Proceedings Volume 9146

Optical and Infrared Interferometry IV

cover
Proceedings Volume 9146

Optical and Infrared Interferometry IV

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 20 August 2014
Contents: 23 Sessions, 94 Papers, 0 Presentations
Conference: SPIE Astronomical Telescopes + Instrumentation 2014
Volume Number: 9146

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9146
  • Air/Space Interferometry
  • Observing Techniques
  • Science I
  • Observing Techniques II
  • Historical Perspectives
  • Science II
  • Current Facilities I
  • Current Facilities II
  • Data Processing/Analysis I
  • Planned Facilities I
  • Science IV
  • Planned Facilities II: Facility Issues
  • Future I
  • Future II: The Planet Formation Imager
  • Future III
  • Technologies I
  • Critical Subsystems and Technologies I
  • Science VI
  • Critical Subsystems and Technologies II
  • Data Processing Analysis II
  • Posters: Wednesday
  • Posters: Thursday
Front Matter: Volume 9146
icon_mobile_dropdown
Front Matter: Volume 9146
This PDF file contains the front matter associated with SPIE Proceedings Volume 9146, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Air/Space Interferometry
icon_mobile_dropdown
The balloon experimental twin telescope for infrared interferometry (BETTII): interferometry at the edge of the atmosphere
S. Rinehart, M. Rizzo, D. Fixsen, et al.
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. This program started in 2011, and is now in the process of building and testing components of the mission, aiming for first flight in fall of 2015. This paper will provide an overview of the BETTII experiment, with a discussion of current progress and of future plans.
Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube
Kjetil Dohlen, Sébastien Vives, Eddy Rakotonimbahy, et al.
The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie’s [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an algorithm for design of optimal aperture layout based on least-squares minimization is described. A first experimental setup realized by master students is presented, where a 20mm baseline interferometer with 1mm apertures associated with a thermal infrared camera pointed the sun. The absence of fringes in this setup is discussed in terms of spatial spectrum analysis. Finally, we discuss requirements in terms of satellite pointing requirements for such a miniature interferometer.
Cheapest nuller in the world: crossed beamsplitter cubes
François Hénault, Alain Spang
In this communication is described a new type of Achromatic phase shifter (APS) suitable for both nulling interferometry and coronagraphy, based on a couple of crossed beamsplitter cubes, well-suited for equipping future spaceborne instruments searching for extra-solar planets located in a habitable zone. We present the general principle of this APS and discuss possible implementations into a nulling coronagraph telescope or into a sparse-aperture interferometer, either of the Fizeau or Michelson type. Expected performance in terms of transmission maps and a preliminary tolerance analysis are also provided. It turns out that the device is cheap, compact, and presents reasonable manufacturing tolerances and costs.
Observing Techniques
icon_mobile_dropdown
Toward visible wavelength coherent imaging with the LBT
The Large Binocular Telescope with its integrated adaptive optics systems and the LBTI beamcombiner provides a good platform for carrying out coherent imagin across its 22.7 m baseline. The first cameras used with LBTI have focused on infrared wavelengths. We describe a concept, called the LBT Interferometer Visible Extension (LIVE) to carry out coherent imaging with the LBT at visible wavelengths. LIVE will be able to create images of some of the stars with the largest angular diameters, map the surface of solar system moons, and provide detailed imaging of the inner scattered light regions of protoplanetary and transition disks. An initial approach can use the beamcombiner with its existing infrared phase sensor to carry out coherent imaging using frame selection to improve the image quality. Refined and more versatile phase sensing and correction can be implemented in a second stage to enable observations of a wider range of targets. LIVE will work both as a coherent imager, as well as a flexible dual aperture AO imager where simultaneous differential measurements can be made through independent use of each arm. We describe the science case and technical description below. We plan to develop the system with a flexible approach that allows increasingly complex modes of observation to be added once the basic performance is demonstrated.
Science I
icon_mobile_dropdown
Exploring 5-40 AU scales around AB Aurigae with an upgraded Palomar Fiber Nuller
With a null precision of a few 10-4 at all azimuth angles inside a field-of-view extending from 35 to 275 mas, the Palomar Fiber Nuller (PFN) is able to explore angular scales intermediate between those accessed by coronagraphic imaging and by long baseline interferometry. We first briefly summarize the recent performance improvements of the PFN (sensitivity, azimuthal coverage, duty cycle efficiency on-sky) over the 2011-2014 time period. Then we report on recent K-band observations of the young pre-main sequence star AB Aurigae obtained with the PFN. It is shown that a mean astrophysical null of 1.52% was detected around AB Aur at all probed azimuthal angles, and this inside a field-of-view corresponding to projected separations between 5 and 40 AU. In addition, we also report a slight ±0.2% modulation in addition to this average null level. The isotropic astrophysical null is indicative of circumstellar emission dominated by an azimuthally extended source, possibly a halo or one or more rings of dust. The modest azimuthal variation may be explained by some skewness or anisotropy of the spatially-extended source, e.g. with an elliptical or spiral geometry, or clumping, but it could also be due to the presence of a point-source located at a separation of ~120 mas (17AU) and carrying ~6*10-3 of the stellar flux.
