Proceedings Volume 9801

Industrial and Commercial Applications of Smart Structures Technologies 2016

cover
Proceedings Volume 9801

Industrial and Commercial Applications of Smart Structures Technologies 2016

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 1 September 2016
Contents: 7 Sessions, 21 Papers, 10 Presentations
Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring 2016
Volume Number: 9801

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9801
  • Active Flow Control
  • Morphing and SMA
  • Industrial Applications I
  • Industrial Applications II
  • Energy Harvesting
  • Poster Session
Front Matter: Volume 9801
icon_mobile_dropdown
Front Matter: Volume 9801
This PDF file contains the front matter associated with SPIE Proceedings Volume 9801, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Active Flow Control
icon_mobile_dropdown
Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control
Michael Amitay, David Menicovich, Daniele Gallardo
The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn’t require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.
Fluidic actuators for active flow control on airframe
M. Schueller, P. Weigel, M. Lipowski, et al.
One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.
Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications
Wilfred K. Chan, Dan J. Clingman, Michael Amitay
Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.
Development of piezoelectric-based membranes for synthetic jet actuators: experiments and modeling
Kevin W. Housley, Dan J. Clingman, Michael Amitay
A mathematical model was developed to represent the behavior of circular piezoelectric bimorphs in a synthetic jet actuator. Synthetic jet actuators are popular active flow control devices whose application is being widely explored in aerodynamics. The material properties were matched to those of PZT-5A mounted on a substrate. The actuator’s geometry consisted of a cylindrical cavity of low height to diameter aspect ratio. A bimorph formed one of the cylinder’s bases. The ingestion/expulsion orifice for the synthetic jet actuator was placed in the edge of the cavity so as to allow for either the present single bimorph or future dual bimorph configurations. Simply supported and rigidly supported boundary conditions were assessed around the circumference of the bimorph. The potential of alternate mode shapes occurring in the bimorphs during operation of the synthetic jet was evaluated. A limited parametric study was conducted varying the thickness of the piezoelectric wafers used in the bimorphs and the geometry of the cavity and orifice. Results were obtained for the displacement of the center of the bimorph’s surface and the peak velocity of the air being ingested and expulsed through the orifice. These results were compared to values obtained through a mathematical model. Experimental data present in literature were also compared. The mathematical model was seen to have considerable potential for predicting the performance of synthetic jet actuators and their resonant frequencies but failed to capture the effects of acoustic coupling with the cavity, which is a topic of future research.
Morphing and SMA
icon_mobile_dropdown
Toward the bi-modal camber morphing of large aircraft wing flaps: the CleanSky experience
R. Pecora, F. Amoroso, M. Magnifico
The Green Regional Aircraft (GRA), one of the six CleanSky platforms, represents the largest European effort toward the greening of next generation air transportation through the implementation of advanced aircraft technologies. In this framework researches were carried out to develop an innovative wing flap enabling airfoil morphing according to two different modes depending on aircraft flight condition and flap setting: - Camber morphing mode. Morphing of the flap camber to enhance high-lift performances during take-off and landing (flap deployed); - Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed and consequent optimization of aerodynamic efficiency. A true-scale flap segment of a reference aircraft (EASA CS25 category) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation issues especially with reference to the tapered geometrical layout and 3D aerodynamic loads distributions. The investigation domain covered the flap region spanning 3.6 m from the wing kink and resulted characterized by a taper ratio equal to 0.75 with a root chord of 1.2 m. High TRL solutions for the adaptive structure, actuation and control system were duly analyzed and integrated while assuring overall device compliance with industrial standards and applicable airworthiness requirements.
KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge
R. Pecora, F. Amoroso, M. Magnifico, et al.
Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of “metamorphic” wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.
Distributed electromechanical actuation system design for a morphing trailing edge wing
Next-generation flight control actuation technology will be based on “more electric” concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple “direct-drive” actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.
Modeling of electric resistance of shape memory alloys: self-sensing for temperature and actuation control of active hybrid composites
Sebastian Nissle, Moritz Hübler, Martin Gurka
For actuation purposes active hybrid structures made of fiber reinforced polymers (FRP) and shape memory alloys (SMA) enable substantial savings concerning weight, space and cost. Such structures allow realizing new functions which are more or less impossible with commonly used systems consisting of the structure and the actuator as separated elements, e.g. morphing winglets in aeronautics. But there are also some challenges that still need to be addressed. For the successful application of SMA FRP composites a precise control of temperature is essential, as this is the activating quantity to reach the required deformation of the structure without overloading the active material. However, a direct measurement of the temperature is difficult due to the complete integration of SMA in the hybrid structure. Also the deformation of the structure which depends on the temperature, the stiffness of the hybrid structure and external loads is hard to determine. An opportunity for controlling the activation is provided by the special behavior of the electrical resistance of SMA. During the phase transformation of the SMA - also causing the actuation travel - the resistance drops with rising temperature. This behavior can be exploited for control purposes, especially as the electrical resistance can be easily measured during the activation done by Joule heating. As shown in this contribution, theoretical modelling and experimental tests provide a load-independent self-sensing control-concept of SMA-FRP-hybrid-structures.
