Proceedings Volume 9697

Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX

cover
Proceedings Volume 9697

Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 18 May 2016
Contents: 14 Sessions, 48 Papers, 57 Presentations
Conference: SPIE BiOS 2016
Volume Number: 9697

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9697
  • Ophthalmic New Technology
  • Cardiac Applications
  • Flow and Perfusion Imaging
  • OCT New Technology
  • Adaptive/Computational Optics
  • Catheter/Endoscopic/Needle Probes
  • Brain, Small Animal and Hand-Held OCT
  • PS-OCT
  • Elastography
  • Image Processing
  • Novel Contrast Mechanisms
  • Novel Microscopy
  • Poster Session
Front Matter: Volume 9697
icon_mobile_dropdown
Front Matter: Volume 9697
This PDF file contains the front matter associated with SPIE Proceedings Volume 9697, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Ophthalmic New Technology
icon_mobile_dropdown
Novel real-time volumetric tool segmentation algorithm for intraoperative microscope integrated OCT (Conference Presentation)
Christian Viehland, Brenton Keller, Oscar Carrasco-Zevallos, et al.
Optical coherence tomography (OCT) allows for micron scale imaging of the human retina and cornea. Current generation research and commercial intrasurgical OCT prototypes are limited to live B-scan imaging. Our group has developed an intraoperative microscope integrated OCT system capable of live 4D imaging. With a heads up display (HUD) 4D imaging allows for dynamic intrasurgical visualization of tool tissue interaction and surgical maneuvers. Currently our system relies on operator based manual tracking to correct for patient motion and motion caused by the surgeon, to track the surgical tool, and to display the correct B-scan to display on the HUD. Even when tracking only bulk motion, the operator sometimes lags behind and the surgical region of interest can drift out of the OCT field of view. To facilitate imaging we report on the development of a fast volume based tool segmentation algorithm. The algorithm is based on a previously reported volume rendering algorithm and can identify both the tool and retinal surface. The algorithm requires 45 ms per volume for segmentation and can be used to actively place the B-scan across the tool tissue interface. Alternatively, real-time tool segmentation can be used to allow the surgeon to use the surgical tool as an interactive B-scan pointer.
Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm
Jan Philip Kolb, Thomas Klein, Matthias Eibl, et al.
We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.
Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT (Conference Presentation)
We present retinal photoreceptor imaging with a line-field parallel spectral domain OCT modality, utilizing a commercially available 2D CMOS detector array operating at and imaging speed of 500 B-scans/s. Our results demonstrate for the first time in vivo structural and functional retinal assessment with a line-field OCT setup providing sufficient sensitivity, lateral and axial resolution and 3D acquisition rates in order to resolve individual photoreceptor cells. The phase stability of the system is manifested by the high phase-correlation across the lateral FOV on the level of individual photoreceptors. The setup comprises a Michelson interferometer illuminated by a broadband light source, where a line-focus is formed via a cylindrical lens and the back-propagated light from sample and reference arm is detected by a 2D array after passing a diffraction grating. The spot size of the line-focus on the retina is 5μm, which corresponds to a PSF of 50μm and an oversampling factor of 3.6 at the detector plane, respectively. A full 3D stack was recorded in only 0.8 s. We show representative enface images, tomograms and phase-difference maps of cone photoreceptors with a lateral FOV close to 2°. The high-speed capability and the phase stability due to parallel illumination and detection may potentially lead to novel structural and functional diagnostic tools on a cellular and microvascular imaging level. Furthermore, the presented system enables competitive imaging results as compared to respective point scanning modalities and facilitates utilizing software based digital aberration correction algorithms for achieving 3D isotropic resolution across the full FOV.
A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: technology development and clinical study (Conference Presentation)
Oleg Nadiarnykh, Annette C. Moll, Johannes F. de Boer
We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Due to the limitations of the existing real-time diagnostic tools the patients at risk are periodically monitored with retinal imaging to confirm the absence of new tumor seedings. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants’ eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.
In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain OCT and an efficient delay estimator
Valentin Aranha dos Santos, Leopold Schmetterer, Martin Gröschl, et al.
Dry eye syndrome is a highly prevalent disease of the ocular surface characterized by an instability of the tear film. Traditional methods used for the evaluation of tear film stability are invasive or show limited repeatability. Here we propose a new noninvasive approach to measure tear film thickness using an efficient delay estimator and ultrahigh resolution spectral domain OCT. Silicon wafer phantoms with layers of known thickness and group index were used to validate the estimator-based thickness measurement. A theoretical analysis of the fundamental limit of the precision of the estimator is presented and the analytical expression of the Cramér-Rao lower bound (CRLB), which is the minimum variance that may be achieved by any unbiased estimator, is derived. The performance of the estimator against noise was investigated using simulations. We found that the proposed estimator reaches the CRLB associated with the OCT amplitude signal. The technique was applied in vivo in healthy subjects and dry eye patients. Series of tear film thickness maps were generated, allowing for the visualization of tear film dynamics. Our results show that the central tear film thickness precisely measured in vivo with a coefficient of variation of about 0.65% and that repeatable tear film dynamics can be observed. The presented method has the potential of being an alternative to breakup time measurements (BUT) and could be used in clinical setting to study patients with dry eye disease and monitor their treatments.
Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)
Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.
Cardiac Applications
icon_mobile_dropdown
Angiographic imaging using an 18.9 MHz swept-wavelength laser that is phase-locked to the data acquisition clock and resonant scanners (Conference Presentation)
Serhat Tozburun, Cedric Blatter, Meena Siddiqui, et al.
In this study, we present an angiographic system comprised from a novel 18.9 MHz swept wavelength source integrated with a MEMs-based 23.7 kHz fast-axis scanner. The system provides rapid acquisition of frames and volumes on which a range of Doppler and intensity-based angiographic analyses can be performed. Interestingly, the source and data acquisition computer can be directly phase-locked to provide an intrinsically phase stable imaging system supporting Doppler measurements without the need for individual A-line triggers or post-processing phase calibration algorithms. The system is integrated with a 1.8 Gigasample (GS) per second acquisition card supporting continuous acquisition to computer RAM for 10 seconds. Using this system, we demonstrate phase-stable acquisitions across volumes acquired at 60 Hz frequency. We also highlight the ability to perform c-mode angiography providing volume perfusion measurements with 30 Hz temporal resolution. Ultimately, the speed and phase-stability of this laser and MEMs scanner platform can be leveraged to accelerate OCT-based angiography and both phase-sensitive and phase-insensitive extraction of blood flow velocity.
Integrated RFA/OCT catheter for real-time guidance of cardiac RFA therapy (Conference Presentation)
Xiaoyong Fu, Colin Blumenthal, Deniz Dosluoglu, et al.
Currently, cardiac radiofrequency ablation is guided by indirect signals. We demonstrate an integrated radiofrequency ablation (RFA) and optical coherence tomography (OCT) probe for directly monitoring of the RFA procedure with OCT images in real time. The integrated RFA/OCT probe is modified from a standard commercial RFA catheter, and a newly designed and fabricated miniature forward-viewing cone-scanning OCT probe is integrated into the modified probe. The OCT system is verified with the human finger images, and the results show the integrated RFA/OCT probe can acquire high quality OCT images. The radiofrequency energy delivering function of the integrated probe is verified by comparing the RFA lesion sizes with standard commercial RFA probe. For the standard commercial probe, the average width and depth of the 10 lesions were 3.5 mm and 1.8 mm respectively. For the integrated RFA/OCT probe, the average width and depth of the 10 lesions were 3.6 mm and 1.7 mm respectively. The lesions created by the two probes are indistinguishable in size. This demonstrates that our glass window in the integrated probe has little effect on the RF energy delivery. And the integrated probe is used to monitoring the cardiac RFA procedure in real time. The results show that the RFA lesion formation can be confirmed by the loss of birefringence in the heart tissue. The system can potentially in vivo image of the cardiac wall to aid RFA therapy for cardiac arrhythmias.
Automatic classification of atherosclerotic plaques imaged with intravascular OCT (Conference Presentation)
Jose D. Rico-Jimenez, Daniel U. Campos-Delgado, Martin Villiger, et al.
A novel computational method for plaque tissue characterization based on Intravascular Optical Coherence Tomography (IV-OCT) is presented. IV-OCT is becoming a powerful tool for the clinical evaluation of atherosclerotic plaques; however, it requires a trained expert for visual assessment and interpretation of the imaged plaques. Moreover, due to the inherit effect of speckle and the scattering attenuation of the optical scheme the direct interpretation of OCT images is limited. To overcome these difficulties, we propose to automatically identify the A-line profiles of the most significant plaque types (normal, fibrotic, or lipid-rich) and their respective abundance by using a probabilistic framework and blind alternated least squares to achieve the optimal decomposition. In this context, we present preliminary results of this novel probabilistic classification tool for intravascular OCT that relies on two steps. First, the B-scan is pre-processed to remove catheter artifacts, segment the lumen, select the region of interest (ROI), flatten the tissue surface, and reduce the speckle effect by a spatial entropy filter. Next, the resulting image is decomposed and its A-lines are classified by an automated strategy based on alternating-least-squares optimization. Our early results are encouraging and suggest that the proposed methodology can identify normal tissue, fibrotic and lipid-rich plaques from IV-OCT images.
