue inspection
Some of the critical limitations for widespread use in medical applications of optical devices, such as confocal or optical coherence tomography (OCT) systems, are related to their cost and large size. Indeed, although quite efficient systems are available on the market, e.g. in dermatology, they equip only a few hospitals and hence, are far from being used as an early detection tool, for instance in screening of patients for early detection of cancers. In this framework, the VIAMOS project aims at proposing a concept of miniaturized, batch-fabricated and lower-cost, OCT system dedicated to non-invasive skin inspection. In order to image a large skin area, the system is based on a full-field approach. Moreover, since it relies on micro-fabricated devices whose fields of view are limited, 16 small interferometers are arranged in a dense array to perform multi-channel simultaneous imaging. Gaps between each channel are then filled by scanning of the system followed by stitching. This approach allows imaging a large area without the need of large optics. It also avoids the use of very fast and often expensive laser sources, since instead of a single point detector, almost 250 thousands pixels are used simultaneously. The architecture is then based on an array of Mirau interferometers which are interesting for their vertical arrangement compatible with vertical assembly at the wafer-level. Each array is consequently a local part of a stack of seven wafers. This stack includes a glass lens doublet, an out-of-plane actuated micro-mirror for phase shifting, a spacer and a planar beam-splitter. Consequently, different materials, such as silicon and glass, are bonded together and well-aligned thanks to lithographic-based fabrication processes.
Vertical comb-drive microscanner with 4x4 array of micromirrors for phase-shifting Mirau microinterferometry
Sylwester Bargiel, Justine Lullin, Patrice Lemoal, et al.
In this paper, we present construction, fabrication and characterization of an electrostatic MOEMS vertical microscanner for generation of an optical phase shift in array-type interferometric microsystems. The microscanner employs asymmetric comb-drives for a vertical displacement of a large 4x4 array of reference micromirrors and for in-situ position sensing. The device is designed to be fully compatible with Mirau configuration and with vertical integration strategy. This enables further integration of the device within an "active" multi-channel Mirau micro-interferometer and implementation of the phase shifting interferometry (PSI) technique for imaging applications. The combination of micro-interferometer and PSI is particularly interesting in the swept-source optical coherence tomography, since it allows not only strong size reduction of a system but also improvement of its performance (sensitivity, removal of the image artefacts). The technology of device is based on double-side DRIE of SOI wafer and vapor HF releasing of the suspended platform. In the static mode, the device provides vertical displacement of micromirrors up to 2.8μm (0 - 40V), whereas at resonance (fo=500 Hz), it reaches 0.7 μm for only 1VDC+1VAC. In both operation modes, the measured displacement is much more than required for PSI implementation (352nm peak-to-peak). The presented device is a key component of array-type Mirau micro-interferometer that enables the construction of portable, low-cost interferometric systems, e.g. for in vivo medical diagnostics.
High-resolution full-field optical coherence tomography using high dynamic range image processing
Full-field optical coherence tomography (FF-OCT) based on white-light interference microscopy, is an emerging noninvasive imaging technique for characterizing biological tissue or optical scattering media with micrometer resolution. Tomographic images can be obtained by analyzing a sequence of interferograms acquired with a camera. This is achieved by scanning an interferometric microscope objectives along the optical axis and performing appropriate signal processing for fringe envelope extraction, leading to three-dimensional imaging over depth. However, noise contained in the images can hide some important details or induce errors in the size of these details. To firstly reduce temporal and spatial noise from the camera, it is possible to apply basic image post processing methods such as image averaging, dark frame subtraction or flat field division. It has been demonstrate that this can improve the quality of microscopy images by enhancing the signal to noise ratio. In addition, the dynamic range of images can be enhanced to improve the contrast by combining images acquired with different exposure times or light intensity. This can be made possible by applying a hybrid high dynamic range (HDR) technique, which is proposed in this paper. High resolution tomographic analysis is thus performed using a combination of the above-mentioned image processing techniques. As a result, the lateral resolution of the system can be improved so as to approach the diffraction limit of the microscope as well as to increase the power of detection, thus enabling new sub-diffraction sized structures contained in a transparent layer, initially hidden by the noise, to be detected.
