Proceedings Volume 9429

Bioinspiration, Biomimetics, and Bioreplication 2015

cover
Proceedings Volume 9429

Bioinspiration, Biomimetics, and Bioreplication 2015

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 5 May 2015
Contents: 13 Sessions, 33 Papers, 0 Presentations
Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring 2015
Volume Number: 9429

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9429
  • Biomaterials I
  • Optics and Photonics I
  • Adhesion
  • Visual and Acoustic Sensing
  • Flight
  • Robotics I
  • Robotics II
  • Optics and Photonics II
  • Optics and Photonics III
  • Systems and Devices
  • Biomaterials III
  • Poster Session
Front Matter: Volume 9429
icon_mobile_dropdown
Front Matter: Volume 9429
This PDF file contains the front matter associated with SPIE Proceedings Volume 9429, including the Title Page, Copyright information, Table of Contents, Authors, Introduction (if any), and Conference Committee listing.
Biomaterials I
icon_mobile_dropdown
Paradigm for design of biomimetic adaptive structures
Nature builds by 1) using local, available materials which 2) self-ordering or growing by attributes shared between material and environment; 3) repairing themselves, 4) sensing and adapting to changes in environment; 5) disintegrating, recycling back into the material sink; and 6) sometimes enhancing the shared environment. The author has invented and developed materials for all parts of the paradigm either individually or in tandem. Application of these rules in funded research projects described herein are: 1) in-situ adaptive ports in ocean made from chemicals in seawater based on bio-mimicking the human body 2) self-repairing, self-sensing concrete 3) self repairing polymer composites 4) bone-mimicry material self-formation to achieve a cement/polymer composite 5) fly ash building materials sequestering heavy metals.
Optics and Photonics I
icon_mobile_dropdown
Exploring polarization features in light reflection from beetles with structural colors
Hans Arwin, Roger Magnusson, Lía Fernández del Río, et al.
A Mueller matrix of a sample can be used to determine the polarization of reflected light for incident light with arbitrary polarization. The polarization can be quantified in terms of ellipticity, polarization azimuth and degree of polarization. We apply spectroscopic Mueller-matrix ellipsometry at multiple angles of incidence to study the cuticle of beetles and derive polarization features for incident unpolarized light. In particular we address chiral phenomena in scarab beetles, the origin of their structural colors and the observed high degree of circular polarization is discussed. Results from beetles in Scarabaeidae subfamilies Cetoniinae and Rutelinae are presented including specimens with broad-band silver-or gold-like colors with metallic shine as well as specimens with narrow-band green or red reflectors. The variation of polarization with angle of incidence and occurrence of both left-handed and right-handed polarization from a single species are presented. We also use Mueller-matrix thicknesses and optical properties. Interference oscillations in the observed spectra are due to allowed optical modes and we show how to develop a structural model of a cuticle based on this effect. Sum decomposition of Mueller matrices measured on a depolarizing cuticle of a beetle is briefly discussed.
InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles
R. Magnusson, J. Birch, C.-L. Hsiao, et al.
The scarab beetle Cetonia aurata is known to reflect light with brilliant colors and a high degree of circular polarization. Both color and polarization effects originate from the beetles exoskeleton and have been attributed to a Bragg reflection of the incident light due to a twisted laminar structure. Our strategy for mimicking the optical properties of the Cetonia aurata was therefore to design and fabricate transparent, chiral films. A series of films with tailored transparent structures of helicoidal InxAl1-xN nanorods were grown on sapphire substrates using UHV magnetron sputtering. The value of x is tailored to gradually decrease from one side to the other in each nanorod normal to its growth direction. This introduces an in-plane anisotropy with different refractive indices in the direction of the gradient and perpendicular to it. By rotating the sample during film growth the in-plane optical axis will be rotated from bottom to top and thereby creating a chiral film. Based on Muellermatrix ellipsometry, optical modeling has been done suggesting that both the exoskeleton of Cetonia aurata and our artificial material can be modeled by an anisotropic film made up of a stack of thin layers, each one with its in-plane optical axis slightly rotated with respect to the previous layer. Simulations based on the optical modeling were used to investigate how pitch and thickness of the film together with the optical properties of the constitutive materials affects the width and spectral position of the Bragg reflection band.
The artificial beetle, or a brief manifesto for engineered biomimicry
The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.
Light emission from compound eye with conformal fluorescent coating
Raúl J. Martín-Palma, Amy E. Miller, Drew P. Pulsifer, et al.
Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.
Electromagnetic response of the protective pellicle of Euglenoids: influence of the surface profile
Marina E. Inchaussandague, Miriam L. Gigli, Diana C. Skigin, et al.
In a recent paper we have investigated, from an electromagnetic point of view, the role played by the pellicle of Euglenoids –unicellular aquatic organisms– in the protection of the cell against UV radiation.14 By modelling the pellicle as a diffraction grating, we computed the electromagnetic response of different species that exhibit different behaviors against UV radiation. In this previous study, the pellicle profile was approximated by a sinusoidal grating. However, it has been observed in the transversal cut images that the profiles are not exactly sinusoidal, and also vary from sample to sample. Since the electromagnetic response depends on the geometry of the grating, reflectance calculations that take into account a more accurate representation of the actual profile could provide more insight into this problem. In this paper we investigate the electromagnetic response of the pellicle of Euglenoids for different grating profiles. The diffraction problem is solved by using the Chandezon method, which has demonstrated a successful performance for deep gratings of arbitrary profiles. We analyze the influence of the shape, depth and period of the grating on the UV reflectance. We show that the pellicle characteristics are critical parameters to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.
Adhesion
icon_mobile_dropdown
Switchable bio-inspired adhesives
Elmar Kroner
Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko’s adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic.

In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.
Visual and Acoustic Sensing
icon_mobile_dropdown
A predictive model for artificial mechanical cochlea
To recover the hearing deficiency, cochlea implantation is essential if the inner ear is damaged. Existing implantable cochlea is an electronic device, usually placed outside the ear to receive sound from environment, convert into electric impulses and send to auditory nerve bypassing the damaged cochlea. However, due to growing demand researchers are interested in fabricating artificial mechanical cochlea to overcome the limitations of electronic cochlea. Only a hand full number of research have been published in last couple of years showing fabrication of basilar membrane mimicking the cochlear operations. Basilar membrane plays the most important role in a human cochlea by responding only on sonic frequencies using its varying material properties from basal to apical end. Only few sonic frequencies have been sensed with the proposed models; however no process was discussed on how the frequency selectivity of the models can be improved to sense the entire sonic frequency range. Thus, we argue that a predictive model is the missing-link and is the utmost necessity. Hence, in this study, we intend to develop a multi-scale predictive model for basilar membrane such that sensing potential of the artificial cochlea can be designed and tuned predictively by altering the model parameters.
Flight
icon_mobile_dropdown
A low-cost simulation platform for flapping wing MAVs
J. M. Kok, J. S. Chahl
This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.
A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings
Akash Dhruv, Christopher Blower, Adam M. Wickenheiser
The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing’s surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method enables fast and accurate assessment of aerodynamic loads for initial design of complex wing configurations compared to other methods available.
Dynamic response of a piezoelectric flapping wing
Alok Kumar, Gaurang Khandwekar, S. Venkatesh, et al.
Piezo-composite membranes have advantages over motorized flapping where frequencies are high and certain coupling between bending and twisting is useful to generate lift and forward flight. We draw examples of fruit fly and bumble bee. Wings with Piezo ceramic PZT coating are realized. The passive mechanical response of the wing is characterized experimentally and validated using finite element simulation. Piezoelectric actuation with uniform electrode coating is characterized and optimal frequencies for flapping are identified. The experimental data are used in an empirical model and advanced ratio for a flapping insect like condition for various angular orientations is estimated.
Robotics I
icon_mobile_dropdown
Fin propulsion on a human-powered submarine
Iain A. Anderson, Benjamin Pocock, Antoni Harbuz, et al.
Nearly all surface and underwater vessels are driven by screw propulsion; ideal for coupling to rotary engines and well understood after over a century of development. But most aquatic creatures use fins for swimming. Although there are sound evolutionary reasons why fish have fins and not propellers, they are nevertheless agile, fast and efficient. Although fish-like robots such as the MIT Robotuna are providing good insight into fin-based swimming there are advantages for using humans in the experimental device. Like an airplane test pilot they can write crash reports. We present preliminary observations for the human powered finned submarine: Taniwha. The sub participated in the 2nd European International Submarine races in Gosport UK where it received a trophy for “Best Non-Propeller Performance”. Two sets of Hobie Mirage fin drives fixed to the upper and lower rear surfaces of the sub are pedaled by the pilot. The pilot also has two levers at the front, one to pitch a pair of dive planes and one for yawing a large rudder. Good speed, we estimate to be greater than 6 m/s is possible with these fins although we haven’t explored their full potential. Straying too near the surface or bottom can lead to an instability, synonymous to a stall, such that control is lost. The mechanism for this will be discussed and solutions offered. Fish are 400 million years in front of us but one day we’ll catch them.