Automated tissue classification of intracardiac optical coherence tomography images (Conference Presentation)
Yu Gan, David Tsay, Syed B. Amir, et al.
Remodeling of the myocardium is associated with increased risk of arrhythmia and heart failure. Our objective is to automatically identify regions of fibrotic myocardium, dense collagen, and adipose tissue, which can serve as a way to guide radiofrequency ablation therapy or endomyocardial biopsies. Using computer vision and machine learning, we present an automated algorithm to classify tissue compositions from cardiac optical coherence tomography (OCT) images. Three dimensional OCT volumes were obtained from 15 human hearts ex vivo within 48 hours of donor death (source, NDRI). We first segmented B-scans using a graph searching method. We estimated the boundary of each region by minimizing a cost function, which consisted of intensity, gradient, and contour smoothness. Then, features, including texture analysis, optical properties, and statistics of high moments, were extracted. We used a statistical model, relevance vector machine, and trained this model with abovementioned features to classify tissue compositions. To validate our method, we applied our algorithm to 77 volumes. The datasets for validation were manually segmented and classified by two investigators who were blind to our algorithm results and identified the tissues based on trichrome histology and pathology. The difference between automated and manual segmentation was 51.78 ± 50.96 μm. Experiments showed that the attenuation coefficients of dense collagen were significantly different from other tissue types (P < 0.05, ANOVA). Importantly, myocardial fibrosis tissues were different from normal myocardium in entropy and kurtosis. The tissue types were classified with an accuracy of 84%. The results show good agreements with histology.
Pacing-induced congenital heart defects assessed by OCT (Conference Presentation)
Stephanie M. Ford, Matt T. McPheeters, Yves T. Wang, et al.
The role of hemodynamics in early heart development is poorly understood. In order to successfully assess the impact of hemodynamics on development, we need to monitor and perturb blood flow, and quantify the resultant effects on morphology. Here, we have utilized cardiac optical pacing to create regurgitant flow in embryonic hearts and OCT to quantify regurgitation percentage and resultant morphology. Embryonic quail in a shell-less culture were optically paced at 3 Hz (well above the intrinsic rate or 1.33-1.67 Hz) on day 2 of development (3-4 weeks human) for 5 minutes. The pacing fatigued the heart and led to a prolonged period (> 1 hour) of increased regurgitant flow. Embryos were kept alive until day 3 (cardiac looping - 4-5 weeks human) or day 8 (4 chambered heart - 8 weeks human) to quantify resultant morphologic changes with OCT. All paced embryos imaged at day 3 displayed cardiac defects. The extent of regurgitant flow immediately after pacing was correlated with cardiac cushion size 24-hours post pacing (p-value < 0.01) with higher regurgitation leading to smaller cushions. Almost all embryos (16/18) surviving to day 8 exhibited congenital heart defects (CHDs) including 11/18 with valve defects, 5/18 with ventricular septal defects and 5/18 with hypoplastic right ventricles. Our data suggests that regurgitant flow leads to smaller cushions, which develop into abnormal valves and septa. Our model produces similar phenotypes as found in our fetal alcohol syndrome and velo-cardio-facial/DiGeorge syndrome models suggesting that hemodynamics plays a role in these syndromes as well. Utilizing OCT and optical pacing to understand hemodynamics in development is an important step towards determining CHD mechanisms and ultimately developing earlier treatments.
Flow and Perfusion Imaging
icon_mobile_dropdown
Imaging vascular dynamics in human retina using full-field swept-source optical coherence tomography (Conference Presentation)
Hendrik Spahr, Dierck Hillmann, Carola Hain, et al.
We demonstrate a new non-invasive method to assess the functional condition of the retinal vascular system. Phase-sensitive full-field swept-source optical coherence tomography (PhS-FF-SS-OCT) is used to investigate retinal vascular dynamics at unprecedented temporal resolution. Motion of retinal tissue, that is induced by expansion of the vessels therein, is measured with an accuracy of about 10 nm. The pulse shape of arterial and venous pulsation, their temporal delay as well as the frequency dependent pulse propagation through the capillary bed are determined. For the first time, imaging speed and motion sensitivity are sufficient for a direct measurement of pulse waves propagating with more than 600 mm/s in retinal vessels of a healthy young subject.
Particle streak velocimetry-OCT (PSV-OCT): a novel method for multi-vector component velocimetry of microscale flow physiology (Conference Presentation)
Kevin C. Zhou, Brendan K. Huang, Ute A. Gamm, et al.
We present a new method for 2.5 and 3 vector component velocimetry. We call this method particle streak velocimetry OCT (PSV-OCT). PSV-OCT generates two-dimensional, 2.5 vector component (v_x,|v_y|,v_z) cross-sectional maps of microscale flow velocity (e.g. biological cilia-driven fluid flow). The enabling insight is that a tracer particle in sparsely-seeded fluid flow traces out streaks in (x,z,t)-space. The streak orientations in x-t and z-t yield v_x and v_z, respectively. The in-plane (x-z plane) residence time yields the out-of-plane speed |v_y|. Vector component values are generated by fitting streaks to a model of image formation. We demonstrate cross-sectional estimation of (v_x,|v_y|,v_z) in two important animal models in ciliary biology: Xenopus embryos (tadpoles) and mouse trachea. Further, by incorporation the assumption of incompressible flow into the estimation process, we are able to generate 3 vector component (v_x,v_y,v_z) estimates in three spatial dimensions from 2.5 vector component measurements taken in parallel OCT planes in 3D space.
Dynamic contrast optical coherence tomography: quantitative measurement of microvascular transit-time distributions in vivo (Conference Presentation)
Transit time is a fundamental microcirculatory parameter that is critical in determining oxygen delivery from capillaries to surrounding tissue. Recently, it was demonstrated theoretically that capillary transit-time heterogeneity potentially leads to non-uniform oxygen extraction in micro-domains. However, in spite of its importance, capillary transit-time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of the kinetics of an intravascular tracer during its passage through the field-of-view. DyC-OCT is used to quantitatively measure the transit-time distribution in microvascular networks in cross-section at the single-capillary level. Transit-time metrics are derived from analysis of the temporal characteristics of the dynamic scattering signal, related to tracer concentration, using indicator-dilution theory. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against the dilution curves measured using a fluorescent plasma label in the surface pial vessels of a mouse brain, imaged through a thinned-skull, glass coverslip-reinforced cranial window, the laminar transit-time distribution was investigated in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with the earliest transit times in the middle cortical layers, and the lowest heterogeneity in cortical layer 4. The new DyC-OCT technique affords a novel perspective of microvascular networks, with the unique capability of performing simultaneous measurements of transit-time distributions across cortical laminae.
Visible light optical coherence tomography for microvascular oximetry in ocular circulation (Conference Presentation)
Visible light optical coherence tomography (vis-OCT) is intrinsically capable of optical determination of blood oxygen saturation (sO2). Thanks to its 3D sectioning ability, confounding factors that plaque multi-wavelength fundus photography can be avoided. We further supplemented it with motion-enhanced angiography (vis-OCTA), which allowed us to resolve retinal micro vessels without losing spectral information. As a result, spectroscopic vis-OCTA can extract microvascular sO2 which are generally inaccessible. Here we extend the theoretical formulation of vis-OCTA oximetry to include optical attenuation, scattering and motion contrast. The model allows robust estimation of sO2, while also promising reduction of illuminating power to 1/3 of current value of ~1 mW. To demonstrate the capability of our approach, we performed oxygen challenge while taking vis-OCTA measurements on rat ocular circulation in vivo. We supplied the experiment animal with the following gas mixture: normal air, 5% CO2 air, pure O2 and 10% O2 air. For each inhalation gas, the OCTA measurements were compared with peripheral capillary sO2 (spO2) provided by a pulse oximeter. The retinal artery sO2 measurements corresponded well with spO2 reading as expected (R2 = 0.87). We found that both retinal and choroidal circulation sO2 moderately increased when we supplied 5% CO2 air. 100% O2 inhalation significantly increased both artery and vein oxygenation. On the contrary, 10% O2 air could deplete the oxygen reservoir in the circulation and lead to low sO2 readings.
Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)
The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28±0.08 μL/min (p<0.001), and 0.20±0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).
Noise-immune complex correlation for vasculature imaging based on standard and Jones-matrix optical coherence tomography
A new optical coherence angiography (OCA) method, called correlation mapping OCA (cmOCA), is presented by using the SNR-corrected complex correlation. An SNR-correction theory for the complex correlation calculation is presented. The method also integrates a motion-artifact-removal method for the sample motion induced decorrelation artifact. The theory is further extended to compute more reliable correlation by using multi- channel OCT systems, such as Jones-matrix OCT. The high contrast vasculature imaging of in vivo human posterior eye has been obtained. Composite imaging of cmOCA and degree of polarization uniformity indicates abnormalities of vasculature and pigmented tissues simultaneously.