Space-domain, filtered backpropagation algorithm for tomographic configuration with scanning of illumination
Filtered back propagation (FBPP) is a well-established reconstruction technique that is used in diffractive holographic tomography. The great advantage of the algorithm is the space-domain implementation, which enables avoiding the error-prone interpolation in the spectral domain that is an inherent part of the main counterpart of FBPP - the direct inversion tomographic reconstruction method. However, the fundamental flaw of FBPP is lack of generality, i.e. the method can be applied solely for the classical tomographic systems, where alternation of the measurement views is achieved by rotating a sample. At the same time, majority of the nowadays tomographic setups apply an alternative measurement concept, which is based on scanning of an illumination beam. The aim of this paper is to remove the mentioned limitation of the FBPP and enable its application in the systems utilizing scanning of illumination. This is achieved by introducing a new method of accounting for uneven cover of the sampled object frequencies, which applies normalization of the object spectrum with coherent transfer function of a considered tomographic system. The feasibility of the proposed, modified filtered back propagation algorithm is demonstrated with numerical simulations, which mimic tomographic measurement of a complex sample, i.e. the Shepp-Logan phantom.
Nanoscale Metrology, Nanoimaging, and Near-field Microscopy
icon_mobile_dropdown
Overview of label-free far field optical nanoscopy techniques for nanometrology
The development of new nanomaterials, devices and systems is very much dependent on the availability of new techniques for nanometrology. There now exists many advanced optical imaging techniques capable of subwavelength resolution and detection, recently brought to the forefront through the 2014 Nobel Prize for chemistry for fluorescent STED and single molecule microscopy. Label-free nanoscopy techniques are particularly interesting for nanometrology since they have the advantages of being less intrusive and open to a wider number of structures that can be observed compared with fluorescent techniques. In view of the existence of many nanoscopy techniques, we present a practical classification scheme to help in their understanding. An important distinction is made between superresolution techniques that provide resolutions better than the classical λ/2 limit of diffraction and nanodetection techniques that are used to detect or characterize unresolved nanostructures or as nanoprobes to image sub-diffraction nanostructures. We then highlight some of the more important label-free techniques that can be used for nanometrology. Superresolution techniques displaying sub-100 nm resolution are demonstrated with tomographic diffractive microscopy (TDM) and submerged microsphere optical nanoscopy (SMON). Nanodetection techniques are separated into three categories depending on whether they use contrast, phase or deconvolution. The use of increased contrast is illustrated with ellipsometric contrast microscopy (SEEC) for measuring nanostructures. Very high sensitivity phase measurement using interference microscopy is then shown for characterizing nanometric surface roughness or internal structures. Finally, the use of through-focus scanning optical microscopy (TSOM) demonstrates the measurement and characterization of 60 nm linewidths in microelectronic devices.
A silicon superlens with a simple design working at visible wavelengths
Liwei Fu, Karsten Frenner, Huiyu Li, et al.
Nano-imaging has imposed a fundamental impact on the development of nanoscience and technology. The demands for direct subwavelength imaging in far field have been significantly increased. Such a superlens needs first to be able to collect the near field information, and then transform it into the far field with magnification and low image distortion. In this contribution we demonstrate a superlens with a novel design for far field observation at visible wavelengths. The lens is based on a silicon half cylinder with several micrometers in size. Without any structuring, the silicon semicylinder can already work as a lens with high resolving power due to its high refractive index. A distance of 280 nm between two incoherent dipoles immersed in water can be well resolved at a wavelength of 640 nm. Deep subwavelength imaging with magnification can be achieved when the flat surface of the semi-cylinder is structured with periodic plasmonic grating. When a ridge of the grating is centered at the optical axis of the lens, a local magnification factor of 10 can be obtained and the smallest resolvable distance between two point dipoles in water is around 120 nm at 640 nm wavelength. Moreover, this superlens also works at other visible wavelengths with a similar performance.