Observing Techniques II
icon_mobile_dropdown
The LBTI hunt for observable signatures of terrestrial systems (HOSTS) survey: a key NASA science program on the road to exoplanet imaging missions
The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) program on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Emission and/or scattered light from the exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of terrestrial planets (exo- Earths) around nearby stars. About 20% of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013, A&A, 555, A11; Siercho et al. 2014, ApJ, 785, 33). Much less is known about exozodi; current detection limits for individual stars are at best ~ 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3σ). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We will describe the motivation for the survey and progress on target selection, not only the actual stars likely to be observed by such a mission but also those whose observation will enable sensible extrapolations for stars that will not be observed with LBTI. We briefly describe the detection of the debris disk around η Crv, which is the first scientific result from the LBTI coming from the commissioning of the instrument in December 2013, shortly after the first time the fringes were stabilized.
On-sky calibration performance of a monolithic Michelson interferometer filtered source
Jian Ge, Bo Ma, Scott Powell, et al.
In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source offers potential very accurate calibration at 0.7-0.9 μm where ThAr lines are totally dominated by strong and saturated Argon lines and the ThAr calibration data are nearly useless. The early measurements with the FIRST near infrared spectrograph show that this Sine source produces very homogenous fringe modulations over 0.8-1.8 μm which can potentially provide better precision than the UrNe lamp for instrument drift measurements.
Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam
D. Defrère, P. Hinz, E. Downey, et al.
The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and highresolution infrared imaging (1.5-13 μm). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).
Progress toward unprecedented imaging of stellar surfaces with the Navy precision optical interferometer
We present progress on the stellar surface imaging project recently funded by the U. S. National Science Foun- dation. With the unique layout of the Navy Precision Optical Interferometer (NPOI) in combination with data acquisition and fringe-tracking upgrades we expect to be able to substantially exceed the imaging fidelity and resolution of any other interferometer in operation. The project combines several existing advances and infras- tructure at NPOI with modest enhancements. For optimal imaging there are several requirements that should be fulfilled. The observatory should be capable of measuring visibilities on a wide range of baseline lengths and orientations, providing complete Fourier (UV) coverage in a short period of time. It should measure visibility amplitudes with good SNR on all baselines as critical imaging information is often contained in low-amplitude visibilities. It should measure the visibility phase on all baselines. The technologies which can achieve this are the NPOI Y-shaped array with (nearly) equal spacing between telescopes and an ability for rapid configuration. Placing 6-telescopes in a row makes it possible to measure visibilities into the 4th lobe of the visibility function. By arranging the 12 available telescopes carefully we can switch, every few days, between 6 different 6-station chains which provide symmetric coverage in the Fourier plane without moving any telescopes, only by moving beam relay mirrors. The 6-station chains are important to achieve the highest imaging resolution, and switching rapidly between station chains provides uniform coverage. Coherent integration techniques can be used to obtain good SNR on very small visibilities. Coherently integrated visibilities can be used for imaging with standard radio imaging packages such as AIPS. The commissioning of one additional station, the use of new data acqui- sition hardware and fringe tracking algorithms are the enhancements which are making this project a reality. The New Classic data acquisition system, based on a powerful Stratix FPGA and fast Direct Memory Access module, upgrades the existing Classic beam combiner to allow for continuous data recording across all baselines available with 6 telescopes. It also provides the computing power and software environment necessary for im- plementing the 6-station, 5-baseline fringe-tracking algorithms. In separate papers we discuss the New Classic data acquisition system and the fringe-tracking algorithms in greater detail. In this paper we will focus on an overview of the project. We will describe the observation planning, logistics of the observations, and discuss the current status of the project including preliminary results and simulations of expected future results.
Revealing bio-lines of exoplanets by Fourier spectroscopy
E. N. Ribak, E. Schwartz, S. G. Lipson
Earth-like extra-solar planets have luminosities which are many orders of magnitude less than those of their parent star. We propose and test a method for identifying molecular spectral bands in light from such a planet by looking at an offcenter part of an infrared Fourier transform interferogram. This results in superior sensitivity to narrow spectral bands, which are expected in the planet’s spectrum, but are absent in the parent star. We support this by astronomical observations to illustrate the method in the visible. The results suggest that this method is applicable to searches for planet biolines, and for differentiating between narrow lines and wide lines in other astronomical scenarios.