Depth encoded three-beam swept source Doppler optical coherence tomography
A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.
OCT New Technology
icon_mobile_dropdown
Miniaturized silicon photonic integrated swept source OCT receiver with dual polarization, dual balanced, in-phase and quadrature detection (Conference Presentation)
Zhao Wang, Hsiang-Chieh Lee, Long Chen, et al.
Miniaturization and cost reduction of OCT systems are important for enabling many new clinical applications as well as accelerating the development of existing applications. Silicon photonics is an important low-cost, high-volume, multi-functional platform for integrated optics because it can benefit from existing semiconductor fabrication techniques to integrate many advanced optical functions onto a single microchip. We present a miniaturized silicon photonic integrated swept source OCT receiver, measuring 3×4mm2, with advanced functionalities including dual polarization, dual balanced, in-phase and quadrature detection, essentially enabling the detection of the full vector field (amplitude, phase, and polarization) of the optical signal. With this integrated receiver, we demonstrate full-range OCT for complex conjugate artifact suppression, polarization diversity detection for removing polarization fading artifact, and polarization sensitive OCT for tissue birefringence imaging. The silicon photonic integrated receiver is a key advance towards developing a miniaturized, multi-functional swept source OCT system.
Simultaneous high-speed and long-range imaging with optically subsampled OCT (Conference Presentation)
Current implementations of OCT can either image over long depth ranges with slower imaging speeds, or at high imaging speeds with more limited depth ranges. The simultaneous operation at multi-centimeter depth ranges and MHz-scale A-line rates is challenging due to limitations in the electronic bandwidths of current digitizers and data transfer buses. The lack of multi-cm depth range, MHz-speed OCT hinders the translation of the imaging technology to sites and organs with complex geometries and expansive fields. Here we describe a first demonstration of a simultaneous cm-scale depth range and MHz-scale A-line rate OCT platform. We describe the principles behind data compression by optically subsampled OCT, the development and performance of a novel subsampled OCT wavelength stepped source operating at 19 MHz A-line rates, the extension of passive quadrature demodulation architectures to GHz-scale acquisition bandwidths, and the first ever integration of these technologies into a subsampled OCT system capable of acquiring volume data at video-rates across multi-cm depth ranges. We use this platform to demonstrate depth resolved measurements over large fields that exhibit complex topography such as the face. The performance, limitations, and the next stages of technical development for this optically subsampled OCT platform are summarized. This platform may open new opportunities for camera-like OCT deployments in sites and organs that are inaccessible to current OCT technologies.
Electro-thermal MEMS fiber scanner for endoscopic optical coherence tomography (Conference Presentation) (Withdrawal Notice)
Hyeon-Cheol Park, Xiaoyang Zhang, Jessica Mavadia-Shukla, et al.
Publisher’s Note: This conference presentation, originally published on 26 April 2016, was withdrawn per author request.
Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate
Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.
Spectral estimation optical coherence tomography for axial super-resolution (Conference Presentation)
The sample depth reflectivity profile of Fourier domain optical coherence tomography (FD-OCT) is estimated from the inverse Fourier transform of the spectral interference signals (interferograms). As a result, the axial resolution is fundamentally limited by the coherence length of the light source. We demonstrate an axial resolution improvement method by using the autoregressive spectral estimation technique to instead of the inverse Fourier transform to analyze the spectral interferograms, which is named as spectral estimation OCT (SE-OCT). SE-OCT improves the axial resolution by a factor of up to 4.7 compared with the corresponding FD-OCT. Furthermore, SE-OCT provides a complete sidelobe suppression in the point-spread function. Using phantoms such as an air wedge and micro particles, we prove the ability of resolution improvement. To test SE-OCT for real biological tissue, we image the rat cornea and demonstrate that SE-OCT enables clear identification of corneal endothelium anatomical details ex vivo. We also find that the performance of SE-OCT is depended on SNR of the feature object. To evaluate the potential usage and define the application scope of SE-OCT, we further investigate the property of SNR dependence and the artifacts that may be caused. We find SE-OCT may be uniquely suited for viewing high SNR layer structures, such as the epithelium and endothelium in cornea, retina and aorta. Given that SE-OCT can be implemented in the FD-OCT devices easily, the new capabilities provided by SE-OCT are likely to offer immediate improvements to the diagnosis and management of diseases based on OCT imaging.
SNR of swept SLEDs and swept lasers for OCT (Conference Presentation)
Bart C. Johnson, Walid Atia, Dale Flanders, et al.
A back-to-back comparison of a tunable narrow-band SLED (TSLED) and a swept laser are made for OCT applications. Both are 1310 nm sources sweeping at 50 kHz over a 100 nm tuning range and have similar coherence lengths. The TSLED consists of a seed SOA and two amplification SOAs. The ASE is filtered twice by a tunable MEMS Fabry Perot in a polarization multiplexed double-pass arrangement on either side of the middle SOA. This allows very long coherence lengths to be achieved. A fundamental issue with a SLED is that the RIN is proportional to 1/Linewidth, meaning that the longer the coherence length, the higher the RIN. High RIN also leads to increased clock jitter. Most swept source SNR calculations assume that the noise is independent of the amplitude of the signal light: The higher the signal, the higher the SNR. We show that in the case of the TSLED, that the high signal RIN and clock jitter give rise to additional noises that scale with signal power. This leads to an SNR limit in the case of the TSLED: The higher the signal, the higher the noise, so the SNR reaches a limit. While the TSLED has respectable sensitivity, the SNR limit causes noise streaks in an image where the A-line has a high reflectivity point. The laser, which is shot noise limited, does not exhibit this effect. This is illustrated with SNR data and side-by-side images taken with the two sources.
Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging
Tom Pfeiffer, Wolfgang Wieser, Thomas Klein, et al.
In order to realize fast OCT-systems with adjustable line rate, we investigate averaging of image data from an FDML based MHz-OCT-system. The line rate can be reduced in software and traded in for increased system sensitivity and image quality. We compare coherent and incoherent averaging to effectively scale down the system speed of a 3.2 MHz FDML OCT system to around 100 kHz in postprocessing. We demonstrate that coherent averaging is possible with MHz systems without special interferometer designs or digital phase stabilisation. We show OCT images of a human finger knuckle joint in vivo with very high quality and deep penetration.
The how and why of a $10 optical coherence tomography system
M. J. Leahy, C. Wilson, J. Hogan, et al.
Optical Coherence Tomography (OCT) is the fastest growing medical imaging modality with more than $1Bln worth of scans ordered and over $400M worth of equipment shipped in 2010, just nine years after its commercialization. It is at various stages of acceptance and approvals for eye care, coronary care and skin cancer care and is spreading rapidly to other medical specialties. Indeed, it is the leading success of translation of biophotonics science into clinical practice. Significant effort is being made to provide sufficient evidence for efficacy across a broad range of applications, but more needs to be done to radically reduce the cost of OCT so that it can spread to underserved markets and address new, fast growing opportunities in mobile health monitoring. Currently, a clinical OCT system ranges in price from ~$50k to ~$150k, typically is housed on a bedside trolley, runs off AC power, and requires skilled, extensively trained technicians to operate. The cost, size, and skill level required keep this wonderful technology beyond the reach of mainstream primary care, much less individual consumers seeking to monitor their health on a routine basis outside of typical clinical settings and major urban medical centers. Beyond the first world market, there are 6.5 billion people with similar eye and skin cancer care needs which cannot be met by the current generation of large, expensive, complex, and delicate OCT systems. This paper will describe a means to manufacture a low cost, compact, simple, and robust OCT system, using parts and a configuration similar to a CD-ROM or DVD pickup unit (see figure 1). Essentially, this system—multiple reference OCT (MR-OCT)—is based on the use of a partial mirror in the reference arm of a time domain OCT system to provide multiple references, and hence A-scans, at several depths simultaneously (see figure 2). We have already shown that a system based on this configuration can achieve an SNR of greater than 90 dB, which is sufficient for many medical imaging and biometry applications.
Adaptive/Computational Optics
icon_mobile_dropdown
Phase sensitive adaptive optics assisted SLO/OCT for retinal imaging (Conference Presentation)
Adaptive optics (AO) is essential in order to visualize small structures such as cone and rod photoreceptors in the living human retina in vivo. By combining AO with optical coherence tomography (OCT) the axial resolution in the images can be further improved. OCT provides access to the phase of the light returning from the retina which allows a measurement of subtle length changes in the nanometer range. These occur for example during the renewal process of cone outer segments. We present an approach for measuring very small length changes using an extended AO scanning laser ophthalmoscope (SLO)/ OCT instrument. By adding a second OCT interferometer that shares the same sample arm as the first interferometer, phase sensitive measurements can be performed in the en-face imaging plane. Frame averaging decreases phase noise which greatly improves the precision in the measurement of associated length changes.
Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging
Yifan Jian, Sujin Lee, Michelle Cua, et al.
Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye’s pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.
Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)
A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.
3D-spectral domain computational imaging
Trevor Anderson, Armin Segref, Grant Frisken, et al.
