Proceedings Volume 9268

Optics in Health Care and Biomedical Optics VI

Qingming Luo, Xingde Li, Ying Gu, et al.
cover
Proceedings Volume 9268

Optics in Health Care and Biomedical Optics VI

Qingming Luo, Xingde Li, Ying Gu, et al.
View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 19 December 2014
Contents: 9 Sessions, 58 Papers, 0 Presentations
Conference: SPIE/COS Photonics Asia 2014
Volume Number: 9268

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9268
  • Advanced Optical Techniques for Medicine I
  • Microscopy and Imaging I
  • Photonics Therapy
  • Nano Biophotonics
  • Advanced Optical Techniques for Medicine II
  • Microscopy and Imaging II
  • Multimodal Biomedical Imaging
  • Poster Session
Front Matter: Volume 9268
icon_mobile_dropdown
Front Matter: Volume 9268
This PDF file contains the front matter associated with SPIE Proceedings Volume 9268, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Advanced Optical Techniques for Medicine I
icon_mobile_dropdown
The evaluation and planning of light dose in photodynamic therapy for port wine stains
Feng-juan Zhang, Xiaoming Hu, Qi-shen Zhang
Photodynamic therapy (PDT) is one of the best available treatment for dermatology, especially for port wine stains (PWS), in which the efficacy is associated with the light dose, the photosensitizer concentration, the oxygen concentration and so on. Accurate control of the light dose will help doctors develop more effective treatment protocols, and reduce the treatment cost. Considering the characters of PWS, a binocular vision system composed of a camera, a digital projector and a computing unit is designed. An accurate 3D modeling of patients was achieved using a gray coding structured light, and then the lesions were segmented based on HSV space. Subsequently, each 3D point is fit on the surface by a nearest neighbor algorithm and the surface normal can be obtained. Three dimensional localization of lesion provide digital objective basis for automatic control of light device. The irradiance on the surface at a given angle can be assessed, and the optimum angle for the treatment can be solved and optimized by the doctor to improve irradiation areas.
Optical coherence tomography: a potential tool for prediction of treatment response for port wine stain after photodynamic therapy
Response of port wine stain (PWS) to photodynamic therapy treatment (PDT) is variable and depends on treatment setting used and anatomic sites as well as on size and depth of ectatic vessels. Optical coherence tomography (OCT) is a non-destructive imaging modality which can reveal the layered structure of the upper part of the skin. The structural features of the PWS skin such as the diameter and depth of the blood vessels in different anatomic sites can be showed in the OCT images. In this study, the possible role of PWS skin structure in the response to PDT is assessed. 82 positions from 43 patients with PWS underwent OCT evaluation in cheek, zygomatic aera, preauricular and temporal region before and 3~4 months after the first PDT when treatment outcomes were also evaluated. After analyzing the structural features in different anatomic sites and the therapeutic effect of them, we found that the ectatic vessels diameter was obvious bigger in the cheek which had slightly poorer outcomes than other areas. Some typical structures had poor or good outcomes after first PDT. These can help the clinic doctors predict the response of some patients which have typical structures after PDT treatment. The OCT will be a potential tool for prediction of treatment response for port wine stain after photodynamic therapy.
Microscopy and Imaging I
icon_mobile_dropdown
Solutions on high-resolution multiple configuration system sensors
Hua Liu, Quanxin Ding, Chunjie Guo, et al.
For aim to achieve an improved resolution in modern image domain, a method of continuous zoom multiple configuration, with a core optics is attempt to establish model by novel principle on energy transfer and high accuracy localization, by which the system resolution can be improved with a level in nano meters. A comparative study on traditional vs modern methods can demonstrate that the dialectical relationship and their balance is important, among Merit function, Optimization algorithms and Model parameterization. The effect of system evaluated criterion that MTF, REA, RMS etc. can support our arguments qualitatively.
A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens
John Freudenthal, Andy Leadbetter, Jacob Wolf, et al.
The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.
Size-dependent amplitude and phase distribution under a high NA objective
Xin Hong, Huan Liu
The interactions between light and sub-wavelength sized dielectric particles have been paid more attentions especially in biotechnology and photonics. Base on Mie scattering method, we calculate the electrical field distribution scattered by a single dielectric particle which is focused by a high numerical aperture (NA) objective. The theoretical result indicates a size dependent amplitude and phase distribution, which agrees well with the experimental measurement. This method provides a way to evaluate the particles size down to the range of less than diffraction limitation.
Photonics Therapy
icon_mobile_dropdown
Photophysical properties and photo-induced intermolecular electron transfer of a novel aryl benzyl ester dendritic axially substituted silicon (IV) phthalocyanine
Xiuqin Chen, Dongdong Ma, Xiongwei Wang, et al.
The photophysical properties of a novel dendritic phthalocyanine di-{3,5-di-(4-methoxycarbonyl group benzyloxy) benzyloxy) benzyloxy} axially substituted silicon (IV) phthalocyanine (DSiPc) were studied by UV/Vis, steady state and time-resolved spectroscopic methods. The effect of dendritic structure on the photophysical properties and photoinduced intermolecular electron transfer were investigated. The maximum absorption, fluorescence intensity, lifetime and fluorescence quantum yield of DSiPc were greatly sensitized by the dendritic structure on the axially position of silicon (IV) phthalocyanine. The photoinduced intermolecular electron transfer between this novel macromolecule and benzoquinone (BQ) was studied. The results showed that the fluorescence emission of this dendritic phthalocyanine could be quenched by BQ with KSV value of DSiPc is 52.84 dm3 mol-1. The cyclic voltammogram and square wave voltammogram of DSiPc in DMF further evidenced the electron was transfer from DSiPc to BQ from thermodynamics. Therefore, this novel dendritic phthalocyanine was an effective new electron donor and transmission complex could be used as a potential artificial photosynthesis system.
Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation
Liqin Zheng, Caimin Qiu, Yuhua Wang, et al.
Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.
