Proceedings Volume 9691

Endoscopic Microscopy XI; and Optical Techniques in Pulmonary Medicine III

cover
Proceedings Volume 9691

Endoscopic Microscopy XI; and Optical Techniques in Pulmonary Medicine III

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 26 May 2016
Contents: 13 Sessions, 7 Papers, 35 Presentations
Conference: SPIE BiOS 2016
Volume Number: 9691

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9691
  • Virtual Biopsy of the Gut
  • OCT I
  • Confocal and Multimodality Imaging
  • Novel Endoscopic Probes
  • Spectral Encoding
  • OCT II
  • Poster Session
  • Clinical Imaging
  • Animal Models
  • Cilia and Mucus Transport
  • New Techniques for Clinical Imaging
  • New Approaches, Advancements and Techniques
Front Matter: Volume 9691
icon_mobile_dropdown
Front Matter: Volume 9691
This PDF file contains the front matter associated with SPIE Proceedings Volume 8806, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Virtual Biopsy of the Gut
icon_mobile_dropdown
High resolution microendoscopy for early detection of esophageal cancer in low-resource settings (Conference Presentation)
Rebecca Richards-Kortum
Esophageal squamous cell neoplasia (ESCN) is the sixth leading cause of cancer death worldwide. Most deaths due to ESCN occur in developing countries, with highest risk areas in northern China. Lugol’s chromoendoscopy (LCE) is the gold-standard for ESCN screening; while the sensitivity of LCE for ESCN is >95%, LCE suffers poor specificity (< 65%) due to false positive findings from inflammatory lesions. High resolution microendoscopy (HRME) uses a low-cost, fiber-optic fluorescence microscope to image morphology of the surface epithelium without need for biopsy. We developed a tablet-interfaced HRME with automated, real-time image analysis. In an in vivo study of 177 patients referred for endoscopy in China, use of the algorithm identified neoplasia with a sensitivity and specificity of 95% and 91% compared to the gold standard of histology.
OCT I
icon_mobile_dropdown
Tethered capsule OCT endomicroscopy: from bench to bedside at the primary care office (Conference Presentation)
Michalina J. Gora, Leigh H. Simmons, Aubrey R. Tiernan, et al.
We have developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires microscopic images of the entire esophagus in unsedated subjects in a quick and comfortable procedure. To test its capabilities of TCE to become a population-based screening device, we conducted a clinical feasibility study in the primary care office. The swept-source OCT imaging system (1310nm central wavelength, 40kHz A-line rate, 10um axial resolution) together with the tethered capsule catheter (11x25mm capsule attached to a flexible tether) were transferred to the PCP office where unsedated patients scheduled for non-urgent PCP visits swallowed the capsule and microscopic OCT images of the entire esophagus were collected. After the whole length of the esophagus was imaged, the catheter was disinfected for reuse. Twenty subjects were enrolled in the study, including nine female and eleven male. All TCE procedures were performed by a nurse and lasted in average 5:42 ± 1:54 min. High-resolution images of the esophagus were obtained in all seventeen subjects that swallowed the capsule. Our clinical experience in this cohort, subject feedback, image quality, and technological adaptations for efficient utilization in this setting will be presented. The ease and simplicity of the procedure combined with high quality of the images demonstrate the potential for this technology to become a population-based screening device. Technology limitations and future development guided by findings from this initial experience will be discussed with the goal of effectively translating TCE to the outpatient primary care setting.
Flexible micro-OCT endobronchial probe for imaging of mucociliary transport (Conference Presentation)
Dongyao Cui, Kengyeh K. Chu, Carolin I. Unglert, et al.
Mucociliary clearance (MCC) plays a significant role in maintaining the health of human respiratory system by eliminating foreign particles trapped within mucus. Failure of this mechanism in diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD) leads to airway blockage and lung infection, causing morbidity and mortality. The volume of airway mucus and the periciliary liquid encapsulating the cilia, in addition to ciliary beat frequency and velocity of mucociliary transport, are vital parameters of airway health. However, the diagnosis of disease pathogenesis and advances of novel therapeutics are hindered by the lack of tools for visualization of ciliary function in vivo. Our laboratory has previously developed a 1-µm resolution optical coherence tomography method, termed Micro-OCT, which is capable of visualizing mucociliary transport and quantitatively capturing epithelial functional metrics. We have also miniaturized Micro-OCT optics in a first-generation rigid 4mm Micro-OCT endoscope utilizing a common-path design and an apodizing prism configuration to produce an annular profile sample beam, and reported the first in vivo visualization of mucociliary transport in swine. We now demonstrate a flexible 2.5 mm Micro-OCT probe that can be inserted through the instrument channel of standard flexible bronchoscopes, allowing bronchoscopic navigation to smaller airways and greatly improving clinical utility. Longitudinal scanning over a field of view of more than 400 µm at a frame rate of 40 Hz was accomplished with a driveshaft transduced by a piezo-electric stack motor. We present characterization and imaging results from the flexible micro-OCT probe and progress towards clinical translation. The ability of the bronchoscope-compatible micro-OCT probe to image mucus clearance and epithelial function will enable studies of cystic fibrosis pathogenesis in small airways, provide diagnosis of mucociliary clearance disorders, and allow individual responses to treatments to be monitored.
Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation) (Withdrawal Notice)
Milad Alemohammad, Wu Yuan, Jessica Mavadia-Shukla, et al.
Publisher’s Note: This conference presentation, originally published on 27 April 2016, was withdrawn per author request.
Confocal and Multimodality Imaging
icon_mobile_dropdown
A novel piezoelectric microstage with embedded sensor for dual axes confocal endomicroscopy (Conference Presentation)
Jongsoo Choi, Zhen Qiu, Choong-Ho Rhee, et al.
A piezoelectric microactuator previously proposed by the authors for laser scanning in dual axes confocal endomicroscopy meets two primary challenges for dual axes confocal imaging: large out-of-plane actuation (~500μm) and a relatively high bandwidth (>100Hz). In order to further reach stage positioning error better than desired imaging resolution of 5 μm and to improve the robustness of actuator performance, a closed-loop controller and thus on-chip sensing, are being incorporated and integrated with system modeling. This work presents these thin-film PZT based microstages where piezoelectric unimorphs are used not only to actuate its central platform but also to estimate its vertical motion. Initial results from on-chip piezoelectric sensing are presented. Although sensing output shows some feed-through from the actuation signal, testing shows detection of AC motion from various vibration modes of the stage. Meanwhile, 3D profiles of the entire actuator structure at different DC voltage levels were obtained and used to form a nonlinear optimization problem to estimate all forces and moments that each component of the device experiences for the prediction of its deflection. A comparison between modeled and experimental deflection of the actuation beams is included. These results will be used to describe the dynamic behavior of the actuation beams, where the sensors are embedded, and to estimate sensing outputs in order to implement a close-loop controller. Prototype stages are currently being assembled into a handheld dual axes confocal imaging system.
A prospective cohort study: probe based confocal laser endomicroscopy for peripheral pulmonary lesions (Conference Presentation)
Yuji Matsumoto, Takehiro Izumo, Yoshihisa Hiraishi, et al.
Introduction: The diagnostic value of bronchoscopy for peripheral pulmonary lesions (PPLs) has improved since the application of radial endobronchial ultrasound (R-EBUS). Though R-EBUS indicates the position of the PPL, there is often a discrepancy between the obtained R-EBUS image and the diagnostic outcome. Meanwhile, probe based confocal laser endomicroscopy (pCLE) is a novel technique which provides in vivo real-time image of the contacted surface structures. However, its findings have not been established yet. Methods: Consecutive patients who have underwent bronchoscopy for PPLs were prospectively enrolled. R-EBUS with a guide sheath (GS) was inserted to the target PPL under X-ray fluoroscopic guidance. When an adequate R-EBUS image (within or adjacent to) was obtained, pCLE was sequentially inserted through the GS. Then pCLE image was scanned and biopsy was performed where an abnormal finding was estimated. The pCLE findings of PPLs and the background were recorded and analyzed exploratorily. Results: We analyzed 19 cases that we could get appropriate tissues. In all cases, bronchial walls showed longitudinal elastic fibers whereas alveolar walls formed grid-like elastic fiber networks. Conversely, discontinuous, crushed or aggregated alveolar structures accompanied by thickened and distorted fibers were detected in PPLs. Some cases showed dark hollow with fragmented or granular fluorescence. On the other hand, 11 cases (57.9%) indicated normal elastic fibers and needed the position change (3 cases; approached other bronchus, 6 cases; adjusted the position, 2 cases; penetrated the covered bronchial wall). Conclusion: The pCLE has a potential to improve the efficacy of diagnostic bronchoscopy for PPLs.
Performance of combined OCT/MFI microendoscope for ovarian cancer detection (Conference Presentation)
Molly Keenan, Tyler Tate, John Black, et al.
To improve early detection of ovarian cancer, we have designed and built a microendoscope that combines optical coherence tomography (OCT) and multispectral fluorescence imaging (MFI) into a 0.7 mm diameter package. An endoscope of this size allows access to the ovaries through the fallopian tubes creating a minimally invasive procedure. We characterize the falloposcope’s imaging behavior and show that this system provides contrast on ex vivo surgical samples of ovary and fallopian tube. In addition, we show the mechanical performance of the endoscope in an anatomically correct model of the female reproductive treatment.