We present a proof-of-concept experiment utilizing a novel “snap-shot” spectral domain OCT technique that captures a phase coherent volume in a single frame. The sample is illuminated with a collimated beam of 75 μm diameter and the back-reflected light is analyzed by a 2-D matrix of spectral interferograms. A key challenge that is addressed is simultaneously maintaining lateral and spectral phase coherence over the imaged volume in the presence of sample motion. Digital focusing is demonstrated for 5.0 μm lateral resolution over an 800 μm axial range.
Catheter/Endoscopic/Needle Probes
icon_mobile_dropdown
Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)
Lida P Hariri M.D., David C. Adams, Thomas V. Colby M.D., et al.
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a 3 year survival rate of 50%. Diagnostic certainty of IPF is essential to determine the most effective therapy for patients, but often requires surgery to resect lung tissue and look for microscopic honeycombing not seen on chest computed tomography (CT). Unfortunately, surgical lung resection has high risks of associated morbidity and mortality in this patient population. We aim to determine whether bronchoscopic optical coherence tomography (OCT) can serve as a novel, low-risk paradigm for in vivo IPF diagnosis without surgery or tissue removal. OCT provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We have designed bronchoscopic OCT catheters to effectively and safely access the peripheral lung, and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We utilized these OCT catheters to perform bronchoscopic imaging in lung tissue from patients with pulmonary fibrosis to determine if bronchoscopic OCT could successfully visualize features of IPF through the peripheral airways. OCT was able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.
Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation) (Withdrawal Notice)
Wu Yuan, Milad Alemohammad, Xiaoyun Yu, et al.
Publisher’s Note: This conference presentation, originally published on 2 April 2016, was withdrawn per author request.
Brain, Small Animal and Hand-Held OCT
icon_mobile_dropdown
Optical polarization tractography based on polarization-sensitive optical coherence tomography
Gang Yao, Yuanbo Wang, Mohammadreza Ravanfar, et al.
Fibrous tissues exist in many parts of the body, where the directional fiber organization is critical in maintaining their normal functions. Disruption of the normal fibrous structure is often linked to tissue dysfunction. An imaging tool that can reveal the detailed fiber architecture will be valuable for our understanding of the structure-function relationship in these tissues. Here, we described a new high-resolution tractography method developed from Jones matrix polarizationsensitive optical coherence tomography. We demonstrated its applications for visualization of fibrous structures in several different animal tissues.
Imaging of the stroke-related changes in the vascular system of the mouse brain with the use of extended focus optical coherence microscopy
We used Optical Coherence Microscopy (OCM) to monitor structural and functional changes due to ischemic stroke in small animals brains in vivo. To obtain lateral resolution of 2.2 μm over the range of 600 μm we used extended focus configuration of OCM instrument involving Bessel beam. It provided access to detailed 3D information about the changes in brain vascular system up to the level of capillaries across I and II/III layers of neocortex. We used photothrombotic stroke model involving photoactive application of rose bengal to assure minimal invasiveness of the procedure and precise localization of the clot distribution center. We present the comparative analysis involving structural and angiographic maps of the stroke-affected brain enabling in-depth insight to the process of development of the disorder.
Investigating alcohol-induced congenital heart defects using optical coherence tomography (Conference Presentation)
Shi Gu, Lindsy M. Peterson, Pei Ma, et al.
Fetal alcohol syndrome commonly results in neurological and craniofacial defects, additionally, as high as 54% of live-born children with this syndrome also possess cardiac abnormalities. We have previously shown that CNCC-ablated embryos exhibit similar structural and functional phenotypes as ethanol-exposed embryos. Here, we present progress on two fronts toward understanding the association between CNCC dysfunction and FAS-related CHDs. We have developed a technique for measuring the thickness of the cardiac cushions throughout the heart. These values were then mapped onto a surface mesh of the myocardial wall for 3-D visualization. The cushions were observed to be significantly reduced in the outflow tract of CNCC-ablated embryos. We also observed a correlation between abnormal pulsed Doppler waveforms and increased separation of the atrioventricular inferior and superior cushions. This correlation between function and structure will enable rapid phenotyping of perturbed embryos. Finally, we present our preliminary results using methyl donors to rescue ethanol-exposed embryonic CHDs. Betaine was administered along with the ethanol injection to embryos at 21 hours of development. The embryos were then analyzed at day 8 for survival and heart morphology. The administration of betaine resulted in a significant increase in survival and normalization of atrioventricular valve leaflet volume and interventricular septum thickness.
An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)
Aneesh Alex, Airong Li, Jing Men, et al.
Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly’s life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.
In-vivo cutaneous burn characterization and scar assay with multi-functional optical coherence tomography (Conference Presentation)
Research about the cutaneous burn was separated by assessment of burn depth and development of wound healing therapy. Various in vivo optical techniques were used to determined burn depth and observe the wound healing process. In this paper, we report the usage of multimodal optical coherence tomography system, which containing angiographic and polarization sensitive OCT (PS-OCT) with conventional OCT system, at burn studies. Burn was induced at 4 different degrees by control the attachment time of 75 Celsius degree heated brass rod at dorsal skin of the rat. For the burn depth assessment, we imaged the different burn degrees area. Changes of polarization sensitive signal were providing burn depth information. To see the wound healing process, each wound area imaged at long period. Conventional OCT shows the structural information about the tissue, like layer and hair follicle. Angiographic OCT provides vascular distribution and diameter of blood vessel information and PS-OCT shows birefringence tissue information. Based on the multimodal OCT data, burn depth assessment were well matched with burn induced time and wound healing process was consistent with previous wound healing report. Therefore, the multimodal OCT holds potential for burn study.
Development of a low-cost hand-held system for optical coherence tomography imaging (Conference Presentation)
Paritosh Pande, Ryan L. Shelton, Guillermo L. Monroy, et al.
We report the development of a low-cost hand-held optical coherence imaging system. The proposed system is based on the principle of linear optical coherence tomography (Linear OCT), a technique which was proposed in the early 2000s as a simpler alternative to the conventional time-domain and Fourier-domain OCT. In our design, as in the traditional Michaelson interferometer, light from a broadband source is split into sample and reference beams. Unlike in a Michaelson interferometer though, upon return, a tilt is introduced to the reference beam before it is combined with the sample beam to illuminate a detector array. The resulting fringe pattern encodes information about the relative time-of-flight of photons between the sample and reference arms, which can be decoded by standard signal processing techniques to obtain depth resolved reflectivity profiles of the sample. The axial resolution and the SNR of our system was measured to be approximately 5.2 μm and 80 dB, respectively. The performance of the proposed system was compared with a standard state-of-the-art Fourier-domain low coherence interferometry (LCI) system by imaging several biological and non-biological samples. The results of this study indicate that the proposed low-cost system might be a suitable choice for applications where the imaging depth and SNR can be traded for lower cost and simpler optical design. Two potentially useful applications of the proposed imaging system could be for imaging the human tympanic membrane (TM) for diagnosing middle ear pathologies, and to visualize the sub-surface features of materials for non-destructive evaluation and quality inspection.
PS-OCT
icon_mobile_dropdown
Needle-based polarization-sensitive OCT of breast tumor (Conference Presentation)
Martin Villiger, Dirk Lorenser, Robert A. McLaughlin, et al.
OCT imaging through miniature needle probes has extended the range of OCT and enabled structural imaging deep inside breast tissue, with the potential to assist in the intraoperative assessment of tumor margins. However, in many situations, scattering contrast alone is insufficient to clearly identify and delineate malignant areas. Here, we present a portable, depth-encoded polarization-sensitive OCT system, connected to a miniature needle probe. From the measured polarization states we constructed the tissue Mueller matrix at each sample location and improved the accuracy of the measured polarization states through incoherent averaging before retrieving the depth-resolved tissue birefringence. With the Mueller matrix at hand, additional polarization properties such as depolarization are readily available. We then imaged freshly excised breast tissue from a patient undergoing lumpectomy. The reconstructed local retardation highlighted regions of connective tissue, which exhibited birefringence due to the abundance of collagen fibers, and offered excellent contrast to areas of malignant tissue, which exhibited less birefringence due to their different tissue composition. Results were validated against co-located histology sections. The combination of needle-based imaging with the complementary contrast provided by polarization-sensitive analysis offers a powerful instrument for advanced tissue imaging and has potential to aid in the assessment of tumor margins during the resection of breast cancer.
Studying airway smooth muscle in vivo with PS-OCT (Conference Presentation)
David C. Adams, Lida P. Hariri M.D., Alyssa J. Miller, et al.
Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. We have developed novel techniques that we applied to Polarization Sensitive OCT (PS-OCT) in order to assess ASM, and validated our results with a substantial number of histological matches. In this work we employ our system in the study of ASM distributions in both asthmatic and non-asthmatic airways with data obtained in vivo from human volunteers. By isolating the ASM and performing volumetric analysis we obtain a variety of informative metrics such as ASM thickness and band width, and compare these quantities between subject types. Furthermore, we demonstrate that the degree of birefringence of the ASM can be associated with contractility, allowing us to estimate pressure exerted by ASM during contraction. We apply this technique to in vivo datasets from human volunteers as well.
Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction
Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging.

The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal.

In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and posterior eye segment as well as in skin imaging. The new estimator shows superior performance and also shows clearer image contrast.
Spectral-domain, polarization-sensitive optical coherence tomography system insensitive to fiber disturbances
Manuel J. Marques, Sylvain Rivet, Adrian Bradu, et al.
This communication presents a spectral-domain, polarization-sensitive optical coherence tomography (PS-OCT) system based on a fiber interferometer using single-mode fibers and couplers. The two orthogonal polarization components which define the polarization state are sequentially detected by a single line camera. Retardance measurements can be affected by polarimetric effects in fibers and couplers. This configuration bypasses such issues by performing the polarization selection before the collection fiber, employing a combination of a polarization rotator and a linear polarizer. Numerical simulations are carried out to verify the tolerance of the proposed configuration to fiber-based disturbances; this was further experimentally verified with similar net retardance maps of a birefringent phantom being obtained for two different settings of induced fiber birefringence.
Elastography
icon_mobile_dropdown
Towards intraoperative assessment of tumor margins in breast surgery using optical coherence elastography (Conference Presentation)
Brendan F. Kennedy, Philip Wijesinghe, Wes M. Allen, et al.
Surgical excision of tumor is a critical factor in the management of breast cancer. The most common surgical procedure is breast-conserving surgery. The surgeon’s goal is to remove the tumor and a rim of healthy tissue surrounding the tumor: the surgical margin. A major issue in breast-conserving surgery is the absence of a reliable tool to guide the surgeon in intraoperatively assessing the margin. A number of techniques have been proposed; however, the re-excision rate remains high and has been reported to be in the range 30-60%. New tools are needed to address this issue. Optical coherence elastography (OCE) shows promise as a tool for intraoperative tumor margin assessment in breast-conserving surgery. Further advances towards clinical translation are limited by long scan times and small fields of view. In particular, scanning over sufficient areas to assess the entire margin in an intraoperative timeframe has not been shown to be feasible. Here, we present a protocol allowing ~75% of the surgical margins to be assessed within 30 minutes. To achieve this, we have incorporated a 65 mm-diameter (internal), wide-aperture annular piezoelectric transducer, allowing the entire surface of the excised tumor mass to be automatically imaged in an OCT mosaic comprised of 10 × 10 mm tiles. As OCT is effective in identifying adipose tissue, our protocol uses the wide-field OCT to selectively guide subsequent local OCE scanning to regions of solid tissue which often present low contrast in OCT images. We present promising examples from freshly excised human breast tissue.
Corneal elastic anisotropy and hysteresis as a function of IOP assessed by optical coherence elastography
The mechanical anisotropic properties of the cornea can be an important indicator for determining the onset and severity of different diseases and can be used to assess the efficacy of various therapeutic interventions, such as cross-linking and LASIK surgery. In this work, we introduce a noncontact method of assessing corneal mechanical anisotropy as a function of intraocular pressure (IOP) using optical coherence elastography (OCE). A focused air-pulse induced low amplitude (<10 μm) elastic waves in fresh porcine corneas in the whole eye-globe configuration in situ. A phase-stabilized swept source optical coherence elastography (PhS-SSOCE) system imaged the elastic wave propagation at stepped radial angles, and the OCE measurements were repeated as the IOP was cycled. The elastic wave velocity was then quantified to determine the mechanical anisotropy and hysteresis of the cornea. The results show that the elastic anisotropy at the corneal of the apex of the cornea becomes more pronounced at higher IOPs, and that there are distinct radial angles of higher and lower stiffness. Due to the noncontact nature and small amplitude of the elastic wave, this method may be useful for characterizing the elastic anisotropy of ocular and other tissues in vivo completely noninvasively.
Optical coherence elastography based on high speed imaging of single-hot laser-induced acoustic waves at 16 kHz frame rate
Shaozhen Song, Bao-Yu Hsieh, Wei Wei, et al.
Shear wave OCE (SW-OCE) is a novel technique that relies on the detection of the localized shear wave speed to map tissue elasticity. In this study, we demonstrate high speed imaging to capture single-shot transient shear wave propagation for SW-OCE. The fast imaging speed is achieved using a Fourier domain mode-locked (FDML) high-speed swept-source OCT (SS-OCT) system. The frame rate of shear wave imaging is 16 kHz, at an A-line rate of ~1.62 MHz, enabling the detection of high-frequency shear waves up to 8 kHz in bandwidth. Several measures are taken to improve the phase-stability of the SS-OCT system, and the measured displacement sensitivity is ~10 nanometers. To facilitate non-contact elastography, shear waves are generated with the photo-thermal effect using an ultra-violet pulsed laser. High frequency shear waves launched by the pulsed laser contain shorter wavelengths and carry rich localized elasticity information. Benefiting from single-shot acquisition, each SWI scan only takes 2.5 milliseconds, and the reconstruction of the elastogram can be performed in real-time with ~20 Hz refresh rate. SW-OCE measurements are demonstrated on porcine cornea ex vivo. This study is the first demonstration of an all-optical method to perform real-time 3D SW-OCE. It is hoped that this technique will be applicable in the clinic to obtain high-resolution localized quantitative measurements of tissue biomechanical properties.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field
Andrea Curatolo, Martin Villiger, Dirk Lorenser, et al.
Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.
Single shot line-field optical coherence elastography
Chih-Hao Liu, Alexander Schill, Manmohan Singh, et al.
Elastic wave imaging optical coherence elastography (EWI-OCE) is an emerging technique that can quantify local biomechanical properties of tissues. However, long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate a noncontact single shot line-field OCE technique using a line-field interferometer and an air-pulse delivery system. The spatial-temporal elastic wave propagation profile was acquired in a single shot and used to quantify the elastic wave group velocity in tissue. Results on tissue-mimicking phantoms and chicken breast muscle agreed well with mechanical compression testing, demonstrating that the presented method can effectively reduce the OCE acquisition time to a few milliseconds in biological application.
Image Processing
icon_mobile_dropdown
Three-dimensional choroidal segmentation in spectral OCT volumes using optic disc prior information
Zhihong Hu, Christopher A. Girkin, Amirhossein Hariri, et al.
Recently, much attention has been focused on determining the role of the peripapillary choroid - the layer between the outer retinal pigment epithelium (RPE)/Bruchs membrane (BM) and choroid-sclera (C-S) junction, whether primary or secondary in the pathogenesis of glaucoma. However, the automated choroidal segmentation in spectral-domain optical coherence tomography (SD-OCT) images of optic nerve head (ONH) has not been reported probably due to the fact that the presence of the BM opening (BMO, corresponding to the optic disc) can deflect the choroidal segmentation from its correct position. The purpose of this study is to develop a 3D graph-based approach to identify the 3D choroidal layer in ONH-centered SD-OCT images using the BMO prior information. More specifically, an initial 3D choroidal segmentation was first performed using the 3D graph search algorithm. Note that varying surface interaction constraints based on the choroidal morphological model were applied. To assist the choroidal segmentation, two other surfaces of internal limiting membrane and innerouter segment junction were also segmented. Based on the segmented layer between the RPE/BM and C-S junction, a 2D projection map was created. The BMO in the projection map was detected by a 2D graph search. The pre-defined BMO information was then incorporated into the surface interaction constraints of the 3D graph search to obtain more accurate choroidal segmentation. Twenty SD-OCT images from 20 healthy subjects were used. The mean differences of the choroidal borders between the algorithm and manual segmentation were at a sub-voxel level, indicating a high level segmentation accuracy.
Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy (Conference Presentation)
The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.
Development of a new, robust and accurate, spectroscopic metric for scatterer size estimation in optical coherence tomography (OCT) images
The modulations appearing on the backscattering spectrum originating from a scatterer are related to its diameter as described by Mie theory for spherical particles. Many metrics for Spectroscopic Optical Coherence Tomography (SOCT) take advantage of this observation in order to enhance the contrast of Optical Coherence Tomography (OCT) images. However, none of these metrics has achieved high accuracy when calculating the scatterer size. In this work, Mie theory was used to further investigate the relationship between the degree of modulation in the spectrum and the scatterer size. From this study, a new spectroscopic metric, the bandwidth of the Correlation of the Derivative (COD) was developed which is more robust and accurate, compared to previously reported techniques, in the estimation of scatterer size. The self-normalizing nature of the derivative and the robustness of the first minimum of the correlation as a measure of its width, offer significant advantages over other spectral analysis approaches especially for scatterer sizes above 3 μm. The feasibility of this technique was demonstrated using phantom samples containing 6, 10 and 16 μm diameter microspheres as well as images of normal and cancerous human colon. The results are very promising, suggesting that the proposed metric could be implemented in OCT spectral analysis for measuring nuclear size distribution in biological tissues. A technique providing such information would be of great clinical significance since it would allow the detection of nuclear enlargement at the earliest stages of precancerous development.
Quantitative optical coherence tomography by maximum a-posteriori estimation of signal intensity
Aaron C. Chan, Kazuhiro Kurokawa, Shuichi Makita, et al.