The simulation of light distribution in photodynamic therapy for port wine stains
Photodynamic Therapy is regarded as the best treatment for port wine stains, which has the main adverse effect of various degrees of pain (mild to moderate) during the illumination. Though the cooling and cold water have been used to reduce such pain, there is still no scientific evidence for these relief. In this paper, a realistic skin model is built to simulate the distribution of light under treatment, which helps control the light dose and temperature, and improve the clinical results. Comparing with the general parallel skin model, a curving stratum basale layer is used in this paper, and various blood vessel configurations such as single and multiple vessels with horizontally and vertically oriented, curve vessels, various vessel diameter and various radius of curvature of stratum basale layer are simulated. The results shows a more realistic modeling for the thermal damage and help to relief the pain in the treatment.
In vitro sensitivity of Candida spp. to hematoporphyrin monomethyl ether-mediated photodynamic inactivation
Yucheng Wang, Ying Wang, Sumin Wu, et al.
Background: An increasing prevalence of Candida infections has emerged with the wide use of immune-suppressants and antibiotics. Current antifungal drugs exhibit low efficiency and high toxicity to the normal organs. Photodynamic inactivation (PDI) provides an alternative therapeutic strategy involving the use of photosensitizer (PS) and light irradiation. This study evaluated PDI effects against strains of C. albicans, C. parapsilosis, C. krusei and C. glabrata, using the PS of hematoporphyrin monomethyl ether (HMME), which is a second-generation PS clinically approved in China. Methods: Suspensions (~106 CFU/ml) were incubated with seven HMME concentrations (0.25~50 μM) for 30 min followed by 532-nm laser irradiation for 10 min at 40 mW/cm2. Viability of cells was assayed by CFU counting. Furthermore, fetal calf serum (10%) and singlet oxygen quencher sodium azide (100mM) were respectively added to the suspension of C. krusei to evaluate their roles in PDI process. Results: Among the four species, C. albicans was the most sensitive to PDI; 4 log10 killing was achieved at the concentration of 7.5 μM. C. glabrata was the most resistant; 3 log10 killing was not obtained even at PS concentration of 50 μM. PDI effects against C. krusei were inhibited by both serum and sodium azide. Conclusions: HMME-mediated PDI was able to effectively kill Candida in our experimental conditions, mainly through a Type Ⅱ photoprocess. However, the effects could be intensively reversed by the presence of serum. Thus, there might be a long way before HMME can be used in fighting against Candida in real infectious foci.
Nano Biophotonics
icon_mobile_dropdown
Synthesis of folate receptor-targeted photosensitizers for photodynamic therapy
A series of amphiphilic benzylidene cycloalkanes ketone photosensitizers C1-C4 with or without folate receptor-targeted agent were designed and synthesized. Their photophysical properties and in vitro photodynamic therapy (PDT) effects were studied. The results showed that all compounds exhibited appropriate lipid-water partition coefficients and high reactive oxygen yields. The introduction of the folate receptor-targeted agent had no obvious influence on the basic photophysical & photochemical properties of C2 and C4 compared to those of their corresponding prototype compounds (C1 and C3). In vitro studies were carried out using MCF-7 cells (FR+), Hela cells (FR+) and A549 cells (FR-), which represented different levels of folate receptor (FR) expression. All of C1-C4 showed low dark toxicity and superior PDT effects compared with the clinical drug PSD-007 (a mixture of porphyrins). What’s more, folate receptor-targeted photosensitizers (C2 and C4) achieved higher accumulation and more excellent PDT effects in MCF-7 cells (FR+) and Hela cells (FR+) than photosensitizers (C1 and C3) without folate receptor-targeted agent and PSD-007. The photocytotoxicity of these photosensitizers showed no obvious differences in A549 cells (FR-).
Advanced Optical Techniques for Medicine II
icon_mobile_dropdown
Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy
Lisheng Lin, Yirong Li, Jinde Zhang, et al.
In this study, the vessel constriction was measured as a biological indicator of acute vascular response after vascular targeted photodynamic therapy (V-PDT). During V-PDT treatment, the near-infrared (NIR) singlet oxygen (1O2) luminescence at 1270 nm generated in blood vessels in a dorsal skinfold window chamber model in vivo was directly monitored using a custom built high-sensitive NIR imaging system. In order to compare the acute vascular response, various irradiances with the same light dose were utilized for treatments. The obtained results show that the complete arteriole constriction occurred frequently, while some of the larger veins were constricted partially. For the vessels that have significant constriction after V-PDT, our preliminary data suggest that the vasoconstriction in the selected ROIs are roughly correlated with the local cumulative 1O2 luminescence intensities. This study implies that the 1O2 luminescence dosimetry maybe also effective for evaluating V-PDT efficiency.
Hybrid-modality high-resolution imaging: for diagnostic biomedical imaging and sensing for disease diagnosis
Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.
Mapping the microvascular and the associated absolute values of oxy-hemoglobin concentration through turbid media via local off-set diffuse optical imaging
Chen Chen, Florian Klämpfl, Florian Stelzle, et al.
An imging resolution of micron-scale has not yet been discovered by diffuse optical imaging (DOI), while a superficial response was eliminated. In this work, we report on a new approach of DOI with a local off-set alignment to subvert the common boundary conditions of the modified Beer-Lambert Law (MBLL). It can resolve a superficial target in micron scale under a turbid media. To validate both major breakthroughs, this system was used to recover a subsurface microvascular mimicking structure under an skin equivalent phantom. This microvascular was included with oxy-hemoglobin solution in variant concentrations to distiguish the absolute values of CtRHb and CtHbO2 . Experimental results confirmed the feasibility of recovering the target vascular of 50 µm in diameter, and graded the values of the concentrations of oxy-hemoglobin from 10 g/L to 50 g/L absolutely. Ultimately, this approach could evolve into a non-invasive imaging system to map the microvascular pattern and the associated oximetry under a human skin in-vivo.
Microscopy and Imaging II
icon_mobile_dropdown
Wide field-of-view microscopy using compressive sensing
Focus-grid-based wide field-of-view microscope has been developed to break the trade-off of resolution and field of view in conventional microscopy. In the wide field-of-view microscopy, the whole sample area has to be scanned with at least Nyquist-frequency sampling for image reconstruction. We propose a novel scanning mechanism using compressive sensing (CS), where the scanning of focal spots covers only a portion of the sample. Our preliminary studies show that 75% of scanning area is enough to reconstruct a decent image. Thus we can reduce the acquisition data which allow for simpler scanning mechanism and data acquisition.
Measurement of refractive index distribution of biotissues by scanning focused refractive index microscopy
Tengqian Sun, Qing Ye, Xiao-Wan Wang, et al.