High-resolution photocurrent mapping of thin-film solar cells using scanning near-field optical microscopy
Z. Cao, S. Lehnen, R. Carius, et al.
The efficiency of thin-film solar cells strongly depends on the plasmonic structures, cloaking, and especially the microscopic and nanoscopic material inhomogeneity and surface topography of the absorber. However, the understanding of the latter requires optoelectronic characterization on a nanoscale. In this study, by applying an aperture-type scanning near-field optical microscope (SNOM) in illumination mode, direct photocurrent measurements with sub-100 nm resolution were performed on randomly textured hydrogenated microcrystalline silicon (μc-Si:H) thin-film solar cell, flat μc-Si:H thin-film solar cell and flat hydrogenated amorphous silicon (a-Si:H) thin-film solar cell in order to investigate the influence of material inhomogeneity and surface topography on the local photocurrent generation. While in case of the randomly textured μc-Si:H solar cell, contrary behaviors of the photocurrent response between short and long wavelengths were identified, the same correlation between the photocurrent signal and the surface topography was observed for the two flat solar cells at all wavelengths. The measurement results can be explained by a combination of two dominant effects, (i) local light coupling into the sample and (ii) light propagation inside the sample. By this study, on the one hand the importance of surface texturing as a concept to increase the efficiency is demonstrated. On the other hand, the influence of the interaction between the SNOM probe and the surface on the photocurrent measurements has been investigated.
Optical properties of spray coated layers with carbon nanotubes and graphene nanoplatelets
Zofia Lorenc, Jakub Krzeminski, Grzegorz Wroblewski, et al.
Carbon nanotubes as well as graphene are allotropic forms of carbon. Graphene is a two dimensional (2D) form of atomic-scale, hexagonal lattice, while carbon nanotube is a cylindrical nanostructure composed of a rolled sheet of graphene lattice at specific and discrete angles.

Both of discussed materials have a high potential for modern engineering, especially in organic and printed electronics. High transparency in the visible part of the electromagnetic spectrum and low electrical resistance are desirable features in various applications and may be fulfilled with studied carbon nanomaterials. They have chances to become an important technological improvement in customers electronic devices by applying them to electrodes production in flexible screens and light sources.

Graphene end carbon nanotubes are conceptually similar. However, characteristic properties of these two substances are different. In the article authors present the results of the transmission in visible electromagnetic spectrum characteristics of different samples. This parameter and the resistance of electrodes are tested, analysed and compared. Characteristics of optical transmittance against resistance with the optimal point of that relationship are presented in paper. Moreover, dependency of graphene nanoplatelets agglomerates arrangement against type of nano-fillers is shown.

Two groups of tested inks contain graphene nanoplatelets with different fillers diameters. The third group contains carbon nanotubes.

Described parameters are important for production process and results of analysis can be used by technologists working with elastic electronics.
Scatterometry
icon_mobile_dropdown
Wavefront shaping for flow-field measurements through varying phase boundaries
J. W. Czarske, N. Koukourakis, J. Koenig, et al.
We propose the usage of wavefront shaping approaches for image correlation based flow-field measurements. Aberrations introduced by a single phase boundary in the detection beam path were explored. Variations of the optical path-length result in strong errors in position allocation and thus to an enhancement of the measurement uncertainty of the velocity. Our results show that the usage of wavefront shaping enables to reduce these errors and to strongly improve the quality of image correlation based flow-field measurements. First experimental and simulated results underline the importance of these approaches.
Robust determination of asymmetric side wall angles by means of coherent scanning Fourier scatterometry
M. L. Gödecke, S. Peterhänsel, K. Frenner, et al.
Optical metrology of grating parameters with small scattering volumes, such as side wall angles (SWAs), is an indispensable prerequisite for accurate process control in modern semiconductor lithography. However, current scatterometric technologies suffer from low sensitivity towards SWA and hence, large measurement uncertainties. In order to overcome this deficit, we propose an interferometric sensor design which enables the precise determination of asymmetric SWAs with values that deviate by less than 1° from the ideal 90°. Our measurement technique is based on coherent scanning Fourier scatterometry, extended by a reference arm in Mach-Zehnder/Linnik configuration, a spatially-structured aperture stop in the object arm, and a self-referencing shearing element in front of the detector. We demonstrate the validity and advantages of our approach by presenting rigorous simulations of an exemplary silicon line grating with a grating period of 800 nm. Each grating line consists of a fine sub-grating with 40 nm pitch and 20 nm critical dimension. A variation of the major grating parameters height and critical dimension highlights the robustness of the method. Although our simulation study focuses on the determination of asymmetric SWAs, it should be noted that the presented technique features high sensitivity towards all kinds of structural asymmetries, such as floor tilt or asymmetric bottom roundings.