Industrial Applications I
icon_mobile_dropdown
Digital valve for high pressure high flow applications
Mircea Badescu, Stewart Sherrit, Derek Lewis, et al.
To address the challenges, which are involved with the development of flow control valves that can meet high demand requirements such as high pressure, high flow rate, limited power and limited space, the authors have conceived a novel design configuration. This design consists of a digitalized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet. A choke valve controls the total flow rate by digitally opening different paths or different combination of the paths. Each path is controlled by a poppet cap valve basically operated in on-off states. The number of flow states is 2N where N is the number of flow paths. To avoid erosion from sand in the fluid and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow and the speed is controlled to stay below a predefined erosion safe limit. The path is a multistage structure composed of a set of serial nozzles-expansion chambers that equally distribute the total pressure drop to each stage. The pressure drop of each stage and, therefore, the flow speed at the nozzles and expansion chambers is controlled by the number of stages. The paths have relatively small cross section and could be relatively long for large number of stages and still fit in a strict annular space limit. The paper will present the design configuration, analysis and preliminary test results.
An ultrasonic horn atomizer with closed loop driving circuit
Yuan-Fang Chou, Kai-Jhong Chen, Jui-Mei Hsu, et al.
A novel ultrasonic horn atomizer is developed for the purpose of obtaining small size droplets at a large flow rate. The ultrasonic horn has a non-monotonically decreasing cross sectional area to provide a large atomizing surface. Consisting of two horns and one actuator section, the 301 kHz atomizer nozzle is made of {100} silicon wafer with its axis aligned in the <100> direction to minimize the length. Two PZT plates are adhered to each side of the actuator section to provide driving power. This device atomizes the liquid film on its nozzle tip to generate droplets. It is capable of atomizing more than 350 μl/min water into droplet. The mean diameter of droplet is 9.61 μm and the size distribution is quite narrow. The atomizing mechanism is based on the capillary wave on liquid surface. Once the wave amplitude exceeds the critical value, the motion of surface liquid becomes unstable and releases droplets. Therefore, driving at resonant frequency is the most effective way for atomizing. Dimension deviation combined with different kind of liquid to be atomized causes resonant frequencies of nozzles changed from time to time. Due to the high Q nature of nozzles, atomizing performance will drop drastically once the driving frequency is different from its resonant frequency by very little amount. Therefore, a feedback circuit is designed to tracking resonant frequency automatically instead of adjusting driving frequency manually. Comparing the atomizing performance between the open loop system and the closed loop system, significant improvement is obtained.
Self-repairing composite walls for pressurized space habitats
A most important factor for human occupied habitats in space is to ensure that the pressurized habitat does not lose pressure catastrophically by the penetration of space debris or micrometeorites through the wall and into the pressurized space. Regenerative self repairing composites used for the space station habitat to prevent loss of pressure was demonstrated in tests The wall sample had ambient pressurized on one side with vacuum on the other, then was punctured all the way through; the pressure reading went from -26 inches of mercury to -26 inches and stayed there indefinitely. There was no loss of pressure! This will be a game changer for space habitat design. This represents a proposed test bed experimental effort on the International Space Station for self repairing regenerative walls of pressurized habitats, supported by significant puncture over vacuum and puncture testing performed to date, which will provide NASA with an innovative new light weight multi-hit superior Astronaut Protective Wall solution for pressurized space habitats.
Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes
Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.
Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers
M. Hübler, S. Nissle, M. Gurka, et al.
Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.
Industrial Applications II
icon_mobile_dropdown
Comparison of binary and multi-level logic electronics for embedded systems
Shirly M. Damti, Steve E. Watkins, R. Joe Stanley
Embedded systems are dependent on low-power, miniaturized instrumentation. Comparator circuits are common elements in applications for digital threshold detection. A multi-level, memory-based logic approach is in development that offers potential benefits in power usage and size with respect to traditional binary logic systems. Basic 4-bit operations with CMOS gates and comparators are chosen to compare circuit implementations of binary structures and quaternary equivalents. Circuit layouts and functional operation are presented. In particular, power characteristics and transistor count are examined. The potential for improved embedded systems based on the multilevel, memory-based logic is discussed.
Energy Harvesting
icon_mobile_dropdown
Mechanical motion conversion from reciprocating translation to one-directional rotation for effective energy harvesting