We adapt the improved scanning focused refractive-index microscopy (SFRIM) technique to the quantitative study of biological tissues. Delicate refractive index (RI) imaging of a porcine muscle tissue is obtained in a reflection mode. Some modifications are made to the SFRIM for better two dimension (2-D) observation of the tissues. The RI accuracy is 0.002. The central spatial resolution of SFRIM achieves 1μm, smaller than the size of the focal spot. Our method is free from signal distortion. The experimental result demonstrates that SFRIM is a potential technique in a wide field of biomedical research.
Multimodal Biomedical Imaging
icon_mobile_dropdown
Optical coherence tomography imaging of microfluidic pattern with different refractive index contrast
Zhixiong Hu, Bingtao Hao, Wenli Liu, et al.
Optical coherence tomography (OCT) technology is analogous to ultrasound imaging, except that OCT employs light instead of sound. The non-invasive imaging method works by projecting light on test target and detecting the backscattering from the underlying layers. As the OCT technology is based on optical interference, the internal structural features and inhomogeneities induced by different refractive index contrast could be detected and displayed in the form of a gray scale or false color image. In this paper, a typical microfluidic device was produced and measured by a spectral domain OCT instrument. The internal dimensions of the lab-on-chip device were determined using the OCT imaging technology and were in agreement with results obtained with conventional confocal microscope. In order to study the effect of different refractive index contrast on OCT imaging, fluid with various refractive indexes was injected into the microfluidic channel respectively, and the acquired OCT images of the internal microfluidic channel were compared. The results demonstrate that optical coherence tomography could be used as a new metrology tool to determine the internal channel dimensions of lab-on-chip devices. Furthermore, the experiment results reveal the relations between the refractive index contrast and OCT image quality.
Poster Session
icon_mobile_dropdown
High-speed quantitative interferometric microscopy based phase imaging cytometer
The paper proposed a simple large scale bio-sample phase detecting equipment called gravity driven phase detecting cytometer, which is based on quantitative interferometric microscopy to realize flowing red blood cells phase distribution detection. The method has advantages on high throughput phase detecting and statistical analysis with high detecting speed and in real-time. The statistical characteristics of red blood cells are useful for biological analysis and disease detection. We believe this method is shedding more light on quantitatively measurement of the phase distribution of bio-samples.
Identification of the boundary between normal breast tissue and invasive ductal carcinoma during breast-conserving surgery using multiphoton microscopy
Tongxin Deng, Yuting Nie, Yuane Lian, et al.
Breast-conserving surgery has become an important way of surgical treatment for breast cancer worldwide nowadays. Multiphoton microscopy (MPM) has the ability to noninvasively visualize tissue architectures at the cellular level using intrinsic fluorescent molecules in biological tissues without the need for fluorescent dye. In this study, MPM is used to image the microstructures of terminal duct lobular unit (TDLU), invasive ductal carcinoma and the boundary region between normal and cancerous breast tissues. Our study demonstrates that MPM has the ability to not only reveal the morphological changes of the cuboidal epithelium, basement membrane and interlobular stroma but also identify the boundary between normal breast tissue and invasive ductal carcinoma, which correspond well to the Hematoxylin and Eosin (H and E) images. Predictably, MPM can monitor surgical margins in real time and provide considerable accuracy for resection of breast cancerous tissues intraoperatively. With the development of miniature, real-time MPM imaging technology, MPM should have great application prospects during breast-conserving surgery.
Surface-enhanced Raman scattering (SERS) spectroscopic analysis of herba houttuyniae decoction (HHD)
Weiwei Chen, Jia Lin, Shangyuan Feng, et al.
The normal Raman spectrum and surface-enhanced Raman scattering (SERS) spectrum of herba houttuyniae decoction (HHD) were tested and analyzed. The characteristic SERS bands of HHD were tentatively assigned. There was no Raman signal in normal Raman spectrum of HHD. However, as a result of the silver colloid enhanced effects on the Raman scattering of HHD, we observed that the SERS spectrum of HHD had primary thirteen SERS peaks such as 538, 620, 686, 730, 955, 1030, 1231, 1240, 1325, 1400, 1472, 1564 and 1651 cm-1, and there were six strong signals at 538, 620, 730, 955, 1325 and 1400 cm-1 bands. The results showed that the SERS spectroscopy might provide a new kind of high-sensitive, accurate, easy, and rapid detecting method for traditional Chinese medicine (TCM).
Assessment of dental demineralization of yellow race based on fluorescence spectrum
The goal of this study was to evaluate the demineralization status at different acid-etch time based on fluorescence spectrum. Human molars in vitro of yellow race were cut into tooth sections and then they were immersed in 0.3% citric acid to simulate the oral natural demineralization. According to the acid-etch time, samples were randomly divided into three groups: I:20 min, II:40 min, and III:60 min. The normal untreated specimen was set as control group. The fluorescence spectra before and after treatment were measured and analyzed. The result showed that fluorescence spectrum could be efficiently used to monitor the demineralization status of human dental tissue. The relative fluorescence intensities of dental tissue excited respectively with 260, 330 and 400 nm decreased with the increase of acid-etch time, though there was no new constituent formed after demineralization.
Detection of liver cancer tissue using silver nanoparticles-based surface-enhanced Raman spectroscopy
Early detection of hepatocellular carcinoma is difficult due to the absence of recognizable physical symptoms. In this study, Raman spectra of liver normal tissues and hepatocellular carcinoma tissues were measured by using silver nanoparticles based surface enhanced Raman spectroscopy (SERS), respectively. The mean Raman spectra of two groups are roughly similar. But the peaks intensity of hepatocellular carcinoma tissues at 722 cm-1 and 1049 cm-1 are obviously higher than those of normal tissues. Some peaks of hepatocellular carcinoma tissues have shifted by different degree. Besides, Raman peaks at 1004cm-1 had disappeared in normal tissue. The result suggested that SERS spectra can feature liver normal tissue and hepatocellular carcinoma tissue. Principal component analysis (PCA) coupled with linear discriminant analysis (LDA) was performed on the measured spectra. There were three most diagnostically significant PCs (PC3, PC9, and PC15, p<0.05) for discriminating these two groups. The diagnostic sensitivity and specificity both were 84.6%. The whole analysis of each sample needs less time-consumed and cost than other traditional methods in detecting and diagnosing HCC. The preliminary result suggests that SERS spectra can be a potential medical technology to detect and diagnose HCC.