A maximum a-posteriori (MAP) estimator for signal amplitude of optical coherence tomography (OCT) is presented. This estimator provides an accurate and low bias estimation of the correct OCT signal amplitude even at very low signal-tonoise ratios. As a result, contrast improvement of retinal OCT images is demonstrated. In addition, this estimation method allows for an estimation reliability to be calculated. By combining the MAP estimator with a previously demonstrated attenuation imaging algorithm, we present attenuation coefficient images of the retina. From the reliability derived from the MAP image one can also determine which regions of the attenuation images are unreliable. From Jones matrix OCT data of the optic nerve head (ONH), we also demonstrate that combining MAP with polarization diversity (PD) OCT images can generate intensity images with fewer birefringence artifacts, resulting in better attenuation images. Analysis of the MAP intensity images shows higher image SNR than averaging.
Rigorous simulation of OCT image formation using Maxwell's equations in three dimensions (Conference Presentation)
Peter R. T. Munro, Andrea Curatolo, David D. Sampson
Existing models of image formation in optical coherence tomography are based upon the extended Huygens-Fresnel formalism. These models all, to varying degrees, rely on scatterer ensemble averages, rather than deterministic scattering distributions. Whilst the former is sometimes preferable, there are a growing number of applications where the ability to predict image formation based upon deterministic refractive index distributions is of great interest, including, for example, image formation in turbid tissue. A rigorous model based upon three-dimensional solutions of Maxwell's equations offers a number of tantalising opportunities. For example, shedding light on features near or below the resolution of an OCT system and on the impact of phenomena usually described as diffraction, interference and scattering, but which more generally result from light scattering satisfying Maxwell's equations. A rigorous model allows inverse scattering methods to be developed not requiring the first-order Born approximation. Finally, a rigorous model can provide gold standard verification of myriad quantitative techniques currently being developed throughout the field. We have developed the first such model of image formation based upon three-dimensional solutions of Maxwell's equations, which has vastly different properties to models based on two-dimensional solutions. Although we present simulated B-scans, this model is equally applicable to C-scans. This has been made possible by advances in computational techniques and in computational resources routinely available. We will present the main features of our model, comparisons of measured and simulated image formation for phantoms and discuss the future of rigorous modelling in optical coherence tomography research and application.
Novel Contrast Mechanisms
icon_mobile_dropdown
Three dimensional time lapse imaging of live cell mitochondria with photothermal optical lock-in optical coherence microscopy (Conference Presentation)
Miguel Sison, Sabyasachi Chakrabortty, Jerome Extermann, et al.
The photothermal optical lock-in optical coherence microscope (poli-OCM) introduced molecular specificity to OCM imaging, which is conventionally, a label-free technique. Here we achieve three-dimensional live cell and mitochondria specific imaging using ~4nm protein-functionalized gold nanoparticles (AuNPs). These nanoparticles do not photobleach and we demonstrate they’re suitability for long-term time lapse imaging. We compare the accuracy of labelling with these AuNPs using classical fluorescence confocal imaging with a standard mitochondria specific marker. Furthermore, time lapse poli-OCM imaging every 5 minutes over 1.5 hours period was achieved, revealing the ability for three-dimensional monitoring of mitochondria dynamics.
In vivo photothermal optical coherence tomography in the mouse eye (Conference Presentation)
Maryse Lapierre-Landry, Andrew Y. Gordon, Jason R. Craft, et al.
OCT has become a standard in retina imaging at the pre-clinical and clinical level by allowing non-invasive, three-dimensional imaging of the tissue structure. However, OCT lacks specificity to contrast agents that could be used for in vivo molecular imaging. We have performed in vivo photothermal optical coherence tomography (PTOCT) of gold nanorods in the mouse retina after the mice were injected intravenously with the contrast agent. To our knowledge, we are the first team to perform PTOCT in the eye. Four lesions were induced by laser photocoagulation in each mouse retina (n=6 mice) and gold nanorods (untargeted and targeted with anti-mouse CD102 antibody, which labels neovasculature, peak absorption λ=750nm) were injected intravenously by tail-vein injection five days later in four mice (two mice are controls). The mice were imaged with PTOCT the same day. Our instrument is a spectral domain OCT system (λ=860nm) with a Titanium:Sapphire laser (λ=750nm) added to the beam path using a 50:50 splitter to target the gold nanorods. We acquired PTOCT B-scans over one lesion per mouse eye. There was a significant increase in photothermal intensity at the center of the lesion in the gold nanorod group versus the control group. This experiment demonstrates the feasibility of PTOCT to image the distribution of contrast agents in the mouse retina. In the future we will use this method to optimize drug delivery to the retina in pre-clinical models.
Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)
Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.
Visible-light OCT to quantify retinal oxygen metabolism (Conference Presentation)
We explored, both numerically and experimentally, whether OCT can be a good candidate to accurately measure retinal oxygen metabolism. We first used statistical methods to numerically simulate photon transport in the retina to mimic OCT working under different spectral ranges. Then we analyze accuracy of OCT oximetry subject to parameter variations such as vessel size, pigmentation, and oxygenation. We further developed an experimental OCT system based on the spectral range identified by our simulation work. We applied the newly developed OCT to measure both retinal hemoglobin oxygen saturation (sO2) and retinal retinal flow. After obtaining the retinal sO2 and blood velocity, we further measured retinal vessel diameter and calculated the retinal oxygen metabolism rate (MRO2). To test the capability of our OCT, we imaged wild-type Long-Evans rats ventilated with both normal air and air mixtures with various oxygen concentrations. Our simulation suggested that OCT working within visible spectral range is able to provide accurate measurement of retinal MRO2 using inverse Fourier transform spectral reconstruction. We called this newly developed technology vis-OCT, and showed that vis-OCT was able to measure the sO2 value in every single major retinal vessel around the optical disk as well as in micro retinal vessels. When breathing normal air, the averaged sO2 in arterial and venous blood in Long-Evans rats was measured to be 95% and 72%, respectively. When we challenge the rats using air mixtures with different oxygen concentrations, vis-OCT measurement followed analytical models of retinal oxygen diffusion and pulse oximeter well.
Pump-probe optical coherence tomography using microencapsulated methylene blue as a contrast agent (Conference Presentation)
Wihan Kim, Erin Zebrowski, Hazel C. Lopez, et al.
Molecular contrast imaging can target specific molecules or receptors to provide detailed information on the local biochemistry and yield enhanced visualization of pathological and physiological processes. When paired with Optical Coherence Tomography (OCT) it can simultaneously supply the morphological context for the molecular information. We recently demonstrated in vivo molecular contrast imaging of methylene blue (MB) using a 663 nm diode laser as a pump in a Pump-Probe OCT (PPOCT) system. The simple addition of a dichroic mirror in the sample arm enabled PPOCT imaging with a typical 830-nm band spectral-domain OCT system. Here we report on the development of a microencapsulated MB contrast agent. The poly lactic-co-glycolic acid (PLGA) microspheres loaded with MB offer several advantages over bare MB. The microsphere encapsulation improves the PPOCT signal both by enhancing the scattering and preventing the reduction of MB to leucomethylene blue. The surface of the microsphere can readily be functionalized to enable active targeting of the contrast agent without modifying the excited state dynamics of MB that enable PPOCT imaging. Both MB and PLGA are used clinically. PLGA is FDA approved and used in drug delivery and tissue engineering applications. 2.5 μm diameter microspheres were synthesized with an inner core containing 0.01% (w/v) aqueous MB. As an initial demonstration the MB microspheres were imaged in a 100 μm diameter capillary tube submerged in a 1% intralipid emulsion.
Interferometric near-infrared spectroscopy (Conference Presentation)
Dawid Borycki, Oybek Kholiqov, Shau Poh Chong, et al.
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts the optical and dynamic properties of turbid media from the analysis of the spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency swept narrow bandwidth light source such that the temporal intensity autocorrelations can be determined for all photon path lengths. This approach enables time-of-flight (TOF) resolved measurement of scatterer motion, which is a feature inaccessible in well-established diffuse correlation spectroscopy techniques. We prove this by analyzing intensity correlations of the light transmitted through diffusive fluid phantoms with photon random walks of up to 55 (approximately 110 scattering events) using laser sweep rates on the order of 100kHz. Thus, the results we present here advance diffuse optical methods by enabling simultaneous determination of depth-resolved optical properties and dynamics in highly scattering samples.
Diffusion-sensitive optical coherence tomography for real-time monitoring of mucus thinning treatments
Richard L. Blackmon, Silvia M. Kreda, Patrick R. Sears, et al.
Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3 cell) with a layer of endogenous mucus were doped with topically deposited GNRs (80x22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600μm with 4.65μm resolution, over a total of 8 minutes in increments of ≥3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.
OCT-based in vivo tissue injury mapping
Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.
Novel Microscopy
icon_mobile_dropdown
Dynamic full field OCT: metabolic contrast at subcellular level (Conference Presentation)
Clement Apelian, Fabrice Harms, Olivier Thouvenin, et al.
Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the still and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterers clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and for better medical diagnosis.