Two-photon autofluorescence/FLIM/SHG endoscopy to study the oral cavity and wound healing in humans (Conference Presentation)
Monitoring the oral cavity noninvasively with superior 3D resolution is realized by clinical multiphoton tomography and high NA two-photon endoscopy without the need of additional contrast agents. The technology behind this investigation is based on nonlinear optical contrast of the multiphoton tomograph MPTflex®. Furthermore, the miniaturized GRIN endoscope was used to realize more accessibility for more demanding wound conditions in skin. The MPTflex® distinguishes autofluorescence (AF) signals from second harmonic generation (SHG) signals simultaneously. Fluorescence lifetime imaging (FLIM) based on time correlated single photon counting (TCSPC) technology offers additional information on the functional level of the intratissue fluorophores, their binding status, and the contribution of SHG signals in chronic wounds.
Novel Endoscopic Probes
icon_mobile_dropdown
High-resolution and ultra-thin endo-microscopy using a GRIN rod lens (Conference Presentation)
Hyung-Jin Kim, Changhyeong Yoon, Taeseok D. Yang, et al.
A graded-index (GRIN) lens is suitable for developing an ultra-thin endoscope due to its small diameter and simplicity for optics design. A GRIN lens, however, generates intrinsic optical aberration causing low resolution and poor imaging quality. Recently, wavefronts of light can be measured with very high precision and the optical aberration can be corrected in numerical ways even for the case of highly scattering media. In this study, based on the high precision wavefront sensing and numerical image processing techniques, we demonstrate a high-resolution and ultra-thin endo-microscope using a GRIN rod lens as a core imaging optics. We constructed a reflection-type interferometric microscope through a GRIN rod lens using a p-polarized Nd:YAG laser (532 nm) as a light source. By recording and processing blank transmission images as a function of various illumination states, the characteristics of the aberration generated by the GRIN lens were obtained. After this pre-calibration, we could numerically compensate the aberration induced onto a reflection image of an object. Consequently, a diffraction limited lateral resolution as well as improved axial resolution could be achieved. Our approach will fascinate the use of GRIN lenses for compact and high-resolution imaging devices including ultra-thin endo-microscopes.
Extra flat, flexible and disposable endoscope for lateral imaging
G. Basset, D. Marinov, C. Hofer, et al.
We present an innovative disposable endoscope based on extra flat flexible polymer slabs used as multimode waveguides. The waveguides are compatible with low-cost roll-to-roll production technologies and can be easily customized by patterning, coating and printing techniques according to the specifications of the target application. In order to couple the light (i.e. the illumination beam and the imaging beam) in and out of the waveguide, diffractive subwavelength gratings are used. These nano-scale optical structures enable an efficient and controlled light trapping by total internal reflection, thus minimizing the distortion effects generated by the rough edges. Nano-patterning is obtained using established techniques (i.e. hot embossing and/or UV casting) that are compatible with industrial roll-to-roll production lines or plastic injection molding. Unique features of these innovative endoscopes are i) the achievable very thin form that can be reduced to thicknesses below 200 μm, ii) the ability to record lateral images with respect to the endoscope direction, iii) the ability to image samples (e.g. tissues, tiny objects) in direct contact with the polymer slab, with a minimum imaging distance equal to zero, and iv) the access to high volume fabrication techniques that can enable the production of low-cost disposable endoscopes. A possible device implementation is demonstrated and tested, which consists of a flat line-scanning endoscope enabling the acquisition of 1D images in monochromatic illumination and the reconstruction of 2D images by scanning. Images taken with such a disposable endoscope are discussed and the related technological constraints such as manufacturing tolerances, image distortion, scattered light and signal to noise ratio are further described. Finally, advantages and disadvantages with respect to other endoscopic techniques will be discussed, thus demonstrating the potential of this innovative approach for endoscopic applications in very confined volumes.
Nonlinear endoscopy with Kagomé lattice hollow-core fibers (Conference Presentation)
Alberto Lombardini, Siddharth Sivankutty, Xueqin Chen, et al.
The development of nonlinear fiber-endoscopes capable of imaging deeper in tissues and accessing internal organs represents a very attractive perspective for application of nonlinear optical microscopes to in-vivo research and diagnostics. The transmission of ultra-short laser pulses within a fiber is a critical issue in the development of such endoscopes. For instance, self-phase modulation (SPM), four-wave mixing (FWM) and Raman scattering occurring in conventional fibers severely affect transmitted pulses profiles in the time and frequency domains. Hollow-core (HC) fibers bring a solution to the problem, since propagation of the pulses in the air core limits nonlinear interactions. We employ here a novel double clad Kagomé-lattice HC fiber for the delivery of ultrafast pulses across a large spectral window (~400nm) with no pulse distortion. The epi-collection of the signal generated at the sample is efficiently performed with a specially designed outer multimode cladding. The fiber is incorporated in a prototype endoscope using a four-quartered piezo-electric tube to scan the laser beam on the sample. The low numerical aperture of the hollow-core (0.02) is efficiently increased by means of a dielectric microsphere attached to the fiber face. This results in tight focusing (~1 micron) of the beam at the HC fiber output. Resonant scanning of the fiber tip allows imaging over a field of 300 microns using low driving voltages. High-resolution images with different contrast mechanisms, such as SHG and TPEF, acquired with the prototype endoscope illustrate the potential of these fibers for nonlinear imaging in regions otherwise inaccessible to conventional optical microscopes.