Historical Perspectives
icon_mobile_dropdown
The Narrabri Stellar Intensity Interferometer: a 50th birthday tribute
This year marks the 50th anniversary since the first scientific measurements were produced with the Narrabri Stellar Intensity Interferometer, which was constructed in the early 1960’s by Robert Hanbury Brown and Richard Twiss. A collaboration between the Universities of Sydney and Manchester, the interferometer was the culmination of a series of experiments which pioneered the technique of intensity interferometry. The immediate controversy surrounding the quantum implications of the technique enveloped some of the most eminent physicists of the day, sparking a debate about nonlocal effects and optical coherence. A full explanation of the workings of the intensity interferometer in a quantum context was finally put forward by Roy Glauber, ultimately earning him the 2005 Nobel Prize in Physics. The intensity interferometer rekindled the field of high resolution stellar imaging, which had been extinguished for a half century (following the failure of Pease’s 50-foot beam on Mt Wilson), while delivering the first ever measurements of the sizes of normal stars – establishing an effective temperature scaling relationship which has underpinned stellar astronomy for 50 years. This directly paved the way for the next generation of Michelson Stellar Interferometers. Intensity interferometry itself has found application in several fields (notably particle physics), and plans are in active development for modern reprises within stellar interferometry. However undoubtedly the greatest legacy lies in the Hanbury Brown Twiss (HBT) effect being the foundational experiment for what is now known as Quantum Optics – a field which underpins a huge sector of the technology which enables our modern world. This invited review discuses the development of the interferometer, including the controversy that its underlying principles generated within the contemporary physics community. The core scientific output generated by the instrument is presented, together with the impact of the device upon the subsequent course of stellar astrophysics and its role in resurrecting stellar optical interferometery.
Making the CHARA Array, Part I: founding CHARA, the audacity of hope
This discussion, the first of three describing how the CHARA Array came to be, focuses on the establishment of the Center for High Angular Resolution Astronomy at Georgia State University, our site selection saga, and some apparently brilliant decisions stumbled into. The technical and scientific achievements of the CHARA Array to date are far more than just an argument for perseverance. CHARA's success stands upon audacity, risk taking, luck, and, above all else, a core team of wonderfully talented and dedicated individuals who made it all turn out well.
Making the CHARA Array, Part II: project management: 15 years on thin ice
The reviewers of our first NSF proposal asked us to prepare a more ambitious plan, and we did. When it was funded, the scope of the resources made available was far below the scope of the project. What to do? The only way to proceed within budget was to eliminate the entire professional engineering component of the proposal team, and we did so. This left the CHARA staff and a few consultants. The story of building the CHARA Array is largely the story of how to build a facility and instrument with no engineers, no managers, and no meetings. How was this possible?
Making the CHARA Array, Part III: engineering decisions. to build or not to build
The CHARA Array has been a PI led, low budget, and low manpower operation, and has followed a fairly unconventional path in its development. In this, the third paper of a series of three, we discuss some of the engineering and design decisions made along the way, some right and some wrong, with a focus on the choice between in-house development and the purchase of pre-built, or sub-contracted, subsystems. Along with these issues we will also address a few parts of the system that we might have done differently given our current knowledge, and those that somehow turned out very well.
Science II
icon_mobile_dropdown
MWC 314: binary results from optical interferometry compared with spectroscopy and photometry
Noel D. Richardson, Anthony F. J. Moffat, Raphael Maltais-Tariant, et al.
We initiated a multi-technique campaign to understand the physics and properties of the massive binary system MWC 314. Our observations included optical high-resolution spectroscopy and Johnson photometry, nearinfrared spectrophotometry, and K′−band long-baseline interferometry with the CHARA Array. Our results place strong constraints on the spectroscopic orbit, along with reasonable observations of the phase-locked photometric variability. Our interferometry, with input from the spectrophotometry, provides information on the geometry of the system that appears to consist of a primary star filling its Roche Lobe and loosing mass both onto a hidden companion and through the outer Lagrangian point, feeding a circumbinary disk. While the multi-faceted observing program is allowing us to place some constraints on the system, there is also a possibility that the outflow seen by CHARA is actually a jet and not a circumbinary disk.
Current Facilities I
icon_mobile_dropdown
Magdalena Ridge Observatory interferometer: 2014 status update
The Magdalena Ridge Observatory Interferometer has been designed to be a 10 × 1.4 m aperture long-baseline optical/near-infrared interferometer in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding regime, but during the past two years we have made substantial progress on many of the key subsystems for the array. The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation and site acceptance testing of key components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status and changes since 2012, and the plans for future activities and eventual operations of the facilities.
The LINC-NIRVANA Fizeau interferometric imager: final lab integration, first light experiments and challenges
LINC-NIRVANA (LN) is an innovative Fizeau interferometric imager for the Large Binocular Telescope (LBT). LN uses Multi-Conjugate Adaptive Optics (MCAO) for high-sky-coverage single-eye imagery and interferometric beam combination. The last two years have seen both successes and challenges. On the one hand, final integration is proceeding well in the lab. We also achieved First Light at the LBT with the Pathfinder experiment. On the other hand, funding constraints have forced a significant re-planning of the overall instrument implementation. These laboratory, observatory, and financial “events” provide lessons for builders of complex interferometric instruments on large telescopes. This paper presents our progress and plans for bringing the instrument online at the telescope.
Current Facilities II
icon_mobile_dropdown
VLTI status update: a decade of operations and beyond
We present the latest update of the European Southern Observatory's Very Large Telescope interferometer (VLTI). The operations of VLTI have greatly improved in the past years: reduction of the execution time; better offering of telescopes configurations; improvements on AMBER limiting magnitudes; study of polarization effects and control for single mode fibres; fringe tracking real time data, etc. We present some of these improvements and also quantify the operational improvements using a performance metric. We take the opportunity of the first decade of operations to reflect on the VLTI community which is analyzed quantitatively and qualitatively. Finally, we present briefly the preparatory work for the arrival of the second generation instruments GRAVITY and MATISSE.