Depth-resolved nanoscale nuclear architecture mapping for early prediction of cancer progression
Shikhar Uttam, Hoa V. Pham, Justin LaFace, et al.
Effective management of patients who are at risk of developing invasive cancer is a primary challenge in early cancer detection. Techniques that can help establish clear-cut protocols for successful triaging of at-risk patients have the potential of providing critical help in improving patient care while simultaneously reducing patient cost. We have developed such a technique for early prediction of cancer progression that uses unstained tissue sections to provide depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of heterogeneity in optical density alterations manifested in precancerous lesions during cancer progression. We present nanoNAM and its application to predicting cancer progression in a well-established mouse model of spontaneous carcinogenesis: ApcMin/+ mice.
OCT-based quantification of flow velocity, shear force, and power generated by a biological ciliated surface (Conference Presentation)
Brendan K. Huang, Mustafa K. Khokha, Michael Loewenberg, et al.
In cilia-driven fluid flow physiology, quantification of flow velocity, shearing force, and power dissipation is important in defining abnormal ciliary function. The capacity to generate flow can be robustly described in terms of shearing force. Dissipated power can be related to net ATP consumption by ciliary molecular motors. To date, however, only flow velocity can be routinely quantified in a non-invasive, non-contact manner. Additionally, traditional power-based metrics rely on metabolic consumption that reflects energy consumption not just from cilia but also from all active cellular processes. Here, we demonstrate the estimation of all three of these quantities (flow velocity, shear force, and power dissipation) using only optical coherence tomography (OCT). Specifically, we develop a framework that can extract force and power information from vectorial flow velocity fields obtained using OCT-based methods. We do so by (a) estimating the viscous stress tensor from flow velocity fields to estimate shearing force and (b) using the viscous stress tensor to estimate the power dissipation function to infer total mechanical power. These estimates have the advantage of (a) requiring only a single modality, (b) being non-invasive in nature, and (c) being reflective of only the net power work generated by a ciliated surface. We demonstrate our all-optical approach to the estimation of these parameters in the Xenopus animal model system under normal and increased viscous loading. Our preliminary data support the hypothesis that the Xenopus ciliated surface can increase force output under loading conditions.
Structural and functional measurements of fertilized mouse oocytes with combined high-resolution OCT and inverted microscope (Conference Presentation)
Karol Karnowski, Anna Ajduk, Maciej Wojtkowski, et al.
We present a comprehensive imaging methodology for 3D structural and functional measurements of fertilized mouse oocytes. In contrary to methods used for mouse zygote imaging so far OCT provides 3D data without z axis movement of sample or objective lens. Furthermore, complex scanning protocols used in this study give access to different scales of repetition times and thus may become a tool for investigation of a different dynamic processes. Additionally, proposed scanning approach via variety of statistic operations can be used to enhance the quality of structural images. OCT system capabilities are presented and compared to standard microscopy. With a single 3D measurements one can extract 3D structure of the oocytes as well as en-face images that correspond to both bright and dark field microscopy. As an example of dynamic oocyte imaging pronuclei motion during development is presented. Limitations and possibilities of the new system are discussed.
Synchronous multimodal combination of full-field OCT and structured illumination fluorescence microscopy (Conference Presentation)
FF-OCT is a full field high transverse resolution version of temporal domain OCT. It acquires En-face images with an isotropic 3D submicronic resolution deep inside a biological tissue. It can access an optical contrast at a given depth, meaning that FF-OCT is sensitive to variations of optical index. FF-OCT can thus probe the microarchitecture of a tissue without label. However, Ff-OCT lacks of specific molecular contrast. On the contrary, Fluorescence microscopy can reveal labelled molecules with a very good specificity. Structured Illumination Microscopy (SIM) is a technique providing optical sectioning to fluorescence widefield microscopy. However, this technique can be complicated to implement in a tissue, and fails at providing environmental information. Therefore, combining FF-OCT and SIM has many advantages and adds a specific molecular contrast to a microarchitecture image of a biological sample. Combining FF-OCT and SIM has already been reported in the literature. Here, we report on the development of different way to combine FF-OCT and SIM. On the contrary to previously described setups, our setup enables the synchronous detection of both modalities. We believe this is important to access to dynamical events that take place in tissues. With such a technique, we are able to detect fast changes happening both in the environment, and in the behavior of a specific molecule. For now, we applied our technique to detect static structural information in the cornea. By the time of the conference, we expect to use our system to detect dynamical changes in a tissue.
Poster Session
icon_mobile_dropdown
Dual mode-locked swept sources for SS-OCT
A novel dual-mode-locking mechanism was developed in order to tune an akinetic swept source (AKSS) based on dispersive cavity at a repetition rate close to, but slightly different from the inverse of the cavity roundtrip. Several optical source configurations emitting in the 1060 nm or 1550 nm wavelength region were developed, characterized and tested in OCT applications. For the 1550 nm swept source employing a Faraday rotating mirror in a dispersive cavity, sweeping rates in the range of MHz were achieved, from 782 kHz to up to 5 times this value, with proportional decrease in the tuning bandwidth. Linewidths smaller than 60 pm and output powers exceeding a few mW were measured. The 1060 nm swept source implemented was used to generate OCT images of a pressure sensitive adhesive.
Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging
Konstantin Kapinchev, Adrian Bradu, Frederick Barnes, et al.
This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.
Suppression of saturation artifacts in swept source optical coherence tomography using dual channel detection
Xinyu Li, Shanshan Liang, Jun Zhang
A technique to suppress saturation artifacts in swept source optical coherence tomography (SSOCT) system was presented. The detected signal was split into two channels of a high speed data acquisition card with two levels by a power divider. The signal in one channel with higher level was used to reconstruct OCT images and the signal in the other channel with lower level was used to compensate the saturated signal in the first channel by calibrating the splitting ratio between the two channels. Based on dual channel detection, this technique can enhance the dynamic range of SSOCT system and remove saturation artifacts in OCT imaging with simple and cost effective design. Imaging of human finger with the system demonstrated that this method can achieve high dynamic range without saturation artifacts in SSOCT.
Broadband master-slave interferometry using a super-continuum source
M. Maria, M. J. M. Marques, C. Costa, et al.
In this report we applied the principle of Master-Slave Interferometry (MSI) to an Optical Coherence Tomography (OCT) employing a Super-Continuum (SC) light source. A-scans and B-scan images of biological and non-biological sample are presented in order to demonstrate similar performance with the images obtained with the resampled Fourier Transform (FT) based OCT technique. Dispersion tolerance of MSI method is demonstrated as a constant axial resolution over the depth range even though dispersion is left uncompenstaed in the system.
Theory of Fourier phase within the framework of Fourier-domain optical coherence tomography
Fourier phase in Fourier-domain optical coherence tomography (FD-OCT) has been shown to estimate the sub- resolution change in the optical depth location of a strong interface in refractive index profile of a sample using spectral-domain phase microscopy (SDPM), a derivative of FD-OCT. From first principles we show that in general Fourier phase not only estimates this sub-resolution change but also the mean spatial frequency of the coherence-gated refractive index, and both SDPM and depth-resolved spatial-domain low-coherence quantitative phase microscopy (dr-SLQPM) are special cases of this general theory. We also show that for spectral source with infinite bandwidth Fourier phase is zero. We provide analytical expressions and numerical simulations to support our results.
Narrow linewidth broadband tunable semiconductor laser at 840 nm with dual acousto-optic tunable configuration for OCT applications
Alexander Chamorovskiy, Mikhail V. Shramenko, Andrei A. Lobintsov, et al.
We demonstrate a tunable narrow linewidth semiconductor laser for the 840 nm spectral range. The laser has a linear cavity comprised of polarization maintaining (PM) fiber. A broadband semiconductor optical amplifier (SOA) in in-line fiber-coupled configuration acts as a gain element. It is based on InGaAs quantum-well (QW) active layer. SOA allows for tuning bandwidth exceeding 25 nm around 840 nm. Small-signal fiber-to-fiber gain of SOA is around 30 dB. A pair of acousto-optic tunable filters (AOTF) with a quasi-collinear interaction of optical and acoustic waves are utilized as spectrally selective elements. AOTF technology benefits in continuous tuning, broadband operation, excellent reproducibility and stability of the signal, as well as a high accuracy of wavelength selectivity due to the absence of mechanically moving components. A single AOTF configuration has typical linewidth in 0.05-0.15 nm range due to a frequency shift obtained during each roundtrip. A sequential AOTF arrangement enables instantaneous linewidth generation of <0.01 nm by compensating for this shift. Linewidth as narrow as 0.0036 nm is observed at 846 nm wavelength using a scanning Fabry-Perot interferometer with 50 MHz spectral resolution. Output power is in the range of 1 mW. While the majority of commercial tunable sources operate in 1060-1550 nm spectral ranges, the 840 nm spectral range is beneficial for optical coherence tomography (OCT). The developed narrow linewidth laser can be relevant for OCT with extended imaging depth, as well as spectroscopy, non-destructive testing and other applications.
Depths-encoded angular compounding for speckle reduction in optical coherence tomography
Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.