Enhancement display of veins distribution based on binocular vision and image fusion technology
Peng Liu, Si Di, Jian Jin, et al.
The capture and display of veins distribution is an important issue for some applications, such as medical diagnosis and identification. Therefore, it has become a popular topic in the field of biomedical imaging. Usually, people capture the veins distribution by infrared imaging, but the display result is similar with that of a gray picture and the color and details of skin cannot be remained. To some degree, it is unreal for doctors. In this paper, we develop a binocular vision system to carry out the enhancement display of veins under the condition of keeping actual skin color. The binocular system is consisted of two adjacent cameras. A visible band filter and an infrared band filter are placed in front of the two lenses, respectively. Therefore, the pictures of visible band and infrared band can be captured simultaneously. After that, a new fusion process is applied to the two pictures, which related to histogram mapping, principal component analysis (PCA) and modified bilateral filter fusion. The final results show that both the veins distribution and the actual skin color of the back of the hand can be clearly displayed. Besides, correlation coefficient, average gradient and average distortion are selected as the parameters to evaluate the image quality. By comparing the parameters, it is evident that our novel fusion method is prior to some popular fusion methods such as Gauss filter fusion, Intensity-hue-saturation (HIS) fusion and bilateral filter fusion.
Fast pixel shifting phase unwrapping algorithm in quantitative interferometric microscopy
Mingfei Xu, Yanke Shan, Keding Yan, et al.
Quantitative interferometric microscopy is an important method for observing biological samples such as cells and tissues. In order to obtain continuous phase distribution of the sample from the interferogram, phase extracting and phase unwrapping are both needed in quantitative interferometric microscopy. Phase extracting includes fast Fourier transform method and Hilbert transform method, etc., almost all of them are rapid methods. However, traditional unwrapping methods such as least squares algorithm, minimum network flow method, etc. are time-consuming to locate the phase discontinuities which lead to low processing efficiency. Other proposed high-speed phase unwrapping methods always need at least two interferograms to recover final phase distributions which cannot realize real time processing. Therefore, high-speed phase unwrapping algorithm for single interferogram is required to improve the calculation efficiency. Here, we propose a fast phase unwrapping algorithm to realize high-speed quantitative interferometric microscopy, by shifting mod 2π wrapped phase map for one pixel, then multiplying the original phase map and the shifted one, then the phase discontinuities location can be easily determined. Both numerical simulation and experiments confirm that the algorithm features fast, precise and reliable.
Quantitative interferometric microscopic flow cytometer with expanded principal component analysis method
Shouyu Wang, Ying Jin, Keding Yan, et al.
Quantitative interferometric microscopy is used in biological and medical fields and a wealth of applications are proposed in order to detect different kinds of biological samples. Here, we develop a phase detecting cytometer based on quantitative interferometric microscopy with expanded principal component analysis phase retrieval method to obtain phase distributions of red blood cells with a spatial resolution ~1.5 μm. Since expanded principal component analysis method is a time-domain phase retrieval algorithm, it could avoid disadvantages of traditional frequency-domain algorithms. Additionally, the phase retrieval method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological cells are scanned in the field of view. We believe this method can be a powerful tool to quantitatively measure the phase distributions of different biological samples in biological and medical fields.
Novel optimization method for multi-dimensional breast photoacoustic tomography
Meng Cao, Ting Feng, Jie Yuan, et al.
Photoacoustic tomography (PAT) is an effective optical biomedical imaging method which is characterized with noninonizing and noninvasive, presenting good soft tissue contrast with excellent spatial resolution. To build a multi-dimensional breast PAT image, more ultrasound sensors are needed, which brings difficulties to data acquisition. The time complexity for multi-dimensional breast PAT image reconstruction also rises tremendously. Compressive sensing (CS) theory breaks the restriction of Nyquist sampling theorem and is capable to rebuild signals with fewer measurements. In this contribution, we propose an effective optimization method for multi-dimensional breast PAT, which combines the theory of CS and an unevenly, adaptively distributing data acquisition algorithm. With this method, the quality of our reconstructed breast PAT images are better than those using existing multi-dimensional breast PAT system. To build breast PAT images with the same quality, the required number of ultrasound transducers is decreased by using our proposed method. We have verified our method on simulation data and achieved expected results in both two dimensional and three dimensional PAT image reconstruction. In the future, our method can be applied to various aspects of biomedical PAT imaging such as early stage tumor detection and in vivo imaging monitoring.
Experimental demonstration of a Fresnel-reflection based optical fiber biosensor coated with polyelectrolyte multilayers
We report that the end facet of an optical fiber can be coated with polyelectrolyte multilayers (PEM) of polycation (diallyldimethyl ammonium chloride) and polyanion (styrenesulfonate sodium salt) (PDDA+PSS)n (n is the number of bilayers), which functions effectively as a Fresnel-reflection based biosensor. The experimental setup includes a broadband light source, a 3dB coupler, and an optical spectrum analyzer. Biotin and streptavidin are deposited onto the multilayers-coated end facet sequentially. The light intensity change due to variation of external refractive index is monitored. When the concentrations of streptavidin changes from 0.1mg/ml to 1mg/ml, a linear relationship between the concentration of streptavidin and the reflected optical power at the wavelength of 1530nm is observed. The sensitivity increases from -1.6262×10-3 dB/ppm to -4.7852 ×10-3 dB/ppm, when the number of PEM increases from 1 to 2. Then we confirm the optimized numbers of bilayers of PEM are 5 through experiment. Selectivity and repeatability of our proposed optical fiber biosensor are verified. When bovine serum albumin (BSA) is added instead of streptavidin, the obtained spectra overlaps with that of biotin’s. The final end facet coated with PEM and biotin-streptavidin can be cleaned using microwave vibration or aqua regia. The microwave vibration method is utilized due to security concern. The optical spectra changes back to the initial one of the optical fiber in air. In conclusion, a Fresnel-reflection based optical fiber biosensor with good sensitivity, selectivity and repeatability is proposed. This biosensor has the advantages of simple structure, low cost and reliability.
Comparison of 1470nm laser and 1470nm laser heat head for ex-vivo kidney tissue cutting: a preliminary study
Zhentian Zhou, Lupeng Zhang, Jiafeng Liu, et al.