Structure and mesoscopic characterization of laser ablated carbon nanoparticles in water by Raman scattering
J. F. Cardenas, T. Cadenbach, Z.-B. Zhang, et al.
Optical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis of the backscattered optical signal delivered by the OCT. The time-frequency method gives spectral characteristic of optical radiation backscattered or backreflected from the particular points inside the tested device. This provides more information about the sample, which are useful for further analysis. Nowadays, the applications of spectroscopic analysis for composite layers characterization or tissue recognition have been reported. During our studies we have found new applications of spectroscopic analysis. We have used this method for thickness estimation of thin films, which are under the resolution of OCT. Also, we have combined the spectroscopic analysis with polarization sensitive OCT (PS-OCT). This approach enables to obtain a multiorder retardation value directly and may become a breakthrough in PS-OCT measurements of highly birefringent media. In this work, we present the time-frequency spectroscopic algorithms and their applications for OCT. Also, the theoretical simulations and measurement validation of this method are shown.
Speckle decorrelation study of phase heterogeneous liquid medium
Valentyna Pobiedina, Andrey Yakunov
In the paper de-correlation method was applied to study the dynamics of the laser-speckle pattern caused with the ground glass and layer of transparent liquid. According to the percolation model H-bonded liquids are characterized with nano-sized structural heterogeneities that cause the phase ones for the light wave. The temporary changing phase heterogeneities modulate the speckle field produced with the ground glass. The modifying of the speckle pattern causes the slow decaying of the central peak amplitude of the cross-correlation between the first images and each subsequent one. Proposed method likely could be a foundation of new methods for contactless exploring structural dynamics of liquid systems.
Inverse scattering spectroscopic method for the fast measurement of the number and mass concentrations of metal nanoparticle colloid
Guoce Yang, Benfeng Bai, Wenqi Liu, et al.
Metal nanoparticles (NPs) have wide applications in various fields due to their unique properties. The accurate and fast characterization of metal NP concentration is highly demanded in the synthesis, metrology, and applications of NPs. The commonly used inductively coupled plasma mass spectrometry (ICP-MS) is a standard method for measuring the mass concentration (MC) of NPs, even though it is time-consuming, expensive, and destructive. While for the number concentration (NC) characterization of NPs, the method is less explored. Here, we present an improved optical extinction-scattering spectroscopic method for the fast, non-destructive characterization of the MC and NC of poly-disperse metal NP colloid simultaneously. By measuring the extinction spectrum and the 90° scattering spectrum of the nanorod (NR) colloid, we can solve an inverse scattering problem to retrieve the two dimensional joint probability density function (2D-JPDF) with respect to the width and the aspect ratio of NR sample accurately, based on which the NC and MC of the colloidal NPs can be calculated. This method is powerful to characterize both the geometric parameters and the concentrations, including the MC and NC, of poly-disperse metal NPs simultaneously. It is very useful for the non-destructive, non-contact, and in-situ comprehensive measurement of colloidal NPs. This method also has the potential to characterize NPs of other shapes or made of other materials.
Topography and Surface Measurements
icon_mobile_dropdown
Local reflectance spectra measurements of surfaces using coherence scanning interferometry
R. Claveau, P. C. Montgomery, M. Flury, et al.
Interference microscopy is a widely used technique in optical metrology for the characterization of materials and in particular for measuring the micro and nanotopography of surfaces. Depending on the processing applied to the interference signal, either topographic analysis of the sample can be carried out by identifying the envelope peak of the fringe signal, which leads to 3D surface imaging, or spectral analysis may be performed which gives spectroscopic measurements. By applying a Fourier transform to the interference fringes, information about the source spectrum, the spectral response of the optical system, and the reflectance spectrum of the surface at the origin of the interferogram can be obtained. By using a sample of known reflectivity for calibration, it is possible to extract the spectral signature of the entire system and therefore to deduce that of the surface of interest. In this paper, we first explain theoretically how to retrieve the reflectance information of a surface from the interferometric signal. Then, we present some results obtained by this means with a white light scanning Linnik interferometer on different kinds of samples (silicon, tin oxide (SnO2), indium tin oxide (ITO)). The initial results were slightly different from those obtained with a conventional optical spectrometer until averaged temporally and were improved even further when averaged spatially. We show that the reflectance of the surface can be calculated over the given wavelength range of the effective spectrum, which is defined as the source spectrum multiplied by the spectral response of the camera and the spectral transmissivity of the optical system. We thus demonstrate that local spectroscopic measurements can be carried out with an interference microscope and that they match well with those measured with an optical spectrometer model Lambda19 UV-VIS-NIR from Perkin Elmer. A simulation study is also presented in order to validate the method and to help identify the potential sources of errors in the spectroscopic analysis.