Biologically inspired robots elicit a robust fear response in zebrafish
Fabrizio Ladu, Tiziana Bartolini, Sarah G. Panitz, et al.
We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.
Artificial heart for humanoid robot using coiled SMA actuators
Previously, we have presented the design and characterization of artificial heart using cylindrical shape memory alloy (SMA) actuators for humanoids [1]. The robotic heart was primarily designed to pump a blood-like fluid to parts of the robot such as the face to simulate blushing or anger by the use of elastomeric substrates for the transport of fluids. It can also be used for other applications. In this paper, we present an improved design by using high strain coiled SMAs and a novel pumping mechanism that uses sequential actuation to create peristalsis-like motions, and hence pump the fluid. Various placements of actuators will be investigated with respect to the silicone elastomeric body. This new approach provides a better performance in terms of the fluid volume pumped.
Modeling of the energy savings of variable recruitment McKibben muscle bundles
Michael A. Meller, Jordan B. Chipka, Matthew J. Bryant, et al.
McKibben artificial muscles are often utilized in mobile robotic applications that require compliant and light weight actuation capable of producing large forces. In order to increase the endurance of these mobile robotic platforms, actuation efficiency must be addressed. Since pneumatic systems are rarely more than 30% efficient due to the compressibility of the working fluid, the McKibben muscles are hydraulically powered. Additionally, these McKibben artificial muscles utilize an inelastic bladder to reduce the energy losses associated with elastic energy storage in the usual rubber tube bladders. The largest energy losses in traditional valve-controlled hydraulic systems are found in the valving implementation to match the required loads. This is performed by throttling, which results in large pressure drops over the control valves and significant fluid power being wasted as heat. This paper discusses how these throttling losses are reduced by grouping multiple artificial muscles to form a muscle bundle where, like in skeletal muscle, more elements that make up the muscle bundle are recruited to match the load. This greatly lessens the pressure drops by effectively changing the actuator area, leading to much higher efficiencies over a broader operation envelope. Simulations of several different loading scenarios are discussed that reveal the benefits of such an actuation scheme.
Design and fabrication of a three-finger prosthetic hand using SMA muscle wires
Filomena Simone, Alexander York, Stefan Seelecke
Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.
Robotics II
icon_mobile_dropdown
An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering
Quoc-Viet Nguyen, Woei Leong Chan, Marco Debiasi
We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.
Soap film flow visualization investigations of oscillating wing energy harvesters
Benjamin Kirschmeier, Matthew Bryant
With increasing population and proliferation of wireless electronics, significant research attention has turned to harvesting energy from ambient sources such as wind and water flows at scales ranging from micro-watt to mega-watt levels. One technique that has recently attracted attention is the application of bio-inspired flapping wings for energy harvesting. This type of system uses a heaving and pitching airfoil to extract flow energy and generate electricity. Such a device can be realized using passive devices excited by aeroelastic flutter phenomena, kinematic mechanisms driven by mechanical linkages, or semi-active devices that are actively controlled in one degree of freedom and passively driven in another. For these types of systems, numerical simulations have showed strong dependence on efficiency and vortex interaction. In this paper we propose a new apparatus for reproducing arbitrary pitch-heave waveforms to perform flow visualization experiments in a soap film tunnel. The vertically falling, gravity driven soap film tunnel is used to replicate flows with a chord Reynolds number on the order of 4x104. The soap film tunnel is used to investigate leading edge vortex (LEV) and trailing edge vortex (TEV) interactions for sinusoidal and non-sinusoidal waveforms. From a qualitative analysis of the fluid structure interaction, we have been able to demonstrate that the LEVs for non-sinusoidal motion convect faster over the airfoil compared with sinusoidal motion. Signifying that optimal flapping frequency is dependent on the motion profile.
Optics and Photonics II
icon_mobile_dropdown
Characterization of natural photonic structures by means of optimization strategies
Demetrio Macías, Alexandre Vial, Ana Luna, et al.