Purpose: Compare of the efficiency of 1470nm laser and 1470nm laser heat head for tissue cutting in vitro porcine kidney tissue . Method: We designed a laser heat head that convert laser energy into thermal energy by the absorbing materials. Fresh kidney tissue was harvested from a porcine and then placed on a turntable with constant speed . The same power of 1470nm laser and 1470nm laser heat head was used to cutting tissue, respectively .The cutting results and the range of thermal damage was compared after cutting . Result: Compared with 1470nm laser, 1470nm laser heat head's cutting traces is more smooth and the thermal damage area is very regular ,so it has smaller damage to deep tissue . Conclusion: The efficiency of laser heat head for tissue cutting was better. This study indicate that we might be able to make laser which the tissue have a low absorption coefficient about it to obtain good results for tissue cutting through the laser point heat source.
Research of the types of applicable people and the statistical characteristics of hand vein image
Haifeng Yang, Xiaoping Yang, Wuchao Xu, et al.
Hand vein image has been widely used in biological recognition, auxiliary medical and other fields. People with age, height, weight, gender differences have distinction in fat thickness of the back of hand, so the contrast and sharpness of their hand vein images are different too, which may affect the results of applications. In this paper, a hand vein image acquisition system is given and the hand vein images of people from the age of 3 to 60 are obtained in various conditions. The effect on the images caused by ages, genders, BMI (body mass index) and FMI (fat mass index) are researched and the statistical characteristics of the images are analyzed. The types of applicable people are also proposed for applications.
The simulation of the recharging method of active medical implant based on Monte Carlo method
Xianyue Kong, Yong Song, Qun Hao, et al.
The recharging of Active Medical Implant (AMI) is an important issue for its future application. In this paper, a method for recharging active medical implant using wearable incoherent light source has been proposed. Firstly, the models of the recharging method are developed. Secondly, the recharging processes of the proposed method have been simulated by using Monte Carlo (MC) method. Finally, some important conclusions have been reached. The results indicate that the proposed method will help to result in a convenient, safe and low-cost recharging method of AMI, which will promote the application of this kind of implantable device.
Precise 13CO2/12CO2 isotopic ratio measurements for breath diagnosis with a 2 um diode laser
Mingguo Sun, Hongliang Ma, Zhensong Cao, et al.
A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. The cell has 10 cm long base length with 26.4 m optical path length in total and 330 cm3 volume. The cell pressure and temperature are controlled at 50 Torr and 28℃, respectively. The best 13δ precision of 0.06‰ was achieved by using wavelet denoising and Kalman filter.
Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer
Xiao-feng Yang, Jian-zhi Pang, Jie-hao Liu, et al.
Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.
Detection of protein kinases P38 based on reflectance spectroscopy with n-type porous silicon microcavities for diagnosing hydatidosis hydatid disease
Xiaoyi Lv, Guodong Lv, Zhenhong Jia, et al.
Detection of protein kinases P38 of Echinococcus granulosus and its homologous antibody have great value for early diagnosis and treatment of hydatidosis hydatid disease. In this experiment, n-type mesoporous silicon microcavities have been successfully fabricated without KOH etching or oxidants treatment that reported in other literature. We observed the changes of the reflectivity spectrum before and after the antigen-antibody reaction by n-type mesoporous silicon microcavities. The binding of protein kinases P38 and its homologous antibody causes red shifts in the reflection spectrum of the sensor, and the red shift was proportional to the protein kinases P38 concentration with linear relationship.
An active timing controlled-gate fluorescence lifetime imaging microscopy using an ultrafast picosecond diode laser
Yang Liu, Yan Zhou, Yuliang Liu
We report a time-gated fluorescence lifetime imaging microscopy (FLIM) using an active timing-controlled device and an ultrafast picosecond diode laser. This system could utilize more precise synchronization between laser excitation pulse and ICCD gate combining low timing-jitter diode laser with high precise timing control unit. Two flexible trigger signals for laser source and intensifier gate could adjust time sequence with picosecond precision compared with conventional passive delay adjustment. The importance of the adjustable repetition rate of this laser source is discussed with respect to noise reduction and precision in the lifetime determination, illustrating a further significant advantage over conventional mode-locked solid-state lasers. This FLIM system instrument could satisfy a wide temporal dynamic range demand for various biological applications.
An improved non-local means filter for denoising in brain magnetic resonance imaging based on fuzzy cluster
Combining non-local means (NLM) filter with appropriate fuzzy cluster criterion, objective and subjective manners with synthetic brain Magnetic Resonance Imaging(MRI) are evaluated. Experimental results show that noise is effectively suppressed while image details are well kept, compared with the traditional NLM method. Meanwhile, quantitative and qualitative results indicate that artifacts are greatly reduced in our proposed method and brain MR images are typically enhanced.
Measurement of the mid-infrared Fourier spectroscopic imaging of whole human face by portable apparatus (size: 50*50 mm, weight: 200 g)
Wei Qi, Yo Suzuki, Masaru Fujiwara, et al.
In the daily living space, measurement of the biological-substance distributions such as sebum can be realized by the proposed method of imaging-type 2-dimensional Fourier spectroscopy. This method has the strong robustness for mechanical vibrations. So, the spectrometer (size: 50*50mm, weight: 200g) can be produced without anti-vibration mechanism. Moreover, the phase shifter is a core part of the spectrometer, and it is constructed by the low-price bimorph type actuator which is depending on the vibration control of the piezoceramic in proposed method. It is appropriate as the actuator of the phase shifter from the evaluation results of the actuator straightness and position accuracy in the midinfrared region. As we know, the Fourier spectroscopy has a high light utilization efficiency. Therefore, the low price microbolometer can be used as the imaging sensor. So, the low-price (10,000 U.S. dollars), compact and high portability spectrometer can be produced. Furthermore, the much higher position accuracy in the short wavelength region is requested as we know, the phase shift correction method has been proposed. In this paper, high performance evaluations of the portable spectroscopy apparatus have been discussed by using the CO2 laser spectroscopy results in the midinfrared region. Then, the phase shift correction method was explained. At the end, we demonstrated the feasibility of the mid-infrared imaging of whole human faces without active illuminations.