Two-dimensional low-coherence interferometry for the characterization of nanometer wafer topographies
Ch. Taudt, T. Baselt, B. Nelsen, et al.
Within this work a scan-free, low-coherence interferometry approach for surface profilometry with nm-precision is presented. The basic setup consist of a Michelson-type interferometer which is powered by a super-continuum light-source (Δλ= 400-1700 nm). The introduction of an element with known dispersion delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In order to enable scan-free measurements, the interference signal is spectrally decomposed with a grating and imaged onto a two-dimensional detector. One dimension of this detector records spectral, and therefore height information, while the other dimension stores the spatial position of the corresponding height values.

In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 m with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.
Sensing roughness and polish direction
M. L. Jakobsen, A. S. Olesen, H. E. Larsen, et al.
As a part of the work carried out on a project supported by the Danish council for technology and innovation, we have investigated the option of smoothing standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development cost and time consumption can become relatively large numbers in a research budget. Machining the optical surfaces directly is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, but then the object needs to be manually polished. During the polishing process the operator needs information about the RMS-value of the surface roughness and the current direction of the scratches introduces by the polishing process. The RMS-value indicates to the operator how far he is from the final finish, and the scratch orientation is often specified by the customer in order to avoid complications during the casting process.

In this work we present a method for measuring the RMS-values of the surface roughness while simultaneously determining the polishing direction. We are mainly interested in the RMS-values in the range from 0 – 100 nm, which corresponds to the finish categories of A1, A2 and A3. Based on simple intensity measurements we estimates the RMS-value of the surface roughness, and by using a sectioned annual photo-detector to collect the scattered light we can determine the direction of polishing and distinguish light scattered from random structures and light scattered from scratches.
Specialized Techniques
icon_mobile_dropdown
Production of arbitrary polarized light beams with a liquid crystal spatial modulator
In this paper, we review some of our recent advances in the generation and control of polarized light beams by means of liquid crystal light modulators. We use a reflective geometry where a single parallel-aligned spatial light modulator device is used to independently spatially modulate two orthogonal linear polarizations with two different phase profiles. In this way we are able to produce arbitrary polarization patterns, which can be combined to produce polarization diffractive elements. In this work we present two such new elements: 1) an anisotropic axicon capable to produce a line focus with axial arbitrary state of polarization, and 2) anisotropic diffraction gratings, capable to generate arbitrary orders of diffraction with different states of polarization designed at will. The anisotropic axicon generates a Bessel beam with polarization variation, which might be useful in micro-fabrication techniques. On the other hand, the anisotropic gratings are useful to produce snapshot polarimeters, capable to measure the Stokes parameters of a light beam in a single measurement. Finally, we will show that these elements can be combined with spiral phase patterns in order to convert them into cylindrically polarized light beams. Experimental results on the production of diffractive elements that generate light beams with these polarization features will be included.
Evaluation of single-shot and two-shot fringe pattern phase demodulation algorithms aided by the Hilbert-Huang transform
Maciej Trusiak, Krzysztof Patorski, Lukasz Sluzewski, et al.
In this contribution we evaluate single and two-shot techniques, namely the Hilbert spiral transform (HST) and the Gram-Schmidt orthonormalization (GSO) in terms of phase demodulation accuracy in the complex fringe patterns analysis (i.e., with strong background/contrast variations, severe noise, considerable local gradients of fringe shape/orientation). Both methods are aided by the novel Hilbert-Huang transform (HHT) processing to adaptively reduce demodulation errors. The HST utilizes a spiral phase function and a spatial fringe orientation map to demodulate phase of complex fringes. It is especially susceptible to uneven bias term and noise. The HHT method realizes bias/noise suppression adaptively with outstanding accuracy. The GSO is a fast two-shot fringe-shape-robust phase demodulation scheme. It treats two arbitrarily phase shifted interferograms as vectors and conducts orthogonal projection of one vector onto another. The GSO is susceptible to background, contrast and noise fluctuations, however. The HHT method is perfectly suitable to perform efficient pre-filtering. Both methods (HHT-HST and HHT-GSO) are proven versatile and robust to fringe pattern defects using simulation and experiment.