The integration of single fiber reflectance (SFR) spectroscopy during endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) in pancreatic masses: a feasibility study
Paulien L. Stegehuis, Leonora S. F. Boogerd M.D., Akin Inderson, et al.
EUS-FNA can be used for pathological confirmation of a suspicious pancreatic mass. However, performance depends on an on-site cytologist and time between punction and final pathology results can be long. SFR spectroscopy is capable of extracting biologically relevant parameters (e.g. oxygenation and blood volume) in real-time from a very small tissue volume at difficult locations. In this study we determined feasibility of the integration of SFR spectroscopy during EUSFNA procedures in pancreatic masses. Patients with benign and malignant pancreatic masses who were scheduled for an EUS-FNA were included. The working guide wire inside the 19 gauge endoscopic biopsy needle was removed and the sterile single fiber (300 μm core and 700 μm outer diameter, wide-angle beam, NA 0.22) inserted through the needle. Spectroscopy measurements in the visiblenear infrared wavelength region (400-900 nm) and autofluorescence measurements (excitation at 405 nm) were taken three times, and subsequently cytology was obtained. Wavelength dependent optical properties were compared to cytology results. We took measurements in 13 patients with corresponding cytology results (including mucinous tumor, ductal adenocarcinoma, neuroendocrine tumor, and pancreatitis). In this paper we show the first analyzed results comparing normal pancreatic tissue with cancerous tissue in the same patient. We found a large difference in blood volume fraction, and blood oxygenation was higher in normal tissue. Integration of SFR spectroscopy is feasible in EUS-FNA procedures, the workflow hardly requires changes and it takes little time. The first results differentiating normal from tumor tissue are promising.
Spectral Encoding
icon_mobile_dropdown
Optically sectioned spatial-spectral coded holographic fluorescence microscopy (Conference Presentation)
Hsi-Hsun Chen, Chen-Yen Lin, Wei Tang Lin, et al.
Wide-field fluorescent imaging severely suffers low resolution and poor contrast from out-of-focus background to image biological samples. In order to enhance optical sectioning capability, Confocal approach has been developed to filter out-of-focus background using point-to-point detection through a spatial pinhole. Recently, active structured illumination in wide-field fashion has been developed to reduce the transversal scanning cost, but still requires scanning in axial direction. Here, we present a wide-field multi-focal fluorescence microscopy incorporating spatial-spectral volume holographic gratings (MVHGs) with 3D active structured illumination to obtain optically sectioned images without scanning is presented. In contrast to conventional holographic techniques, which in general can not obtain fluorescence images, our approach does not require the formation of a hologram during imaging and is compatible with fluorescence based methods of imaging. Our approach requires pair-wise multi-depth resolved images, one with 3D active illumination, and the other with standard uniform illumination. Our approach is configured such that 3D illuminated planes occur inside the specimen, and also serve as the structured modulation for multiple axial planes imaged by MVHGs and display laterally onto the camera. The system can also be combined with micro-objective and relay systems for endoscopic operation. We demonstrate the proposed system’s ability to simultaneously obtain wide-field, optically sectioned, and multi-depth resolved images of fluorescently labeled tissue structures.
Clinical experience using the tethered capsule-based spectrally encoded confocal microendoscopy for diagnosis of eosinophilic esophagitis (Conference Presentation)
Dukho Do, Sanaz Alali, DongKyun Kang, et al.
Eosinophilic Esophagitis (EoE) is caused by food allergies, and defined by histological presence of eosinophil cells in the esophagus. The current gold standard for EoE diagnosis is endoscopy with pinch biopsy to detect more than 15 eosinophils/ High power field (HPF). Biopsy examinations are expensive, time consuming and are difficult to tolerate for patients. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology capable of imaging individual eosinophils as highly scattering cells (diameter between 8 µm to 15 µm) in the epithelium. Our lab has developed a tethered SECM capsule that can be swallowed by unsedated patients. The capsule acquires large area confocal images, equivalent to more than 30,000 HPFs, as it traverses through the esophagus. In this paper, we present the outcome of a clinical study using the tethered SECM capsule for diagnosing EoE. To date, 32 subjects have been enrolled in this study. 88% of the subjects swallowed the capsules without difficulty and of those who swallowed the capsule, 95% preferred the tethered capsule imaging procedure to sedated endoscopic biopsy. Each imaging session took about 12 ± 2.4 minutes during which 8 images each spanning of 24 ± 5 cm2 of the esophagus were acquired. SECM images acquired from EoE patients showed abundant eosinophils as highly scattering cells in squamous epithelium. Results from this study suggest that the SECM capsule has the potential to become a less-invasive, cost-effective tool for diagnosing EoE and monitoring the response of this disease to therapy.