Miniaturized endoscopic probe for optical coherence tomography with a tiny magnet driving device
This paper proposes an endoscopic probe for optical coherence tomography (OCT) applying on side-imaging of internal organs. The probe consists of single-mode fiber, a gradient-index (GRIN) lens, and a mirror of cylindrical wedge shape attaching to a magnetized metal piece by epoxy with a short steel wire. For OCT scanning, we use magnetic field generated by a larger magnet externally to drive the rotation of the magnetized metal. Compare with other probes, our probe design has two distinct advantages: 1) The exit beam will be unobstructed during 360 degree circumference scanning because there are no connecting wires in the scanning part. 2) In principle, the probe can be made very tiny because of the simple structure consisting only the single-mode fiber, GRIN lens, reflection mirror and the magnetized metal piece. The OCT system has axial resolution of 14µm and SNR of 98.6 dB. The probe prototype we made has an outer diameter of 1.4 mm.
Mueller matrix characterization on anisotropy in tissue optical models
Yunfei Wang, Nan Zeng, Yihong Guo, et al.
Most of real tissues have anisotropic microstructures or anisotropic optical features. The variation of tissue anisotropy can be an effective character to describe some abnormal conditions in tissues, so it is meaningful for the extraction and comparison of parameters for anisotropy evaluation. In this paper, based on our previously proposed sphere-cylinder scattering model, we simulate and investigate the propagation and scattering of polarized light in tissue models using polarization-sensitive Monte Carlo simulation. Focusing on anisotropic tissues, we consider two type disturbance of highly ordered cylindrical elements: cylinders with a distribution of the orientation angle and the existence of the isotropic elements like spheres. By analyzing the corresponding backscattering Mueller matrices with the changes of structural parameters in our tissue model, we extract a characteristic parameter to describe the symmetry of certain Mueller matrix elements. According to the simulation, the characteristic is less sensitive to the size of cylindrical scatterers, and is especially suitable for the case of detecting the small scale isotropic perturbation in a highly anisotropic medium. The results presented in this paper confirm the feasibility of this new anisotropy factor to measure the degree of tissue anisotropy, and imply the validity of applying it in distinguishing some pathological changes.
Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy
Defu Chen, Jie Ren, Ying Wang, et al.
Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.
In-vivo monitoring rat skin wound healing using nonlinear optical microscopy
Jing Chen, Chungen Guo, Fan Zhang, et al.
Nonlinear optical microscopy (NLOM) was employed for imaging and evaluating the wound healing process on rat skin in vivo. From the high-resolution nonlinear optical images, the morphology and distribution of specific biological markers in cutaneous wound healing such as fibrin clot, collagens, blood capillaries, and hairs were clearly observed at 1, 5 and 14 days post injury. We found that the disordered collagen in the fibrin clot at day 1 was replaced by regenerative collagen at day 5. By day 14, the thick collagen with well-network appeared at the original margin of the wound. These findings suggested that NLOM is ideal for noninvasively monitoring the progress of wound healing in vivo.
Multiphoton microscopic imaging of fibrotic focus in invasive ductal carcinoma of the breast
Sijia Chen, Yuting Nie, Yuane Lian, et al.
During the proliferation of breast cancer, the desmoplastic can evoke a fibrosis response by invading healthy tissue. Fibrotic focus (FF) in invasive ductal carcinoma (IDC) of the breast had been reported to be associated with significantly poorer survival rate than IDC without FF. As an important prognosis indicator, it’s difficult to obtain the exact fibrotic information from traditional detection method such as mammography. Multiphoton imaging based on two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) has been recently employed for microscopic examination of unstained tissue. In this study, multiphoton microscopy (MPM) was used to image the fibrotic focus in invasive ductal carcinoma tissue. The morphology and distribution of collagen in fibrotic focus can be demonstrated by the SHG signal. Variation of collagen between IDC with and without FF will be examined and further characterized, which may be greatly related to the metastasis of breast cancer. Our result suggested that the MPM can be efficient in identifying and locating the fibrotic focus in IDC. Combining with the pathology analysis and other detecting methods, MPM owns potential in becoming an advanced histological tool for detecting the fibrotic focus in IDC and collecting prognosis information, which may guide the subsequent surgery option and therapy procedure for patients.
Initiation efficiency and cytotoxicity of a series of water-soluble benzylidene cyclopentanone for two-photon polymerization
The 3D fabrication of bio-compatible materials under an aqueous environment is a fundamental requirement for tissue engineering. In this work, a series of polyethylene glycol- (PEG-), carboxylate anionic group- or pyridyl cationic groupfunctionalized benzylidene cyclopentanone photo-initiators (B2, B3, X2, X3, Y1 and P1) were synthesized. Their water-solubility, photophysical properties and cytotoxicity were investigated. Using eosin as reference, their initiation efficiencies in water-soluble photoactive formulation (SR610 with 20% of DI water) excited by one- or two-photon were studied. The results showed that there were no significant differences on partial linear photophysical properties of these initiators, such as [see manuscript] and [see manuscript], but differences on their (see manuscript), Φ, and σmax are clear. In addition, their cytotoxicity is different. Two PEG-functionalized initiators (B3 and X3) with two PEG groups on one side of benzylidene cyclopentanone cores have obvious toxicity, while other four intiators are safety to HepG2 cells at the concentration of 20 μM. Moreover, the water-solubility of X2 and X3 (containing two longer PEG) were much better than those of other four initiators. Using these initiators, 3D micro-structures fabricated by two-photon polymerization of water-soluble acrylate all could be achieved. In addition, their threshold energies were all lower than 0.5 mW. However, the stiffness of 3D micro-structures was affected by the water-solubility of these photo-initiators. Those structures built by formulations containing X2 and X3 would collapse easily. Conversely, other structures could sustain very well. This work proves that B2,Y1,and P1 have extensive application prospects in 3D fabrication for tissue engineering.
Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues
Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.
Detection and analysis of multi-dimensional pulse wave based on optical coherence tomography
Pulse diagnosis is an important method of traditional Chinese medicine(TCM). Doctors diagnose the patients’ physiological and pathological statuses through the palpation of radial artery for radial artery pulse information. Optical coherence tomography (OCT) is an useful tool for medical optical research. Current conventional diagnostic devices only function as a pressure sensor to detect the pulse wave,which can just partially reflect the doctors feelings and lost large amounts of useful information. In this paper, the microscopic changes of the surface skin above radial artery had been studied in the form of images based on OCT. The deformation of surface skin in a cardiac cycle which is caused by arterial pulse is detected by OCT. The patient's pulse wave is calculated through image processing. It is found that it is good consistent with the result conducted by pulse analyzer. The real-time patient's physiological and pathological statuses can be monitored. This research provides a kind of new method for pulse diagnosis of traditional Chinese medicine.