Multi-baseline bootstrapping at the Navy precision optical interferometer
The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.
MATISSE status report and science forecast
B. Lopez, S. Lagarde, W. Jaffe, et al.
MATISSE is the mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This second generation interferometry instrument will open new avenues in the exploration of our Universe. Mid-infrared interferometry with MATISSE will allow significant advances in various fundamental research fields: studies of disks around young stellar objects where planets form and evolve, surface structures and mass loss of stars in late evolutionary stages, and the environments of black holes in active galactic nuclei. MATISSE is a unique instrument. As a first breakthrough it will enlarge the spectral domain used by optical interferometry by offering the L & M bands in addition to the N band, opening a wide wavelength domain, ranging from 2.8 to 13 μm on angular scales of 3 mas (L/M band) / 10 mas (N band). As a second breakthrough, it will allow mid-infrared imaging – closure-phase aperture-synthesis imaging – with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. MATISSE will offer various ranges of spectral resolution between R~30 to ~5000. In this article, we present some of the main science objectives that have driven the instrument design. We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performance and discuss the project status. The operations concept will be detailed in a more specific future article, illustrating the observing templates operating the instrument, the data reduction and analysis, and the image reconstruction software.
Data Processing/Analysis I
icon_mobile_dropdown
Modeling chromatic instrumental effects for a better model fitting of optical interferometric data
Current interferometers often collect data simultaneously in many spectral channels by using dispersed fringes. Such polychromatic data provide powerful insights in various physical properties, where the observed objects show particular spectral features. Furthermore, one can measure spectral differential visibilities that do not directly depend on any calibration by a reference star. But such observations may be sensitive to instrumental artifacts that must be taken into account in order to fully exploit the polychromatic information of interferometric data. As a specimen, we consider here an observation of P Cygni with the VEGA visible combiner on CHARA interferometer. Indeed, although P Cygni is particularly well modeled by the radiative transfer code CMFGEN, we observe questionable discrepancies between expected and actual interferometric data. The problem is to determine their origin and disentangle possible instrumental effects from the astrophysical information. By using an expanded model fitting, which includes several instrumental features, we show that the differential visibilities are well explained by instrumental effects that could be otherwise attributed to the object. Although this approach leads to more reliable results, it assumes a fit specific to a particular instrument, and makes it more difficult to develop a generic model fitting independent of any instrument.
A global database for optical interferometry
Xavier Haubois, Patrick Bernaud, Guillaume Mella, et al.
We report on a database service that allows users to query calibrated optical interferometry data (OIFITS format) as well as regularly-updated observation logs obtained with a wide range of interferometric instruments. It widely uses Virtual Observatory tools to increase diffusion and operability. In this contribution, we present the characteristics and functionalities of the first global optical interferometry archive service.
AGN BLR structure, luminosity and mass from combined reverberation mapping and optical interferometry observations
Unveiling the structure of the Broad-Line Region (BLR) of AGN is critical to understand the quasar phenomenon. Detail study of the geometry and kinematic of these objects can answer the basic questions about the central BH mass, accretion mechanism and rate, growth and evolution history. Observing the response of the BLR clouds to continuum variations, Reverberation Mapping (RM) provides size-luminosity and mass-luminosity relations for QSOs and Sy1 AGNs with the goal to use these objects as standard candles and mass tags. However, the RM size can receive different interpretations depending on the assumed geometry and the corresponding mass depends on an unknown geometrical factor as well on the possible confusion between local and global velocity dispersion. From RM alone, the scatter around the mean mass is as large as a factor 3. Though BLRs are expected to be much smaller than the current spatial resolution of large optical interferometers (OI), we show that differential interferometry with AMBER, GRAVITY and successors can measure the size and constrain the geometry and kinematics on a large sample of QSOs and Sy1 AGNs. AMBER and GRAVITY (K_ 10:5) could be easily extended up to K= 13 by an external coherencer or by advanced incoherent" data processing. Future VLTI instrument could reach K~ 15. This opens a large AGN BLR program intended to obtain a very accurate calibration of mass, luminosity and distance measurements from RM data which will allow using many QSOs as standard candles and mass tags to study the general evolution of mass accretion in the Universe. This program is analyzed with our BLR model allowing predicting and interpreting RM and OI measures together and illustrated with the results of our observations of 3C273 with the VLTI.
Polarization considerations for long baseline interferometry
Jason Mudge, Benjamin Johnson, Chad Ogden
In building long baseline interferometers with many fold mirrors, the wavefront quality, reflectivity loss, and relative dispersion are not the only issues a designer must contend with. The polarization effects from fold mirrors on light can significantly reduce fringe visibility. However, recognizing a mirror’s polarization effects early can influence interferometer design and minimize fold mirrors polarization effects on fringe visibility. In this article, the polarization effects of various mirrors are provided in a simplified manner providing the optical designer with insight into the ill effects mirrors have on a polarization state. Several possible techniques are described to remedy the polarimetric fringe visibility loss. This understanding can provide designers with the necessary tools to minimize polarization visibility loss for a long baseline interferometer.