SECM half-inch tethered endoscopic capsule (HITEC) for esophageal imaging (Conference Presentation)
DongKyun Kang, Minkyu Kim, Robert W. Carruth, et al.
Spectrally encoded confocal microscopy (SECM) is a high-speed confocal endomicroscopy technology that can image extremely large regions of human tissue at cellular resolution within a short imaging time. Previously, we have developed a 7-mm-diameter SECM endoscopic capsule and successfully demonstrated imaging of human esophagus in vivo. Even though we were able to successfully capture images with the previous capsule, it suffered from two limitations: (1) the capsule had a small diameter, which provided a limited contact between SECM capsule and esophagus; and (2) speckle noise in SECM images made it challenging to appreciate cellular features. In this paper, we present a new SECM capsule, termed SECM half-inch tethered endoscopic capsule (HITEC), which addresses the two aforementioned technical challenges. With the SECM HITEC, a dual-clad fiber was used to reduce the speckle noise. Miniature GRIN optics was used to increase the NA of the fiber from 0.09 to 0.25, which made it possible to build a SECM capsule with large diameter (12.7 mm) while maintaining a short rigid length (22 mm). A water-immersion objective lens was custom designed and manufactured to provide high NA of 0.7. We have manufactured the SECM HITEC catheter and tested its optical and mechanical performance. Lateral and axial resolution was measured as 1.2 µm and 13 µm, respectively. We have imaged swine esophageal tissues ex vivo, and SECM images clearly visualized cell nuclei. Non-uniform rotational distortion (NURD) was small, less than 5%. Preliminary results suggest that SECM HITEC provides sufficient optical and mechanical performance for tissue imaging. In a future clinical study, we will test the feasibility of utilizing SECM HITEC for improved cellular imaging human of the human esophagus in vivo.
Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)
Adel Zeidan, Daniella Yeheskely-Hayon, Limor Minai, et al.
The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient’s health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells’ morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells’ three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.
Simple, monolithic optical element for forward-viewing spectrally encoded endoscopy (Conference Presentation)
Dukho Do, Dongkyun Kang, Mitsuhiro Ikuta, et al.
Spectrally encoded endoscopy (SEE) is a miniature endoscopic technology that can acquire images of internal organs through a hair-thin probe. While most previously described SEE probes have been side viewing, forward-view (FV)-SEE is advantageous in certain clinical applications as it provides more natural navigation of the probe and has the potential to provide a wider field of view. Prior implementations of FV-SEE used multiple optical elements that increase fabrication complexity and may diminish the robustness of the device. In this paper, we present a new design that uses a monolithic optical element to realize FV-SEE imaging. The optical element is specially designed spacer, fabricated from a 500-μm-glass rod that has a mirror surface on one side and a grating stamped on its distal end. The mirror surface is used to change the incident angle on the grating to diffract the shortest wavelength of the spectrum so that it is parallel to the optical axis. Rotating the SEE optics creates a circular FV-SEE image. Custom-designed software processes FV-SEE images into circular images, which are displayed in real-time. In order to demonstrate this new design, we have constructed the FV-SEE optical element using a 1379 lines/mm diffraction grating. When illuminated with a source with a spectral bandwidth of 420-820 nm, the FV-SEE optical element provides 678 resolvable points per line. The imaging performance of the FV-SEE device was tested by imaging a USAF resolution target. SEE images showed that this new approach generates high quality images in the forward field with a field of view of 58°. Results from this preliminary study demonstrate that we can realize FV-SEE imaging with simple, monolithic, miniature optical element. The characteristics of this FV-SEE configuration will facilitate the development of robust miniature endoscopes for a variety of medical imaging applications.
Image-guided optical measurement of blood oxygen saturation within capillary vessels (Conference Presentation)
Kfir Akons, Adel Zeidan, Daniella Yeheskely-Hayon, et al.
Values of blood oxygenation levels are useful for assessing heart and lung conditions, and are frequently monitored during routine patient care. Independent measurement of the oxygen saturation in capillary blood, which is significantly different from that of arterial blood, is important for diagnosing tissue hypoxia and for increasing the accuracy of existing techniques that measure arterial oxygen saturation. Here, we developed a simple, non-invasive technique for measuring the reflected spectra from individual capillary vessels within a human lip, allowing local measurement of the blood oxygen saturation. The optical setup includes a spatially incoherent broadband light that was focused onto a specific vessel below the lip surface. Backscattered light was imaged by a camera for identifying a target vessel and pointing the illumination beam to its cross section. Scattered light from the vessel was then collected by a single-mode fiber and analyzed by a fast spectrometer. Spectra acquired from small capillary vessels within a volunteer lip showed the characteristic oxyhemoglobin absorption bands in real time and with a high signal-to-noise ratio. Measuring capillary oxygen saturation using this technique would potentially be more accurate compared to existing pulse oximetry techniques due to its insensitivity to the patient’s skin color, pulse rate, motion, and medical condition. It could be used as a standalone endoscopic technique for measuring tissue hypoxia or in conjunction with conventional pulse oximetry for a more accurate measurement of oxygen transport in the body.