Quantitative changes of collagen in human normal breast tissue and invasive ductal carcinoma using nonlinear optical microscopy
Weiqiang Li, Yan Wu, Yuane Lian, et al.
Multiphoton microscopy (MPM) imaging of collagen plays a key role in noninvasive diagnosis of human tissue. During the experiment, we observed an interesting phenomenon which two-photon excited fluorescence (TPEF) signal of collagen in human invasive ductal carcinoma of breast tissue becomes much weaker than the normal breast tissue, but the second harmonic generation (SHG) signal of collagen does not get an obvious change . In order to explain the phenomena,this paper emphasizes on the intensity of TPEF and SHG signal from collagen in human invasive ductal carcinoma of breast tissues and normal breast tissue. Further, we respectively obtain the intensity spectral information from collagen in the above two tissues with all parameter unaltered. Our quantitative results show that the intensity of TPEF from collagen in human invasive ductal carcinoma of breast tissue is much lower than the intensity of TPEF from collagen in normal breast tissue. According to the theoretic analysis, it was concluded that the intensity of TPEF declined due to the reduction of the quantum yield when the collagen was intruded by cancer cells. However, the invasion of cancer cells has no effect on decisive factor of SHG. Our theoretical analysis brings more detailed information about intensity of SHG and TPEF from collagen in the above two tissues.
Simulation of stimulated emission depletion intensity distribution by scalar integral
Stimulated emission depletion (STED) optical nanoscopy can achieve super-resolution fluorescence imaging, by suppressing fluorescence on the peripheral of excitation center with a 0-2pi spiral phase plate. Previously, the STED intensity distribution at the focal plane and the derived expression of resolution are generally analytical described by vectorial integral. To overcome the complex and multifarious of the vectorial calculation, we proposed scalar integral method and used the Collins-Huygens integral to analytically describe the peak intensity, the central intensity of the doughnut spot and the resolution of STED nanoscopy. We verified our method by comparing our results with vector theory. And we found it agreed well with vectorial theory under the high STED power, which was commonly used experimental condition for high resolution. Our method provides a fast and convenient way to evaluate the performance of STED with spiral phase modulation.
Microfluidics-integrated cascaded double-microring resonators for label-free biosensing
Yangqing Chen, Fang Yu, Chang Yang, et al.
A highly-sensitive optical waveguide biosensor integrated with microfluidic channels based on silicon-on-insulator (SOI) was investigated in this paper. Experimental results of the label-free detection exhibits this novel biosensor with the superior reliability for quantitative and kinetic measurement of the interaction between biological molecules, dramatically improving the sensitivity due to the Vernier effect induced by cascaded double-microring resonators.
Spectroscopic studies of the interaction between tetra-substituted aluminum phthalocyanines and bovine serum albumin
Yipeng He, Liqin Zheng, Yide Huang, et al.
Serum albumin, the most abundant plasma protein in mammalian blood, shows significant effects on delivery and therapeutic efficacy of drugs, therefore, the investigation of binding interaction between serum albumin and drugs is vital and necessary. In the present study, the binding interaction of two aluminum (III) phthalocyanine (AlPc) derivatives, tetrasulfonate- and tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted AlPc (complexes 1 and 2), with bovine serum albumin (BSA) was investigated by UV-Vis and fluorescence spectroscopy. Adding BSA to the Pc complexes in water caused remarkable changes in the Q-band of the Pc complexes, indicating an altered aggregation behavior. When titrating these AlPcs with BSA in PBS, the intrinsic fluorescence of BSA was significantly quenched through a static quenching process. The binding of Pc complexes to BSA might change its conformation, evidenced by the red shift of maximum emission wavelength. Furthermore, binding constants and binding sites were obtained and binding ability between the Pc complexes and BSA was assessed. Our results suggest that complexes 1 and 2 readily interact with BSA whereas the latter shows more affinity (with higher binding constant value) to BSA, implying the stretched amphiphilic substituents of complex 2 may contribute to their transportation in the blood.
Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment
Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.
Influence of liquid medium with different absorption and its layer thickness on bovine bone tibia ablation induced by CO2 laser
Liquid-assisted laser ablation has been investigated in laser surface cleaning, laser osteotomy, and dental tissue ablation. However, the actual mechanism of liquid-assisted ablation is not clear yet. The purpose of this study was to investigate the influence of liquid medium with different absorption and the liquid thickness on laser ablation efficiency. A pulsed CO2 laser was employed to ablate bovine bone tibia under liquid layer which varied from 0.6 mm to 2 mm. The applied pulse power level was set at 5 w and each crater was produced with six laser pulses. The results showed that the ablation cross-section area produced with various levels of pure water thickness (0.6, 0.8, 1 and 2 mm)were lower than under ink, and the ablation depth gradually decreased as the water layer becoming thicker. The biggest cross-section area in liquid thickness of ink was 0.8mm, but as the layer thicker than 0.8 mm the ablation depth decreased suddenly. There was thermal damage seen on samples in all of the groups, but less in pure water.
Monitoring the effect of low-level laser therapy in healing process of skin with second harmonic generation imaging techniques
The 632nm wavelength low intensity He-Ne laser was used to irradiated on 15 mice which had skin wound. The dynamic changes and wound healing processes were observed with nonlinear spectral imaging technology. We observed that:(1)The wound healing process was accelerated by the low-level laser therapy(LLLT);(2)The new tissues produced second harmonic generation (SHG) signals. Collagen content and microstructure differed dramatically at different time pointed along the wound healing. Our observation shows that the low intensity He-Ne laser irradiation can accelerate the healing process of skin wound in mice, and SHG imaging technique can be used to observe wound healing process, which is useful for quantitative characterization of wound status during wound healing process.