Planned Facilities I
icon_mobile_dropdown
Commissioning the LBTI for use as a nulling interferometer and coherent imager
The Large Binocular Telescope Interferometer (LBTI) is a strategically important instrument for exploiting the use of the LBT as a 22.7 m telescope. The LBTI has two science cameras (covering the 1.5-5 μm and 8-13 μm atmospheric windows), and a number of observing modes that allow it to carry out a wide range of high-spatial resolution observations. Some simple modes, such as AO imaging, are in routine use. We report here on testing and commissioning of the system for its more ambitious goals as a nulling interferometer and coherent imager. The LBTI will carry out key surveys to Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) and an LBTI Exozodi-Exoplanet Common Hunt (LEECH). The current nulling and coherent imaging performance is described.
VAMPIRES: probing the innermost regions of protoplanetary systems with polarimetric aperture-masking
Barnaby R. M. Norris, Peter G. Tuthill, Nemanja Jovanovic, et al.
VAMPIRES is a high-angular resolution imager developed to directly image planet-forming circumstellar disks, and the signatures of forming planets that lie within. The instrument leverages aperture masking interferometry - providing diffraction-limited imaging despite seeing - in combination with fast-switching differential polarimetry to directly image structure in the inner-most regions of protoplanetary systems. VAMPIRES will use starlight scattered by dust in such systems to precisely map the disk, gaps, knots and waves that are key to understanding disk evolution and planet formation. It also promises to image the dusty circumstellar environments of AGB stars. This instrument perfectly compliments coronagraphic observations in the near-IR, and can operate simultaneously with a coronagraph, as part of the SCExAO extreme-AO system at the Subaru telescope. In this paper the design of the instrument will be presented, along with an explanation of the unique data analysis process and the results of the first on-sky tests.
Science IV
icon_mobile_dropdown
Testing limb darkening laws using NPOI observations
We observed 85 stars using the Navy Precision Optical Interferometer in order to determine their angular diameters. Here we present preliminary uniform disk fits for the stars. Many of the targets have measurements through the first zero crossing and onto the second lobe of the visibility curve. We will use these observations to test limb darkening laws, namely the effectiveness of plane parallel versus spherically symmetric models. These results have important implications for the accuracy with which we can determine the limb darkening of stars used as calibrators on long baselines being implemented in the near future on the NPOI, which will almost certainly have to be at least semi-resolved. The validation or exposure of systematics in the limb darkening laws can also be applied to any number of stars observed interferometrically.
Planned Facilities II: Facility Issues
icon_mobile_dropdown
Telescope birefringence and phase errors in the Gravity instrument at the VLT interferometer
B. Lazareff, N. Blind, L. Jocou, et al.
We use a numerical model of the birefringence in the VLT Interferometer (VLTI) and the Gravity instrument to study the astrometric phase errors that arise when two conditions are simultaneously present: differential birefringence between two VLTI arms, and different polarizations of the science and fringe tracker sources. We present measurements of the VLTI birefringence, that are used to validate our model. We show how a suitable alignment of the eigenvectors of the optical train eliminates the phase error.
System engineering applied to VLTI: a scientific success
P. Haguenauer, J. Alonso, P. Bourget, et al.
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory. After the first fringes obtained in 2011 with the commissioning instrument VINCI and with siderostats, the VLTI has seen an important number of systems upgrades, paving the path towards reaching the infrastructure level and scientific results it had been designed for. The current status of the VLTI operation all year round with up to four telescopes simultaneously and real imaging capability demonstrates the powerful interferometric infrastructure that has been delivered to the astronomical community. Reaching today’s level of robustness and operability of the VLTI has been a long journey, with a lot of lessons learned and gained experience. In 2007, the Paranal Observatory recognized the need for a global system approach for the VLTI, and a dedicated system engineering team was set to analyse the status of the interferometer, identify weak points and area where performances were not met, propose and apply solutions. The gains of this specific effort can be found today in the very good operability level with faster observations executions, in the decreased downtime, in the improved performances, and in the better reliability of the different systems. We will present an historical summary of the system engineering effort done at the VLTI, showing the strategy used, and the implemented upgrades and technical solutions. Improvements in terms of scientific data quality will be highlighted when possible. We will conclude on the legacy of the VLTI system engineering effort, for the VLTI and for future systems.
Future I
icon_mobile_dropdown
Stellar intensity interferometry over kilometer baselines: laboratory simulation of observations with the Cherenkov Telescope Array
A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and used also for intensity interferometry. With no optical connection between the telescopes, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are on the order of one meter, making the method practically insensitive to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Theoretical modeling has shown how stellar surface images can be retrieved from such observations and here we report on experimental simulations. In an optical laboratory, artificial stars (single and double, round and elliptic) are observed by an array of telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations are cross correlated between up to a hundred baselines between pairs of telescopes, producing maps of the second-order spatial coherence across the interferometric Fourier-transform plane. These experiments serve to verify the concepts and to optimize the instrumentation and observing procedures for future observations with (in particular) CTA, the Cherenkov Telescope Array, aiming at order-of-magnitude improvements of the angular resolution in optical astronomy.
Future II: The Planet Formation Imager
icon_mobile_dropdown
Planet formation imager (PFI): introduction and technical considerations
Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.