Natural photonic structures exhibit remarkable color effects such as metallic appearance and iridescence. A rigorous study of the electromagnetic response of such complex structures requires to accurately determine some of their relevant optical parameters, e.g. the dielectric constants of the materials involved. In a recent work, we have shown that heuristic optimization strategies are suitable tools for the retrieval of the complex refractive index of the materials comprising natural multilayer systems such as the Coleoptera’s cuticle. Moreover, the numerical results obtained illustrate the great potential of this kind of algorithms not only for the study of natural photonic structures, but also for the design of biomimetic photonic devices for lightning, sensing or anti-counterfeiting applications. In a first stage, we assumed that the materials which comprise the layers are characterized by isotropic non-dispersive dielectric permittivities. However, it is well known that the cuticle of many Coleoptera exhibit anisotropy in their constituent materials, and also dispersion has been reported. In this contribution we improve our previous approach in order to have a more realistic and useful computational tool for the retrieval of the relevant parameters of biological structures. For this, we include, within the inversion algorithm, a dispersion model to describe the frequency-dependent dielectric permittivity of the layers’ materials. Also, in order to guarantee the uniqueness of the solution and the convergence to the global optimum, we simultaneously include in the fitness function the information of several angles of incidence, as well as that of the p- and s-polarization states.
Optics and Photonics III
icon_mobile_dropdown
Biomimetics, color, and the arts
Color as dramatic, dynamic and dazzling as the iridescent hues on the wings of certain butterflies has never been encountered in the art world. Unlike and unmatched by the chemical pigments of the artists’ palette, this changeable color is created by transparent, colorless nanostructures that, as with prisms, diffract and reflect light to render spectral color visible. Until now, iridescent colors, by their very nature, have defied artists’ best efforts to fully capture these rainbow hues. Now, for the first time, the artist and researcher Franziska Schenk employs latest nature-inspired color-shift technology to actually simulate the iridescence of butterflies and beetles on canvas. Crucially, studying the ingenious ways in which a range of such displays are created by insects has provided the artist with vital clues on how to adapt and adopt these challenging optical nano-materials for painting. And indeed, after years of meticulous and painstaking research both in the lab and studio, the desired effect is achieved. The resulting paintings, like an iridescent insect, do in fact fluctuate in perceived color - depending on the light and viewing angle. In tracing the artist’s respective biomimetic approach, the paper not only provides an insight into the new color technology’s evolution and innovative artistic possibilities, but also suggests what artists can learn from nature.
Simple mass-production method of substrate-free powders for applications of the Morpho-colored materials
Akira Saito, Kosei Ishibashi, Megumi Akai-Kasaya, et al.
The brilliant blue coloration of Morpho butterfly has been a physical mystery, which has a single color in too wide angular range (> ± 40° from the normal) despite the interference effect. After proven the principle of the mystery by emulating the specific nanostructures of their scales by extracting the optical essence, we found the reproduced Morpho-color to serve wide applications, because it can produce a conspicuous single color in wide angular range with high reflectance without any chemical pigment, which is also resistant to fading caused by chemical change for long time. Thus, we have developed various technologies for practical applications of the specific color, such as mass-production processes, control and simulation of their optical properties. One of the remaining key issues is to produce the substrate-free color materials such as micro-powders, because all processes have long been accompanied with the thick substrate designed with a specific nanostructure, which has fatally limited the variety of applications. We developed a simple process to mass-fabricate the color powders. Also the micro-powders were found to maintain the original optical properties in a tiny size. This process will extend effectively the applications of the Morpho-color, which enables the coloring without any limit of shape.
Systems and Devices
icon_mobile_dropdown
Development of a frequency-modulated ultrasonic sensor inspired by bat echolocation
Krzysztof Kepa, Nicole Abaid
Bats have evolved to sense using ultrasonic signals with a variety of different frequency signatures which interact with their environment. Among these signals, those with time-varying frequencies may enable the animals to gather more complex information for obstacle avoidance and target tracking. Taking inspiration from this system, we present the development of a sonar sensor capable of generating frequency-modulated ultrasonic signals. The device is based on a miniature mobile computer, with on board data capture and processing capabilities, which is designed for eventual autonomous operation in a robotic swarm. The hardware and software components of the sensor are detailed, as well their integration. Preliminary results for target detection using both frequency-modulated and constant frequency signals are discussed.
A synthetic leaf: the biomimetic potential of graphene oxide
Marilla Lamb, George W. Koch, Eric R. Morgan, et al.