Effective generation of unidirectional SPP beam with arbitrary profile
Oubo You, Benfeng Bai, Xiaoyu Wu, et al.
The beam formation of SPPs is very important in plasmonics. Different SPP beams could be used for different purposes, such as SPP focusing, non-diffractive SPP wave propagation, efficient SPP coupling, and manipulating particles. Here, we present a straightforward and effective method for generating unidirectionally propagating SPP beams with arbitrary profile in both amplitude and phase by locating the Δ-shaped nanoantennas. The Δ-shape of the nanoantennas is used to achieve unidirectionality of SPPs and the locations of the nanoantennas are controlled to realize arbitrary profile of the excited SPP wave. As examples, several SPP launchers generating different SPP beams are designed with this method. The near-field distribution of the generated SPP beams are also experimentally characterized to validate the effectiveness of this method.
Interferometry Applications
icon_mobile_dropdown
Influences of edges and steep slopes in 3D interference and confocal microscopy
Weichang Xie, Sebastian Hagemeier, Carsten Woidt, et al.
Optical measurement techniques are widely applied in high-resolution contour, topography and roughness measurement. In this context vertical scanning white-light interferometers and confocal microscopes have become mature instruments over the last decades. The accuracy of measurement results is highly related not only to the type and physical properties of the measuring instruments, but also to the measurement object itself. This contribution focuses on measurement effects occurring at edges and height steps using white-light interferometers of different numerical apertures. If the edge is perfectly perpendicular, batwing effects appear at height steps. These batwings show maximum height if the height-to-wavelength-ratio (HWR) is about one forth or three forth, and they disappear if the HWR value is about an integer multiple of one half. The wavelength that is relevant in this context is the effective wavelength, i.e. the center wavelength of the illuminating light multiplied by a correction factor known as the numerical aperture correction. However, in practice the edges are usually not perfectly perpendicular. In this case, the measurement results depend also on the derivative of the surface height function and they may differ from theory and the prediction according to the HWR value. Measurements of such steps show systematical effects depending on the lateral resolution of the instrument. In this context, a Linnik interferometer with a magnification of 100x and NA = 0.9 is used to characterize the three dimensional topography of more or less rectangular calibration specimens and quasi-perpendicular structures produced by the nanoimprint technology. The Linnik interferometer is equipped with LED light sources emitting at different wavelengths, so that the HWR value can be changed. This is possible since the high NA objective lenses show a rather limited depth of focus such that the temporal coherence gating may be replaced by focal gating in this particular instrument. In addition, measurement results are compared with those achieved by a Mirau interferometer of NA = 0.55. A commercial confocal microscope with NA of 0.95 serves as a reference instrument for further comparison. Numerical simulations considering diffraction effects are carried out in order to explain the experimental results obtained by the different white and colored light interferometers
Systemic errors calibration in dynamic stitching interferometry
Xin Wu, Te Qi, Yingjie Yu, et al.
The systemic error is the main error sauce in sub-aperture stitching calculation. In this paper, a systemic error calibration method is proposed based on pseudo shearing. This method is suitable in dynamic stitching interferometry for large optical plane. The feasibility is vibrated by some simulations and experiments.
Poster Session
icon_mobile_dropdown
Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding
Wei-Shan Wang, Maik Wiemer, Joerg Froemel, et al.
In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.