Extending the effective imaging depth in spectral domain optical coherence tomography by dual spatial frequency encoding
Tong Wu, Qingqing Wang, Youwen Liu, et al.
We present a spatial frequency domain multiplexing method for extending the imaging depth range of a SDOCT system without any expensive device. This method uses two reference arms with different round-trip optical delay to probe different depth regions within the sample. Two galvo scanners with different pivot-offset distances in the reference arms are used for spatial frequency modulation and multiplexing. While simultaneously driving the galvo scanners in the reference arms and the sample arm, the spatial spectrum of the acquired two-dimensional OCT spectral interferogram corresponding to the shallow and deep depth of the sample will be shifted to the different frequency bands in the spatial frequency domain. After data filtering, image reconstruction and fusion the spatial frequency multiplexing SDOCT system can provide an approximately 1.9 fold increase in the effective ranging depth compared with that of a conventional single-reference-arm full-range SDOCT system.
Optical coherence tomography probe design for reduced artifact generation and manufacturability
Daniel Staloff, Lovell Comstock, William Miller, et al.
Many fiber based probes used in Optical Coherence Tomography (OCT) are comprised of a spacer, GRIN lens, fiber, and a microprism. This design form suffers from many material interfaces, which induce back reflections into the sample arm of the interferometer. With so many interfaces, these probes can produce artifacts in the system’s imaging window. We present a design which has just two interfaces to minimize image artifacts. The two components of this design are the fiber endface and a reflective optic. With optimization, these two components can produce back reflections below -90dB which will minimize image artifacts. This will results in high fidelity imaging for medical diagnostics.
Magnetic force Optical Coherence Elastography at 1.5 million a-lines per second
Optical Coherence Elastography (OCE) has been widely used to characterize tissue elasticity. In this paper we introduce a new excitation method using magnetic force to induce shear waves in phantoms and tissues. The shear waves were imaged using an Optical Coherence Tomography system with an A-scan rate of ~1.5 million a-lines per second and the speed of the waves were used to quantify elasticity of different concentrations of agar sampled and porcine liver. The OCE results acquired from this magnetic force excitation were compared with the mechanical compressional tests for validation. The results showed that magnetic force OCE and mechanical testing results were in good agreement, demonstrating the ability of magnetic force OCE to accurately quantify the Young’s modulus of tissue.
Automated detection of inflammatory cells in whole anterior chamber of a uveitis mouse from swept-source optical coherence tomography images
Woo June Choi, Kathryn L. Pepple M.D., Ruikang K. Wang
Cell grading in a rodent anterior chamber is essential for anterior inflammation evaluation in preclinical vision research. This paper describes a computerized method for detection and counting of the anterior chamber cells from swept-source optical coherence tomography (SS-OCT) images of a experimental rodent model of uveitis. The volumetric anterior segment OCT data is obtained from 100 kHz SS-OCT imaging of mouse eye in vivo. For the OCT cross-sections, each OCT structural image is de-speckled and binarized. After removal of cornea, iris, and crystalline lens structures connected to the binary image border, an area thresholding is then employed for each labeled region to isolate only celllike objects in the anterior chamber, followed by roundness estimation of the objects to identify potential cell candidates in the data. Eventually, the cell candidates are counted and graded as total number of cells in the anterior chamber.
Automatic three-dimensional segmentation combined with in vivo microvascular network imaging of human retina by intensity-based Doppler variance optical coherence tomography
Zhonglie Piao, Shenghai Huang, Li Qi, et al.
Optical coherence tomography (OCT) is a noninvasive method for retinal imaging. In this work, we present an in vivo human retinal microvascular network measurement by an intensity-based Doppler variance (IBDV) based on sweptsource OCT. In addition, an automatic three-dimensional (3-D) segmentation method was used for segmenting intraretinal layers. The microvascular networks were divided into six layers by visualizing of each individual layer with enhanced imaging contrast. This method has potential for earlier diagnosis and precise monitoring in retinal vascular diseases.
Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images
Li Qi, Shenghai Huang, Andrew E. Heidari, et al.
We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.
Optimization of modified scanning protocol based correlation mapping optical coherence tomography at 200 kHz VCSEL source for in vivo microcirculation imaging applications
Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Unlike other 3 D medical imaging modalities, OCT provides high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view which makes it suitable for wide variety of medical imaging applications1. Apart from analysing the morphological characteristics of the biological organs with micron scale axial and lateral resolution, OCT also provides functional information from the biological sample. Among the various functional extensions of OCT, angiographic OCT that enables visualization of lumens of blood vessels from the acquired OCT B scan images has been of high research interest in the recent past.
Ex vivo brain tumor analysis using spectroscopic optical coherence tomography
Marcel Lenz, Robin Krug, Hubert Welp, et al.
A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.
Optical coherence tomography for blood glucose monitoring through signal attenuation
Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.
Profilometry of the air-tissue interface by all-semiconductor akinetic programmable swept-source with centimeters coherence length
Z.-H. Lu, S. J. Matcher
We report the possibility of providing 3-D profilometry of the air-tissue interface with micron-scale precision by using a novel, low cost, akinetic swept source recently developed. Example OCT image taken from finger skin is presented by using a home-built OCT setup integrated with the swept source.
Nanoparticles displacement analysis using optical coherence tomography
Optical coherence tomography (OCT) is a versatile optical method for cross-sectional and 3D imaging of biological and non-biological objects. Here we are going to present the application of polarization sensitive spectroscopic OCT system (PS-SOCT) for quantitative measurements of materials containing nanoparticles. The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. In this contribution the benefits of using the combination of timefrequency and polarization sensitive analysis are being expressed. The usefulness of PS-SOCT for nanoparticles evaluation is going to be tested on nanocomposite materials with TiO2 nanoparticles. The OCT measurements results have been compared with SEM examination of the PMMA matrix with nanoparticles. The experiment has proven that by the use of polarization sensitive and spectroscopic OCT the nanoparticles dispersion and size can be evaluated.
Spectroscopic low coherence interferometry using a supercontinuum source and an ultra broadband spectrometer
F. Fleischhauer, S. Caujolle, T. Feuchter, et al.
Spectroscopic optical coherence tomography (SOCT) combines the imaging capability of optical coherence tomography with spectroscopic absorption information. SOCT requires a large bandwidth combined with a broadband spectrometer, due to the processing of the measured data, which includes dividing the spectrum in spectral bands. Both, spectral and axial resolution of SOCT depend on the spectral width of each window. A supercontinuum source with its broad spectrum allows a sufficient number of windows combined with a reasonable axial resolution, which depends on the application. Here a SOCT system is used in the visible spectral range from 480 to 730 nm by combining a supercontinuum light source, a Michelson interferometer and a commercial available broadband spectrometer. This wavelength range is chosen because it covers a range of useful absorbers, including that of human proteins. The system is tested with a laser dye rhodamine B for calibration and verification. Rhodamine B has an absorption peak at around 542 nm, which resembles the absorption spectrum of several proteins in the globin group. The results show that the absorption spectrum of rhodamine B can be reconstructed with sufficient accuracy and demonstrate that varying spectroscopic information can be retrieved from different depths.
Tri-band optical coherence tomography for lipid and vessel spectroscopic imaging
Luoqin Yu, Jiqiang Kang, Xie Wang, et al.
Optical coherence tomography (OCT) has been utilized for various functional imaging applications. One of its highlights comes from spectroscopic imaging, which can simultaneously obtain both morphologic and spectroscopic information. Assisting diagnosis and therapeutic intervention of coronary artery disease is one of the major directions in spectroscopic OCT applications. Previously Tanaka et al. have developed a spectral domain OCT (SDOCT) to image lipid distribution within blood vessel [1]. In the meantime, Fleming et al. have demonstrated optical frequency domain imaging (OFDI) by a 1.3-μm swept source and quadratic discriminant analysis model [2]. However, these systems suffered from burdensome computation as the optical properties’ variation was calculated from a single-band illumination that provided limited contrast. On the other hand, multi-band OCT facilitates contrast enhancement with separated wavelength bands, which further offers an easier way to distinguish different materials. Federici and Dubois [3] and Tsai and Chan [4] have demonstrated tri-band OCT systems to further enhance the image contrast. However, these previous work provided under-explored functional properties. Our group has reported a dual-band OCT system based on parametrically amplified Fourier domain mode-locked (FDML) laser with time multiplexing scheme [5] and a dual-band FDML laser OCT system with wavelength-division multiplexing [6]. Fiber optical parametric amplifier (OPA) can be ideally incorporated in multi-band spectroscopic OCT system as it has a broad amplification window and offers an additional output range at idler band, which is phase matched with the signal band. The sweeping ranges can thus overcome traditional wavelength bands that are limited by intra-cavity amplifiers in FDML lasers. Here, we combines the dual-band FDML laser together with fiber OPA, which consequently renders a simultaneous tri-band output at 1.3, 1.5, and 1.6 μm, for intravascular applications. Lipid and blood vessel distribution can be subsequently visualized with the tri-band OCT system by ex vivo experiments using porcine artery model with artificial lipid plaques.
Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT
Xiao Peng, Shaozhuang Yang, Bin Yu, et al.
Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.