OCT II
icon_mobile_dropdown
Tethered capsule OCT endomicroscopy for upper gastrointestinal tract imaging by using ball lens probe (Conference Presentation)
While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule’s optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.
Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)
Pouya Jelvehgaran, Tanja Alderliesten, Javier Salguero, et al.
Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.
In vivo endoscopic Doppler optical coherence tomography imaging of mouse colon
Colorectal cancer remains the second deadliest cancer in the United States, despite the high sensitivity and specificity of colonoscopy and sigmoidoscopy. While these standard imaging procedures can accurately detect medium and large polyps, some studies have shown miss rates up to 25% for polyps less than 5 mm in diameter. An imaging modality capable of detecting small lesions could potentially improve patient outcomes. Optical coherence tomography (OCT) has been shown to be a powerful imaging modality for adenoma detection in a mouse model of colorectal cancer. While previous work has focused on analyzing the structural OCT images based on thickening of the mucosa and changes in light attenuation in depth, imaging the microvasculature of the colon may enable earlier detection of polyps. The structure and function of vessels grown to support tumor growth are markedly different from healthy vessels. Doppler OCT is capable of imaging microvessels in vivo. We developed a method of processing raw fringe data from a commercial swept-source OCT system using a lab-built miniature endoscope to extract microvessels. This method can be used to measure vessel count and density and to measure flow velocities. This may improve early detection and aid in the development of new chemopreventive and chemotherapeutic drugs. We present, to the best of our knowledge, the first endoscopic Doppler OCT images of in vivo mouse colon.
Poster Session
icon_mobile_dropdown
Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer
Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the azoxymethane (AOM) mouse model of colorectal cancer using a commercial swept-source OCT system and a miniature endoscope designed and built in-house. We present en face images of the colonic crypts and demonstrate that different patterns in healthy and adenoma tissue can be seen. These patterns correspond to those reported in the literature. We have previously demonstrated early detection of colon adenoma using OCT by detecting minute thickening of the mucosa. By combining mucosal thickness measurement with imaging of the crypt structure, OCT can be used to correlate ACF and adenoma development in space and time. These results suggest that OCT may be a superior imaging modality for studying the connection between ACF and colorectal cancer.
Clinical Imaging
icon_mobile_dropdown
In vivo imaging of pulmonary nodule and vasculature using endoscopic co-registered optical coherence tomography and autofluorescence imaging (Conference Presentation)
Hamid Pahlevaninezhad, Anthony Lee M.D., Geoffrey Hohert, et al.
Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.
Assessing mucus and airway morphology in response to a segmental allergen challenge using OCT (Conference Presentation)
David C. Adams, Alyssa J. Miller, Jasmin A. Holz, et al.
Asthma affects hundreds of millions of people worldwide, and the prevalence of the disease appears to be increasing. One of the most important aspects of asthma is the excessive bronchoconstriction that results in many of the symptoms experienced by asthma sufferers, but the relationship between bronchoconstriction and airway morphology is not clearly established. We present the imaging results of a study involving a segmental allergen challenge given to both allergic asthmatic (n = 12) and allergic non-asthmatic (n = 19) human volunteers. Using OCT, we have imaged and assessed baseline morphology in a right upper lobe (RUL) airway, serving as the control, and a right middle lobe (RML) airway, in which the allergen was to be administered. After a period of 24 hours had elapsed following the administration of the allergen, both airways were again imaged and the response morphology assessed. A number of airway parameters were measured and compared, including epithelial thickness, mucosal thickness and buckling, lumen area, and mucus content. We found that at baseline epithelial thickness, mucosal thickness, and mucosal buckling were greater in AAs than ANAs. We also observed statistically significant increases in these values 24 hours after the allergen had been administered for both the ANA and AA sets. In comparison, the control airway which received a diluent showed no statistically significant change.
A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)
David C. Adams, Jasmin A. Holz, Margit V. Szabari, et al.
Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.
Animal Models
icon_mobile_dropdown
Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics (Conference Presentation)
Margit V. Szabari, Vanessa J. Kelly, Matthew B. Applegate, et al.
Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung. Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation. Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.
The effect of low level laser therapy on ventilator-induced lung injury in mice (Conference Presentation)
Margit V. Szabari, Alyssa J. Miller, Lida P Hariri, et al.