The science case for the Planet Formation Imager (PFI)
Stefan Kraus, John Monnier, Tim Harries, et al.
Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI; http://www.planetformationimager.org) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planethosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility.
A dispersed heterodyne design for the planet formation imager
The Planet Formation Imager (PFI) is a future world facility that will image the process of planetary formation. It will have an angular resolution and sensitivity sufficient to resolve sub-Hill sphere structures around newly formed giant planets orbiting solar-type stars in nearby star formation regions. We present one concept for this design consisting of twenty-seven or more 4m telescopes with kilometric baselines feeding a mid-infrared spectrograph where starlight is mixed with a frequency-comb laser. Fringe tracking will be undertaken in H-band using a fiber-fed direct detection interferometer, meaning that all beam transport is done by communications band fibers. Although heterodyne interferometry typically has lower signal-to-noise than direct detection interferometry, it has an advantage for imaging fields of view with many resolution elements, because the signal in direct detection has to be split many ways while the signal in heterodyne interferometry can be amplified prior to combining every baseline pair. We compare the performance and cost envelope of this design to a comparable direct-detection design.
Future III
icon_mobile_dropdown
Long baseline interferometry in the visible: the FRIEND project
P. Berio, Y. Bresson, J. M. Clausse, et al.
In the next 2 or 3 years, the two major interferometric arrays, VLTI and CHARA, will equip their telescopes of 1.8m and 1m respectively with Adaptive Optics (AO hereafter) systems. This improvement will permit to apply with a reasonable e_ciency in the visible domain, the principle of spatial filtering with single mode fibers demonstrated in the near-infrared. It will clearly open new astrophysical fields by taking benefit of an improved sensitivity and state-of-the-art precision and accuracy on interferometric observables. To prepare this future possibility, we started the development of a demonstrator called FRIEND (Fibered and spectrally Resolved Interferometric Experiment - New Design). FRIEND combines the beams coming from 3 telescopes after injection in single mode optical fibers and provides some spectral capabilities for characterization purposes as well as photometric channels. It operates in the R spectral band (from 600nm to 750nm) and uses the world's fastest and more sensitive analogic detector OCAM2. Tests on sky at the focus of the CHARA interferometer are scheduled for December 2014. In this paper, we present the first interferometric tests of the OCAM2 detector performed on CHARA in November 2012 and the concept, the expected performance and the opto-mechanical design of FRIEND.
Interferometer evolution: imaging terras after building 'little' experiments (INEVITABLE)
Perhaps one of the most ambitious long-term goals of the astronomical community is to map distant exoplanets. This will require instruments that provide sufficient angular resolution to place multiple pixels across an image of an exoplanet. Many other science programs also require orders of magnitude improvement in angular resolution, and for all of these, single aperture telescopes are impractical. In fact, the array of scientific goals that require high angular resolution makes interferometry inevitable. Here, we discuss some of the long-term science needs, and the implications for future interferometers, and then talk about some possible paths towards these future missions.
Imaging and nulling properties of sparse-aperture Fizeau interferometers
François Hénault
In this communication are presented rigorous and approximate analytical expressions of the Point Spread Function (PSF) and Field of View (FoV) achievable by multi-aperture Fizeau interferometers, either of the imaging or nulling types. The described formalism can be helpful for dimensioning future space missions in search of habitable extra-solar planets. Herein the characteristics of PSF and FoV are derived from simple analytical expressions that are further computed numerically in order to evidence the critical role of pupil re-imaging along the interferometer arms. The formalism is also well suited to simulating pseudo-images generated by a nulling Fizeau interferometer, and numerical computations demonstrate that it is only efficient for very short baselines. Finally, two different designs improving the nulling capacities of such exoplanet observing instruments are briefly presented and discussed.
Technologies I
icon_mobile_dropdown
JouFLU: upgrades to the fiber linked unit for optical recombination (FLUOR) interferometric beam combiner.
N. J. Scott, E. Lhomé, T. A. ten Brummelaar, et al.
The Fiber Linked Unit for Optical Recombination (FLUOR) is a precision interferometric beam combiner operating at the CHARA Array on Mt. Wilson, CA. It has recently been upgraded as part of a mission known as “Jouvence of FLUOR” or JouFLU. As part of this program JouFLU has new mechanic stages and optical payloads, new alignment systems, and new command/control software. Furthermore, new capabilities have been implemented such as a Fourier Transform Spectrograph (FTS) mode and spectral dispersion mode. These upgrades provide new capabilities to JouFLU as well as improving statistical precision and increasing observing efficiency. With these new systems, measurements of interferometric visibility to the level of 0.1% precision are expected on targets as faint as 6th magnitude in the K band. Here we detail the upgrades of JouFLU and report on its current status.
High performance 3D waveguide architecture for astronomical pupil-remapping interferometry
Simon Gross, Barnaby R. Norris, Nick Cvetojevic, et al.