Measurement of defects by measuring of light scattering from surfaces using focused illumination
O. Rodríguez-Núñez, Neil C. Bruce
Light scattering has been used as a method of characterizing material or surface roughness in different areas of the science and technology, usually the surface is illuminated with light and the pattern of scattering is measured above the surface. In the literature, the scattered light has been measured using an incident beam with a diameter on the order of a few cm for surfaces with roughness scales of the order of microns, mainly to avoid problems with the speckle pattern of light. However, this kind of measurement does not give information on local variations in roughness or defects present in the sample. Also, it has been reported in many studies that the polarization of the scattered light is affected by the surface material and roughness. In this paper we present a novel experimental device used to identify local defects on surfaces by the measurement of the scattered light pattern using laser light focused onto the surface. We present results of experimental measurements for two surfaces with roughness and defects of the order of 6 to 60 microns using sizes of incident beam of the same order and we compare the results of experimental cases with results of numerical calculation based on the Kirchhoff Approximation of light scattering by rough surfaces. We include preliminary results from the effect on the pattern of light scattering as a function of the polarization state by using focused light to illuminate the surface, we calculate the Mueller matrix for the equivalent period of the surface micro-manufactured experimentally. Finally we conclude about the validity of the method.
Precision topographic inspection of MOEMS by moiré interferometry
S. Meguellati
The manufacturing of micro components is useful and necessary for eventual use in the field of MOEMS micro technologies, but, micro fabrication process inspection quality is required. The accuracy of components geometry is parameter which influences the precision of the function. Moiré topography is full-field optical technique in which the contour and shape of object surfaces is measured by means of geometric interference between two identical line gratings. The technique has found various applications in diverse fields, from biomedical to industrial, scientific applications, and miniaturized instrumentation for space applications. This method of optical scanning presented in this paper is used for precision measurement deformation or absolute forms in comparison with a reference component form, of optical or mechanical micro components, on surfaces that are of the order of mm2 and more.

The optical device used allows high magnification dimensional surface inspected which allows easy processing and reaches an exceptional nanometric imprecision of measurements. This measurement technique can be used advantageously to measure the deformations generated by constraints on functional parts and the influence of these variations on the function. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard, which saves time, money and accuracy. This method of control and measurement allows real time control; speed control and the detection resolution may vary depending on the importance of defects to be measured.
Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range
Vacuum evaporated SiO2 thin films are very important in a design and manufacturing of optical devices produced in optics industry. In this contribution a reliable and precise optical characterization of such SiO2 thin films is performed using the combined method of spectrophotometry at normal incidence and variable-angle spectroscopic ellipsometry applied over spectral range from far IR to extreme UV (0.01-45 eV). This method uses the Universal Dispersion Model based on parametrization of the joint density of states and structural model comprising film defects such as nanometric boundary roughness, inhomogeneity and area non-uniformity. The optical characterization over the wide spectral range provides not only the spectral dependencies of the optical constants of the films within the wide range but, more significantly, it enables their correct and precise determination within the spectral range of interest, i.e. the range of their transparency. Furthermore, measurements in the ranges of film absorption, i. e. phonon excitations in IR and electron excitations in UV, reveal information about the material structure. The results of the optical characterization of the SiO2 thin films prepared on silicon single crystal substrates under various technological conditions are presented in detail for two selected samples. Beside film thicknesses and values of dispersion parameters and spectral dependencies of the optical constants of the SiO2 films, the characterization also enables quantification of film defects and their parameters are presented as well. The results concerning the optical constants of SiO2 films are compared with silica optical constants determined in our earlier studies.
3D through silicon via profile metrology based on spectroscopic reflectometry for SOI applications
O. Fursenko, J. Bauer, S. Marschmeyer
Through-silicon via (TSV) technology is a key feature for 3D circuit integration. TSVs are formed by etching a vertical via and filling them with a conductive material for creation of interconnections which go through the silicon or silicon-on-insulator (SOI) wafer. The Bosch etch process on Deep Reactive Ion Etching (DRIE) is commonly used for this purpose. The etch profile defined by the critical dimensions (CDs) at the top and at the bottom, by the depth and by the scallop size on the sidewall needs to be monitored and well controlled.

In this work a nondestructive 3D metrology of deeply-etched structures with an aspect ratio of more than 10 and patterns with lateral dimensions from 2 to 7 μm in SOI wafer is proposed. Spectroscopic reflectometry in the spectral range of 250-800 nm using a production metrology tool was applied. The depth determinations based on different algorithms are compared.

The Pearson correlation coefficient between measured and calculated reflection is suggested as the most appropriate method. A simple method for top CD evaluation is proposed by the measurement of reflection and using the polynomial approximation of reflection versus TSV filling coefficient which is determined as ratio of CD to pitch. The 3D RCWA simulations confirm this dependence.