In-vivo differentiation of photo-aged epidermis skin by texture-based classification
Two sets of in vivo female cheek skin epidermis images were analyzed through gray level co-occurrence matrix (GLCM) and fast fourier transform (FFT). One set was derived from women in their 20s and the other from women more than 60 years of age. GLCM was used to evaluate the texture features of the regions of interest within the cheek epidermis, and texture classification was subsequently performed. During texture classification, 25 images (320×240 pixels) in each age set were randomly selected. Three texture features, i.e., energy, contrast, and correlation, were obtained from the skin images and analyzed at four orientations (0°, 45°,90°, and 135°), accompanied by different distances between two pixels. The textures of the different aging skins were characterized by FFT, which provides the dermatoglyph orientation index. The differences in the textures between the young and old skin samples can be well described by the FFT dermatoglyph orientation index. The texture features varied among the different aging skins, which provide a versatile platform for differentiating the statuses of aging skins.
Characterization of secreted proteins in HepG2 and LO2 cells by Raman spectroscopy
Secreted proteins, the promising source of biomarkers for early detection and diagnosis of cancer, have received considerable attention. Raman spectroscopy and principal component analysis (PCA) were used to characterize the secreted proteins collected from the cell cultures of human hepatoma cell line HepG2 and normal human liver cell line LO2 in this paper. We found the major difference of secreted proteins Raman spectra between HepG2 and LO2 cells were in the range of 1200cm-1-1800cm-1. Compared with LO2 cells, some significant changes based on secondary structure of secreted proteins in HepG2 cells were observed, including the increase in the relative intensity of the band at 1004cm-1, 1445cm-1, 1674cm-1 and the decrease at 1074cm-1. These variations of Raman bands indicated that the species and conformation of secreted proteins in HepG2 cells changed. The measured Raman spectra of the two groups were separated into two distinct clusters with no overlap and high specificity and sensitivity by PCA. These results show that the combination of Raman spectroscopy and PCA analysis may be a powerful tool for distinguishing the secreted proteins between human hepatoma cells and normal human liver cells, provide a new thought to analyze the secreted proteins from cancer cells and find a novel cancer biomarker.
Optical functional imaging of retina using stimulus-evoked intrinsic optical signals
Yuhong Yang, Shuangyun Shao, Bei Tian, et al.
Without dying and fluorescently labeled markers on tissues, Intrinsic optical signals (IOSs) detection technology is a promising method to detect retinal function without influence on normal activities of organism. Slow IOSs of retina reflect the activities in inner retina and the middle layer of retina. In this paper, an IOSs’ detection system was built to detect slow IOSs based clinical instrument, Heidelberg Retina Angiograph 2(HAR2). The retina was illuminated by near infrared light continuously during the experiments. The visible light was presented to stimulate the retina. After image alignment and image processing, the signal-to-noise ratio of the IOSs was improved and the signal changes can be extracted. The experimental results showed that the present detection system is suitable to obtain the slow IOSs in clinic and IOSs detection technology is an effective noninvasive method to study changes of function of retina.
Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging
Shanhui Fan, Lin Qin, Cuixia Dai, et al.
We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.
A denoising module based on the wavelet and empirical mode decomposition for photoacoustic microscopy
Yi Du, Lin Li, Xinyu Chai, et al.
In this work, we set up a denoising module to improve the imaging result for the photoacoustic microscopy (PAM) by improving the signal noise ratio. This module contains a series of data processing methods to reduce the noise from the tissues and the system. This module is adaptive to different imaging systems because of these methods’ intrinsic characteristics. Meanwhile, the parameters are decided based on the property of data being denoised. In this module, firstly data length is limited because each system has its own imaging depth capacity and data outside is mostly noise. Data is filtered in frequency domain in accordance with bandwidth of the imaging system and the image is filtered with the Wiener adaptive filter. Secondly data is presented in time-frequency domain with different time-frequency analysis methods. With the aid of this presentation in time-frequency domain, we can decide denoising parameters based on the characteristics of denoised data. Thirdly data is denoised using wavelet and empirical mode decomposition (EMD) methods. These methods demonstrate strong denoising capacity in the data processing field and are very suitable for processing data from biological tissues. With decided parameters, wavelet and EMD methods are set down and data is denoised automatically to get the best imaging effect instead of processing each data manually with different methods. This denoising module improves the imaging quality and has adaptive ability to reach promising result for different PAM imaging systems.
OCT imaging enhancement of ovarian cancer using gold and gold/silver nanorods
Yiwen Shi, Shanhui Fan, Shuohui Chen, et al.
For OCT imaging, enhancing contrast efficiency will lead to significant improvements in the detection limits in cancer. Recently, noble metal nanoparticles are considered to be better contrast agents than traditional ones, especially for gold and silver. Silver nanoparticles have more attractive optical properties than gold nanoparticles. But they are employed far less because of its poor chemical stability. In this paper, we introduced our recent progress on a new application of using gold/silver alloy nanoparticles as OCT contrast agents in the detection of ovarian cancer. The scattering properties and sensitivity of silver were investigated. By means of tuning LSPR wavelengths of the nanoparticles, they were able to match the central wavelength of light used in OCT. Before carrying out animal experiments, we evaluated the different performances of alloy nanoparticles and gold nanorods in vitro. It has been sufficiently demonstrated that the alloy nanoparticles revealed stronger OCT signals than gold nanorods because of the better scattering properties. Then in vivo study, we compared the contrast enhancement of gold/silver alloy nanoparticles and gold nanorods on the ovarian cancer model mice. This study contributes a new kind of contrast agent in OCT imaging, which has a profound effect on drug delivery and further therapeutic action.
Photoacoustic signal simulation and detection optimization based on laser-scanning optical-resolution photoacoustic microscopy
Lin Li, Yi Du, Qingliang Zhao, et al.
Laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) has a high application potential in ophthalmology and other clinical fields because of its high resolution and imaging speed. The stationary unfocused ultrasonic transducer of this system decides the efficiency and field of view (FOV) of photoacoustic signal detection, but the refraction and attenuation of laser generated photoacoustic signal in different tissue mediums will cause signal strength and direction distribution uneven. In this study, we simulated the photoacoustic signal propagation and detection in compound medium models with different tissue parameters using k-space method based on LSOR-PAM imaging principle. The results show a distance related signal strength attenuation and FOV changes related to transducer angle. Our study provides a method for photoacoustic signal detection optimization for different complex tissue structure with LSOR-PAM.