Emerging materials such as graphene oxide (GO) have micro and nano features that are functionally similar to those in plant cell walls involved in water transport. Therefore, it may now be possible to design and build biomimetic trees to lift water via mechanisms similar to those employed by trees, allowing for potential applications such as passive water pumping, filtering, and evaporative cooling. The tallest trees can raise large volumes of water to over 100 meters using only the vapor pressure gradient between their leaves and the atmosphere. This phenomenon occurs in all terrestrial plants when capillary forces generated in the microscopic pores in the cell walls of leaves are collectively applied to large diameter xylem conduits. The design of a synthetic tree that mimics these mechanisms will allow water to be moved to heights greater than is currently possible by any engineered system that does not require the use of a positive pressure pump. We are testing the suitability of membranous GO as the leaf of a synthetic tree and present an analysis in support of this design. In addition, we include results from a preliminary design using ceramics.
Efficiency testing of hydraulic artificial muscles with variable recruitment using a linear dynamometer
Jordan B. Chipka, Michael A. Meller, Ephrahim Garcia
When a task calls for consistent, large amounts of power output, hydraulic actuation is a popular choice. However, for certain systems that require short bursts of high power, followed by a period of low power, the inefficiencies of hydraulics become apparent. One system that fits this description is a legged robot. McKibben muscles prove to be a wise choice for use on legged robots due to their light weight, high force capability, and inherent compliance. Variable recruitment, another novel concept for hydraulic actuation, offers the ability to further improve efficiency for hydraulic systems. This paper will discuss the efficiency characterization of variable recruitment McKibben muscles intended for use on a bipedal robot, but will focus on the novel test apparatus to do so. This device is a hydraulic linear dynamometer that will be controlled such that the muscles experience similar force-stroke levels to what will be required on a bipedal robot. The position of the dynamometer’s drive cylinder will be controlled so that the muscles experience the proper position trajectory that will be needed on the robot. The pressure of the muscles will be controlled such that the force they experience will mimic the forces that occur on the robot while walking. Hence, these dynamic tests will ensure that the muscle bundles will meet the force-stroke requirements for the given robot. Once these muscle bundles are integrated onto the walking robot, the power savings of variable recruitment McKibben muscle bundles compared to the traditional hydraulic system will be demonstrated.
Variable deflection response of sensitive CNT-on-fiber artificial hair sensors from CNT synthesis in high aspect ratio microcavities
Keith Slinker, Matthew R. Maschmann, Corey Kondash, et al.
Crickets, locusts, bats, and many other animals detect changes in their environment with distributed arrays of flow-sensitive hairs. Here we discuss the fabrication and characterization of a relatively new class of pore-based, artificial hair sensors that take advantage of the mechanical properties of structural microfibers and the electromechanical properties of self-aligned carbon nanotube arrays to rapidly transduce changes in low speed air flow. The radially aligned nanotubes are able to be synthesized along the length of the fibers inside the high aspect ratio cavity between the fiber surface and the wall of a microcapillary pore. The growth self-positions the fibers within the capillary and forms a conductive path between detection electrodes. As the hair is deflected, nanotubes are compressed to produce a typical resistance change of 1-5% per m/s of air speed which we believe are the highest sensitivities reported for air velocities less than 10 m/s. The quasi-static response of the sensors to point loads is compared to that from the distributed loads of air flow. A plane wave tube is used to measure their dynamic response when perturbed at acoustic frequencies. Correlation of the nanotube height profile inside the capillary to a diffusion transport model suggests that the nanotube arrays can be controllably tapered along the fiber. Like their biological counterparts, many applications can be envisioned for artificial hair sensors by tailoring their individual response and incorporating them into arrays for detecting spatio-temporal flow patterns over rigid surfaces such as aircraft.
Biomaterials III
icon_mobile_dropdown
Behavior of an adaptive bio-inspired spider web
Lingyue Zheng, Majid Behrooz, Andrew Huie, et al.
The goal of this study is to demonstrate the feasibility of an artificial adaptive spider web with comparable behavior to a real spider web. First, the natural frequency and energy absorption ability of a passive web is studied. Next, a control system that consists of stepper motors, load cells and an Arduino, is constructed to mimic a spider’s ability to control the tension of radial strings in the web. The energy related characteristics in the artificial spider web is examined while the pre-tension of the radial strings are varied. Various mechanical properties of a damaged spider web are adjusted to study their effect on the behavior of the web. It is demonstrated that the pre-tension and stiffness of the web’s radial strings can significantly affect the natural frequency and the total energy of the full and damaged webs.
Poster Session
icon_mobile_dropdown
Motion generation of peristaltic mobile robot with particle swarm optimization algorithm
In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.
Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces
Yue Wang, Jinyou Shao, Yucheng Ding, et al.
Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.
Electrowetting of liquid polymer on petal-mimetic microbowl-array surfaces for formation of microlens array with varying focus on a single substrate
Xiangmeng Li, Jinyou Shao, Xiangming Li, et al.
In this paper, microlens array with varying focal lengths were fabricated on a single microbowl-array textured substrate. The solid microbowl-arrayed NOA61 (kind of polyurethane-based polymer with UV curablity) surface was resulted from nanoimprinting by polydimethylsiloxane (PDMS) mold. The PDMS mold was replicated from an SU-8 master which was generated by electron beam lithography. Such microbowl-arrayed surfaces demonstrate petal-mimetic highly adhesive hydrophobic wetting properties, which can promote an irreversible electrowetting (EW) effect and a dereased contact angle of water droplets as well as other liquid droplets by applying direct current (DC) voltage. To fabricate a microlens array with varying focal-lengths, liquid NOA61 was supplied from a syringe on the solid NOA61 microtextured film and DC voltage was applied succesively. After removing the DC voltage, these liquid NOA61 microdrops deposited on the solid microtextured NOA61 surface on tin-indium-oxide coated substrate could be solidified via UV irradiation, thus leading to microlens array with uneven numerical apertures on a single substrate. Numerical simulation was also done to verify the EW effect. Finally, optical imaging characterization was performed to confirm the varied focus of the NOA61 microdrops.
The effect of the abdomen deformation on the longitudinal stability of flying insects
Sang-Yeon Choi, Joong-Kwan Kim, Jong-Seob Han, et al.
In this paper, we derive longitudinal nonlinear equations of motion of a hovering insect with deformable abdomen to investigate the effect of the abdominal motion to the longitudinal dynamics. The blade-element theory, which is based on experimentally obtained aerodynamic coefficients, is used for the periodic force and moment excitation to the system. Here, we focus on the role of the deformable abdomen to investigate whether or not the flexible body is a decisive factor to the longitudinal flight dynamic stability. Three cases: 1) rigid connection between the thorax and abdomen, 2) flexible connection, and 3) active connection with a feedback control, are compared to check the role of the abdomen deformation on the longitudinal flight dynamic stability, by examining eigenvalues of the linearized system model of each case. The results show that an active control of the abdominal angle can stabilize the longitudinal flight dynamics of the insect modeled in this study.
Exploration of electric properties of bone compared to cement: streaming potential and piezoelectirc properties
Bone is a material after which to model construction materials for many reasons, including its great strength, toughness, and adaptability. This paper focuses on bone’s intrinsic ability to adapt to its environment, namely loading conditions. Research on bone’s electrical properties reveals that two phenomena occur in bone to allow it to adapt to environmental changes; they are the inherent piezoelectric property of bone and the streaming potential of bone [1]. Together they create charge differences that attract ions to specific regions of the bone, namely those under greatest stress, in order to build up the region to handle the applied load. Research on the utilization of these properties in cement in order to increase adaptability was studied along with 1) the inherent electric properties of the cement itself and 2) considered the introduction of a different polymer or ceramic within the cement to impart piezoelectricity and streaming potential.
Improving energy efficiency in robot limbs through hydraulic dangle
Julian S. Whitman, Mike Meller, Ephrahim Garcia
Animals often allow their limbs to swing passively under their own inertia. For example, about 40% of a human walking gait consists of the primarily passive swing phase. Current hydraulic robots employ traditional actuation methods in which fluid power is expended for all limb movements, even when passive dynamics could be utilized. “Dangle” is the ability to allow a hydraulic actuator to freely sway in response to external loads, in which both sides of the actuator are disconnected from pressure and connected to the tank. Dangle offers the opportunity for efficiency gains by enabling the use of momentum, gravity, and external loads to move a limb without expending fluid power. To demonstrate these efficiency gains, this paper presents an experiment that compares the fluid power consumed to actuate a two degree of freedom hydraulic leg following a human walking gait cycle trajectory in both a traditional manner and utilizing dangle. It was shown that the use of dangle can decrease fluid power consumption by 20% by utilizing pendular dynamics during the swing phase. At speeds higher than the free dangling rate, more power must be used to maintain the desired trajectory due to damping inherent in the configuration. The use of dangle as a power saving method when driving hydraulic limbs could increase operation time for untethered hydraulic walking robots.