Application of laser radiation for investigation of oriented polypropylene membranes
Alexander A. Zinchik, Ivan S. Kuryndin, Ksenia V. Ezhova, et al.
The oriented microporous polypropylene film membranes have been prepared in the process based on the melt extrusion. Functional characteristics of the membranes (permeability, overall porosity, sizes of pores) were controlled by the parameters of the preparation process. The samples had a well-developed porous structure and contained a through flow channels. The structure of the films was investigated by laser light scattering in dependence on the orientation degree. Light scattering patterns have been obtained using a low-energy He-Ne laser with the power of 5 mW and the wavelength of 633 nm. The optical setup also included the beam-forming system, and the detection unit connected to a PC. To detect the light scattering pattern, a lens less CCD-camera was used. The scattering patterns have a developed speckle structure, and, therefore, to simplify further studies, intensity should be averaged over a sufficiently large number of patterns using a special computer program. These scattering patterns are characterized by a specific type of symmetry and differ from any patterns typical for oriented crystallizable polymers. It is found that similar patterns are observed for all porous samples regardless of their orientation degree. The size of central maximum of the scattering pattern is dependent on the polymer film orientation degree. The results correlate well with the dependence of the porous films overall porosity on orientation degree.
Subaperture method for aspheric surface metrology using curvature data
SeongWon Lee, WooKyung Jeon, TaeJin Park, et al.
We present a profilometry for measuring aspheric surface, which determines the curvature from the sub-aperture topography along two orthogonal directions and then reconstructs the entire surface profile from the measured curvature data. The entire surface was divided into a number of sub-apertures with overlapping zones. Each sub-aperture was measured using white-light scanning interferometry to avoid any optical alignment error along an optical axis. Simulation studies are also presented based on the mathematical model. The proposed mathematical model was also experimentally tested on freeform surfaces using white-light scanning interferometry under deveolpment.
Aberration retrieval for the characterization of micro-optical components
This paper proposes a method for the characterization of focusing micro-optical components such as microlens. Based on the measurement of the focal volume generated by the micro-element, the wavefront map reconstruction as well as the optical aberrations can be estimated. To record the slices of the focal volume, this technique requires a simple optical arrangement which consists of a microscope objective and a camera. Then, an iterative phase retrieval algorithm is applied on each recorded intensity slice. This approach is less sensitive to the environmental variations than interferometry and is less expensive than wavefront sampling sensors although it leads to similar results than interferometry. As an example, ball microlens with 596μm diameter and 0.56 numerical aperture, has been characterized and comparison with more conventional technique demonstrates the good performances of the proposed phase retrieval method.
Capillary-scale interferometry at high angles of scattering for refractive index measurements of small volumes
Grzegorz Świrniak
This paper focuses on the problem of elastic scattering of a collimated beam of light on an unmodified glass capillary to perform a non-destructive small volume refractive index characterization. An interaction between the beam of light and the capillary causes that a series of dark and bright fringes is formed in the far field observed at high angles of scattering. By analyzing the spatial profile of the scattered light, the absolute value of the refractive index of a small volume may be measured unambiguously.
Optical properties of polymer microtips investigated with workshop tomographic system
Michał Dudek, Małgorzata Kujawińska, Piotr Makowski, et al.
We present a novel methodology for optical fiber polymer microtip manufacturing ant testing, which supports the structure optimization process through utilization of an optical diffraction tomography system based on the lateral shear digital holographic microscope. The most important functional parameter of an optical fiber microtip is the output beam distribution in the far-field region, which depends on geometrical properties and refractive index distribution within the microtip. These factors, in turn, are determined by the optical power distribution of the actinic light and the exposition time during the photopolymerization process. In order to obtain a desired light field distribution we propose to govern the manufacturing process by a hybrid opto-numerical methodology, which constitutes a convenient feedback loop for modification of the fabrication parameters. A single cycle of the proposed scheme includes numerical modeling, tomographic measurements and modifications of fabrication process. We introduced the real values of three-dimensional refractive index distribution of microtips into the finite-difference time-domain (FDTD) simulations, which leaded to controlled modification of technology parameters and finally to improvement of a functional parameter of microtips.