Although mechanical ventilation (MV) is necessary to support gas exchange in critically ill patients, it can contribute to the development of lung injury and multiple organ dysfunction. It is known that high tidal volume (Vt) MV can cause ventilator-induced lung injury (VILI) in healthy lungs and increase the mortality of patients with Acute Respiratory Distress Syndrome. Low level laser therapy (LLLT) has demonstrated to have anti-inflammatory effects. We investigated whether LLLT could alleviate inflammation from injurious MV in mice. Adult mice were assigned to 2 groups: VILI+LLLT group (3 h of injurious MV: Vt=25-30 ml/kg, respiratory rate (RR)=50/min, positive end-expiratory pressure (PEEP)=0 cmH20, followed by 3 h of protective MV: Vt=9 ml/kg, RR=140/min, PEEP=2 cmH20) and VILI+no LLLT group. LLLT was applied during the first 30 min of the MV (810 nm LED system, 5 J/cm2, 1 cm above the chest). Respiratory impedance was measured in vivo with forced oscillation technique and lung mechanics were calculated by fitting the constant phase model. At the end of the MV, bronchoalveolar lavage (BAL) was performed and inflammatory cells counted. Lungs were removed en-bloc and fixed for histological evaluation. We hypothesize that LLLT can reduce lung injury and inflammation from VILI. This therapy could be translated into clinical practice, where it can potentially improve outcomes in patients requiring mechanical ventilation in the operating room or in the intensive care units.
Cilia and Mucus Transport
icon_mobile_dropdown
Imaging of mucus clearance in the airways of living spontaneously breathing mice by optical coherence microscopy (Conference Presentation)
Mario Pieper, Hinnerk Schulz-Hildebrandt, Gereon Hüttmann, et al.
Mucus transport is essential to remove inhaled particles and pathogens from the lung. Impaired removal of mucus often results in worsening of lung diseases. To understand the mechanisms of mucus transport and to monitor the impact of therapeutic strategies, it is essential to visualize airways and mucus in living animals without disturbing transport processes by intubation or surgically opening the airways. We developed a custom-built optical coherence microscope (OCM) providing a lateral and axial resolution of approximately 1.5 µm with a field of view of 2 mm at up to 150 images/s. Images of the intact trachea and its mucus transport were recorded in anesthetized spontaneously breathing mice. NaCl solution (0.9% and 7%) or Lipopolysaccharide were applied intranasally. OCM resolved detailed structure of the trachea and enabled measuring the airway surface liquid (ASL) thickness through the tracheal wall. Without stimulation, the amount of ASL was only a few µm above the epithelium and remained constant. After intranasal application of 30 µl saline at different concentrations, an early fast cough-like fluid removal with velocities higher than 1 mm/s was observed that removed a high amount of liquid. The ASL thickness increased transiently and quickly returned to levels before stimulation. In contrast to saline, application of Lipopolysaccharide induced substantial mucus release and an additional slow mucus transport by ciliary beating (around 100 µm/s) towards the larynx was observed. In conclusion, OCM is appropriate unique tool to study mechanisms of mucus transport in the airways and effects of therapeutic interventions in living animals.
Towards all-optical quantification of force- and power-based performance metrics in cilia-driven fluid flow physiology (Conference Presentation)
Brendan K. Huang, Mustafa K. Khokha, Michael Loewenberg, et al.
In pulmonary ciliary physiology, most tissue-level measures of performance focus on flow velocity. However, as with the heart, fluid transport performance requires an understanding of force and power generation under various loading conditions. Here, we present our initial work in quantifying shearing force and net power dissipation from OCT-based cilia-driven fluid flow velocimetry. Typical measurements of force require invasive contact with the ciliated surface, while measurements of power rely on metabolic consumption that reflect energy consumption not just from cilia, but from the entirety of cellular processes. We will present two different approaches to non-contact, all-optical shear force and power dissipation physiology. First, we developed a lumped-parameter model of flow driven by a ciliated surface. The lumped-parameter model yields semi-quantitative, Ohm’s law-type relationships (F=U*R and P=U*F) between flow velocity (U), shear force (F), viscous resistance (R), and power dissipation (P). This model allows a lumped (spatially averaged) approach to evaluate force and power performance under viscous loading, an approach we demonstrated using ciliated Xenopus embryos. Second, we numerically estimate shear force and power dissipation using flow velocity fields acquired using OCT. Specifically, the velocity gradient tensor estimated from the flow velocity field contains the required information to estimate both shear force and net power dissipation. We have preliminary data using this numerical approach in Xenopus. Our results support the feasibility of an all-optical approach to estimating mesoscopic measures of force and power in ciliary physiology.
New Techniques for Clinical Imaging
icon_mobile_dropdown
Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)
Lida P. Hariri M.D., David C. Adams, Thomas V Colby M.D., et al.