Here we demonstrate a new generation of photonic pupil-remapping devices which build upon the interferometric framework developed for the Dragonfly instrument: a high contrast waveguide-based device which recovers robust complex visibility observables. New generation Dragonfly devices overcome problems caused by interference from unguided light and low throughput, promising unprecedented on-sky performance. Closure phase measurement scatter of only ~0.2° has been achieved, with waveguide throughputs of > 70%. This translates to a maximum contrast-ratio sensitivity (between the host star and its orbiting planet) at 1λ /D (1σ detection) of 5.3×10−4 (when a conventional adaptive-optics (AO) system is used) or 1.8×10−4 (for typical ‘extreme-AO’ performance), improving even further when random error is minimised by averaging over multiple exposures. This is an order of magnitude beyond conventional pupil-segmenting interferometry techniques (such as aperture masking), allowing a previously inaccessible part of the star to planet contrast-separation parameter space to be explored.
NAOMI: a new adaptive optics module for interferometry
The New Adaptive Optics Module for Interferometry (NAOMI)1 is the future low order adaptive optics system to be developed for and installed at the ESO 1.8 m Auxiliary Telescopes (ATs). The four ATs2 are designed for interferometry which they are essentially dedicated for. Currently the AT’s are equipped with a fast, visible tip-tilt sensor called STRAP3 (System for Tip/tilt Removal with Avalanche Photodiodes), and the corrections are applied through a tip-tilt mirror. The goal is to equip all four ATs with a low-order Shack-Hartmann system operating in the visible for the VLTI dual feed light beams in place of the current tip-tilt correction. Because of the limited size of the ATs (1.8m diameter), a low-order system will be sufficient. The goal is to concentrate the energy into a coherent core and to make the encircled energy (into the single mode fibers) stable and less dependent on the atmospheric conditions in order to increase the sensitivity of the interferometric instruments. The system will use the ESO real time computer platform Sparta-light as the baseline. This paper presents the preliminary design concept and outlines the benefits to current and future VLTI instruments.
3D-integrated beam combiner for optical spectro-interferometry
Stefano Minardi, Allar Saviauk, Felix Dreisow, et al.
We present a compact setup based on a three-dimensional integrated optical component, allowing the measurement of spectrally resolved complex-visibilities for three channels of polychromatic light. We have tested a prototype of the component in R band and showed that accurate complex visibilities could be retrieved over a bandwidth of 50 nm centered at 650 nm (resolution: R=130). Closure phase stability in the order of λ/60 was achieved implying that the device could be used for spectro-interferometry imaging.
The MROI fringe tracker: laboratory tracking with ICONN
The loop is closed on ICONN, the Magdalena Ridge Observatory Interferometer fringe tracker. Results from laboratory experiments demonstrating ICONN's ability to track realistic, atmospheric-like path difference perturbations in real-time are shown. Characterizing and understanding the behavior and limits of ICONN in a controlled environment are key for reaching the goals of the MROI. The limiting factors in the experiments were found to be the light delivery system and temporary path length correction mechanism; not the on-sky components of ICONN. ICONN was capable of tracking fringes with a coherence loss below 5%; this will only improve in its final deployment.
Critical Subsystems and Technologies I
icon_mobile_dropdown
Improving the astrometric performance of VLTI-PRIMA
In the summer of 2011, the first on-sky astrometric commissioning of PRIMA-Astrometry delivered a performance of 3 m″ for a 10 ″ separation on bright objects, orders of magnitude away from its exoplanet requirement of 50 μ″ ~ 20 μ″ on objects as faint as 11 mag ~ 13 mag in K band. This contribution focuses on upgrades and characterizations carried out since then. The astrometric metrology was extended from the Coudé focus of the Auxillary Telescopes to their secondary mirror, in order to reduce the baseline instabilities and improve the astrometric performance. While carrying out this extension, it was realized that the polarization retardance of the star separator derotator had a major impact on both the astrometric metrology and the fringe sensors. A local compensation of this retardance and the operation on a symmetric baseline allowed a new astrometric commissioning. In October 2013, an improved astrometric performance of 160 μ″ was demonstrated, still short of the requirements. Instabilities in the astrometric baseline still appear to be the dominating factor. In preparation to a review held in January 2014, a plan was developed to further improve the astrometric and faint target performance of PRIMA Astrometry. On the astrometric aspect, it involved the extension of the internal longitudinal metrology to primary space, the design and implementation of an external baseline metrology, and the development of an astrometric internal fringes mode. On the faint target aspect, investigations of the performance of the fringe sensor units and the development of an AO system (NAOMI) were in the plan. Following this review, ESO decided to take a proposal to the April 2014 STC that PRIMA be cancelled, and that ESO resources be concentrated on ensuring that Gravity and Matisse are a success. This proposal was recommended by the STC in May 2014, and endorsed by ESO.
Fringe tracking in optical interferometry: a robust control framework for higher sensitivity limits
Jean-Pierre Folcher, Romain Petrov, Thami El Halkouj
Fringe tracking (FT) is the adaptive optics component of an Optical Long Baseline Interferometer (OLBIN). It is a critical element in particular for high spectral resolution spectro-interferometric observations. The FT must be accurate and stable, which implies high frequency sampling of the optical path differences introduced by the atmosphere and the interferometer vibrations. It must also be as sensitive as possible, which needs to minimize this sampling frequency. The optimum between these contradictory requirements must be maintained through atmospheric and instrument conditions that change very rapidly. We describe a control framework to face this robustness challenge. First, we approximate the sampled-data feedback system as a discrete time feedback system and we show that the closed-loop FT behavior is entirely determined by key closed-loop transfer functions. To fix the closed-loop bandwith in order to limit the loss of vadidity of the discrete time feedback system, we propose a loop shaping control method based on H optimization. This H framework allows to bound the frequency response of the key closed-loop transfer function. First numerical experiments are presented showing satisfactory performance when the sampling frequency disminishes. Extensive simulations to demonstate the effectivness of the proposed approach are in progress. Open issues and perspectives of applicative and/or theoretical interests are discussed.