This paper proposes a new efficient motion conversion system which can be used in an energy harvesting system that converts wasted kinematic energy into electrical energy. In the proposed system, a reciprocating translational motion will be converted into one-directional rotational motion that spins a generator. The system will be devised with a two overlapping chambers (chamber 1 and 2) which move relatively through the sliding joint, and a pair of flexible strings (belt, steel wire, or chain) run around the rotor of the generator. Each end of the string fixed to chamber 1 is designed not to interfere with chamber 2 where the generator is mounted. When the two chambers move relatively, either top or bottom string is tensioned to spin the rotor while the other string is being rewound. One-directional clutch with a coil spring is engaged in a rewinding system – as found in a rowing machine, for example – so each string actuates the rotor only when it is in tension. This device can be applied to any mechanism where reciprocating translational motion exists, such as linear suspension system in a vehicle, a bicycle, and an energy generating marine buoy. The experimental study result will be reported as well as its battery-charging capacity will be demonstrated.
Characterization of micro-generators embedded in commercial-off-the-shelf watches for wearable energy harvesting
Tiancheng Xue, Shantnu Kakkar, Qianyu Lin, et al.
This paper presents the characterization of the micro-generators embedded in Commercial-Off-The-Shelf (COTS) watches based on a generalized rotational energy harvester model which predicts the upper bound on energy generation given certain system constraints and specific inputs. We augment this generalized model to represent the actual micro-generator used in the Seiko Kinetic watch with realistic damping coefficients which allow us to identify optimizations to move the system output towards the upper bound. We have developed a mobile data logging platform which captures 6 DOF inertia data and the voltage output from the micro-generator simultaneously. We have asked 6 subjects to conduct a series of daily activities with the platform worn on different locations of the body. This effort not only serves as the experimental validation of our model but also provides insight into the state of the art in wearable kinetic energy harvesting devices that are commercially available. Finally we identify the opportunity for improvement on energy generation and show that we can increase the power by reducing the mechanical damping in the system, which might require an alternative mechanism with inherent lower friction.
Characterization of real-world vibration sources with a view toward optimal energy harvesting architectures
A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These “idealized input signals” are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory “Real Vibration” database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.
Experimental comparison of piezoelectric and magnetostrictive shunt dampers
Vivake M. Asnani, Zhangxian Deng, Justin J. Scheidler, et al.
A novel mechanism called the vibration ring is being developed to enable energy conversion elements to be incorporated into the driveline of a helicopter or other rotating machines. Unwanted vibration is transduced into electrical energy, which provides a damping effect on the driveline. The generated electrical energy may also be used to power other devices (e.g., health monitoring sensors). PZT (‘piezoceramic’) and PMN-30%PT (‘single crystal’) stacks, as well as a Tb0.3Dy0.7Fe1.92 (‘Terfenol-D’) rod with a bias magnet array and a pickup coil, were tested as alternative energy conversion elements to use within the vibration ring. They were tuned for broadband damping using shunt resistors, and dynamic compression testing was conducted in a high-speed load frame. Energy conversion was experimentally optimized at 750Hz by tuning the applied bias stress and resistance values. Dynamic testing was conducted up to 1000Hz to determine the effective compressive modulus, shunt loss factor, internal loss factor, and total loss factor. Some of the trends of modulus and internal loss factor versus frequency were unexplained. The single crystal device exhibited the greatest shunt loss factor whereas the Terfenol-D device had the highest internal and total loss factors. Simulations revealed that internal losses in the Terfenol-D device were elevated by eddy current effects, and an improved magnetic circuit could enhance its shunt damping capabilities. Alternatively, the Terfenol-D device may be simplified to utilize only the eddy current dissipation mechanism (no pickup coil or shunt) to create broadband damping.
Poster Session
icon_mobile_dropdown
On the use of giant magnetostrictive materials in sonic transducers for liquid atomizers
M. Sheykholeslami, M. Ghodsi, Y. Hojjat, et al.
Liquid atomization has many applications such as car fuel injector, heat dissipation, coating, medical use, etc. The most common way in atomization is to exploit high frequency and high vibration amplitudes of piezoelectric devices. This paper investigates the effectiveness of a giant magnetostrictive transducer for atomizing liquids. Effect of vibration amplitudes on output parameters such as atomization size and output Dubai have been investigated so as the frequency response of the transducer when plunged into the water. Droplet size particles have been measured through high speed camera. Results show that using giant magnetostrictive transducer leads to uniformity that is considered a key factor in many applications. Results demonstrates that sonic transducers based on giant magnetostrictive material can be profitably used as liquid atomizers.
Analytical model of a giant magnetostrictive resonance transducer
M. Sheykholeslami, Y. Hojjat, S. Ansari, et al.
Resonance transducers have been widely developed and studied, as they can be profitably used in many application such as liquid atomizing and sonar technology. The active element of these devices can be a giant magnetostrictive material (GMM) that is known to have significant energy density and good performance at high frequencies. The paper introduces an analytical model of GMM transducers to describe their dynamics in different working conditions and to predict any change in their performance. The knowledge of the transducer behavior, especially in operating conditions different from the ideal ones, is helpful in the design and fabrication of highly efficient devices. This transducer is design to properly work in its second mode of vibration and its working frequency is around 8000 Hz. Most interesting parameters of the device, such as quality factor, bandwidth and output strain are obtained from theoretical analysis.