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a significantly worse prognosis than other forms of pulmonary fibrosis (3-year survival rate of 50%). Distinguishing IPF from other fibrotic diseases is essential to patient care because it stratifies prognosis and therapeutic decision-making. However, making the diagnosis often requires invasive, high-risk surgical procedures to look for microscopic features not seen on chest CT, such as characteristic cystic honeycombing in the peripheral lung. Optical coherence tomography (OCT) provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We aim to determine whether bronchoscopic OCT can provide a low-risk, non-surgical method for IPF diagnosis. We have developed bronchoscopic OCT catheters that access the peripheral lung and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We also conducted bronchoscopic OCT in ex vivo lung from pulmonary fibrosis patients, including IPF, to determine if OCT could successfully visualize features of IPF through the peripheral airways. Our results demonstrate that OCT is able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. We also found that OCT has potential to distinguish mimickers of IPF honeycombing, such as traction bronchiectasis and emphysema, from true honeycombing. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.
Using polarization-sensitive optical coherence tomography to identify tumor stromal fibrosis and increase tumor biopsy yield (Conference Presentation)
Lida P. Hariri M.D., David C. Adams, Alyssa J. Miller, et al.
Tissue biopsy is the principal method used to diagnose tumors in a variety of organ systems. It is essential to maximize tumor yield in biopsy specimens for both clinical diagnostic and research purposes. This is particularly important in tumors where additional tissue is needed for molecular analysis to identify patients who would benefit from mutation-specific targeted therapy, such as in lung carcinomas. Inadvertent sampling of fibrotic stroma within tumor nodules contaminates biopsies, decreases tumor yield, and can impede diagnosis. The ability to assess tumor composition and guide biopsy site selection in real time is likely to improve diagnostic yield. Polarization sensitive OCT (PS-OCT) measures birefringence in organized tissues, such as collagen, and could be used to distinguish tumor from fibrosis. In this study, PS-OCT was obtained in 65 lung nodule samples from surgical resection specimens containing varying ratios of tumor and fibrosis. PS-OCT was obtained with either a custom-built helical scanning catheter (0.8 or 1.6mm in diameter) or a dual-axis bench top scanner. Strong birefringence was observed in nodules containing dense fibrosis, with no birefringence in adjacent regions of tumor. Tumors admixed with early, loosely-organized collagen demonstrated mild-to-moderate birefringence, and tumors with little collagen content showed little to no birefringent signal. PS-OCT provides significant insights into tumor nodule composition, and has potential to differentiate tumor from stromal fibrosis during biopsy site selection to increase diagnostic tumor yield.
Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)
David C. Adams, Lida P. Hariri, Jasmin A. Holz, et al.
The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.
New Approaches, Advancements and Techniques
icon_mobile_dropdown
Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)
Lida P. Hariri M.D., Matthew J. Niederst, Hillary Mulvey, et al.
Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.
Optical coherence tomography imaging to analyze biofilm thickness from distal to proximal regions of the endotracheal tubes
Robert E. Dunn, Andrew E. Heidari, Samer Moghaddam M.D., et al.
The development of nosocomial ventilator-associated pneumonia (VAP) has been linked to the presence of specific bacteria found in the biofilm that develops in intubated endotracheal tubes of critical care patients. Presence of biofilm has been difficult to assess clinically. Here, we use Optical coherence tomography (OCT), to visualize the biofilm at both the proximal and distal tips. Ultimately, the goal will be to determine if OCT can be a tool to visualize biofilm development and potential interventions to reduce the incidence of VAP.
Correction of motion artifacts in OCT-AFI data collected in airways (Conference Presentation)
Elham Abouei, Pierre M. Lane, Hamid Pahlevaninezhad, et al.
Abstract: Optical coherence tomography (OCT) provides in vivo imaging with near-histologic resolution of tissue morphology. OCT has been successfully employed in clinical practice in non-pulmonary fields of medicine such as ophthalmology and cardiology. Studies suggest that OCT has the potential to be a powerful tool for the detection and localization of malignant and non-malignant pulmonary diseases. The combination of OCT with autofluorescence imaging (AFI) provides valuable information about the structural and metabolic state of tissues. Successful application of OCT or OCT-AFI to the field of pulmonary medicine requires overcoming several challenges. This work address those associated with motion: cardiac cycle, breathing and non-uniform rotation distortion (NURD) artifacts. Mechanically rotated endoscopic probes often suffer from image degradation due to NURD. In addition cardiac and breathing motion artifacts may be present in-vivo that are not seen ex-vivo. These motion artifacts can be problematic in OCT-AFI systems with slower acquisition rates and have been observed to generate identifiable prominent artifacts which make confident interpretation of observed structures (blood vessels, etc) difficult. Understanding and correcting motion artifact could improve the image quality and interpretation. In this work, the motion artifacts in pulmonary OCT-AFI data sets are estimated in both AFI and OCT images using a locally adaptive registration algorithm that can be used to correct/reduce such artifacts. Performance of the algorithm is evaluated on images of a NURD phantom and on in-vivo OCT-AFI datasets of peripheral lung airways.