The beam combiners of Gravity VLTI instrument: concept, development, and performance in laboratory
L. Jocou, K. Perraut, T. Moulin, et al.
Gravity is one of the second-generation instruments of the Very Large Telescope Interferometer that operates in the near infrared range and that is designed for precision narrow-angle astrometry and interferometric imaging. With its infrared wavefront sensors, pupil stabilization, fringe tracker, and metrology, the instrument is tailored to provide a high sensitivity, imaging with 4-millisecond resolution, and astrometry with a 10μarcsec precision. It will probe physics close to the event horizon of the Galactic Centre black hole, and allow to study mass accretion and jets in young stellar objects and active galactic nuclei, planet formation in circumstellar discs, or detect and measure the masses of black holes in massive star clusters throughout the Milky Way. As the instrument required an outstanding level of precision and stability, integrated optics has been chosen to collect and combine the four VLTI beams in the K band. A dedicated integrated optics chip glued to a fiber array has been developed. Technology breakthroughs have been mandatory to fulfill all the specifications. This paper is focused on the interferometric beam combination system of Gravity. Once the combiner concept described, the paper details the developments that have been led, the integration and the performance of the assemblies.
Science VI
icon_mobile_dropdown
Unveiling new stellar companions from the PIONIER exozodi survey
L. Marion, O. Absil, S. Ertel, et al.
The main goal of the EXOZODI survey is to detect and characterize circumstellar dust and to propose the first statistical study of exozodiacal disks in the near-infrared using telescopes in both hemispheres (VLTI and CHARA). For this purpose, Ertel et al. have conducted in 2012 a survey of nearby main sequence stars with VLTI/PIONIER to search for the presence of circumstellar dust. This survey, carried out during 12 nights, comprises about 100 stars. For each star, we obtained typically three OBs and we searched for circumstellar emission based on the measurement of squared visibilities at short baselines. A drop in the measured visibilities with respect to the expected photospheric visibility indicates the presence of resolved emission around the target star. It is however generally not possible to conclude on the morphology of the detected emission based solely on the squared visibilities. Here, we focus on closure phases to search systematically for faint companions around the whole sample. Indeed, to derive robust statistics on the occurrence rate of bright exozodiacal disks, we need to discriminate between companions and disks. For this reason, the main goal of this paper is to discriminate between circumstellar disks (which show no closure phase provided that they are point-symmetric) and faint companions (point-like sources, creating non-zero closure phases). We also aim to reveal new companions that do not necessarily produce a significant signature in the squared visibilities, as the signature of the companion may show up more prominently in the closure phases. In this process, we reveal four new stellar companions with contrasts ranging from 2% to 95% (i.e., up to near-equal flux binaries). We also tentatively detect faint companions around one other target that will require follow-up observations to be confirmed or infirmed. We discuss the implications of these discoveries on the results of the exozodi survey.
Critical Subsystems and Technologies II
icon_mobile_dropdown
New method for path-length equalization of long single-mode fibers for interferometry
M. Anderson, J. D. Monnier, K. Ozdowy, et al.
The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.
GRAVITY detector systems
GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.
RAPID, a revolutionary fast optical to NIR camera applied to interferometry
The RAPID camera is an Avalanche Photo Diode array allowing very fast observation from the optical to the infrared with still a low noise per read. The camera born from a large collaboration within the FUI/FOCUS is intensively tested at IPAG (Grenoble) on an interferometric bench and will soon replace the actual camera of the PIONIER interferometer mounted on the visitor focus of the VLTi. We shortly present here the PIONIER instrument design and success to then focus on the RAPID tested performances. We will then resume the performance tests made on sky with the PIONIER. The RAPID camera is the first IR APD matrix ever mounted on an on-sky astronomical instrument. We show here how this fast, low-noise, large-band and sensitive camera improves PIONIER and the optical interferometry in general.
Data Processing Analysis II
icon_mobile_dropdown
The 2014 interferometric imaging beauty contest
Here we present the results of the 6th biennial optical interferometry imaging beauty contest. Taking advantage of a unique opportunity, the red supergiant VY CMa and the Mira variable R Car were observed in the astronomical H-band with three 4-telescope configurations of the VLTI-AT array using the PIONIER instrument. The community was invited to participate in the subsequent image reconstruction and interpretation phases of the project. Ten groups submitted entries to the beauty contest, and we found reasonable consistency between images obtained from independent workers using quite different algorithms. We also found that significant differences existed between the submitted images, much greater than in past beauty contests that were all based on simulated data. A novel crowd-sourcing" method allowed consensus median images to be constructed, filtering likely artifacts and retaining real features." We definitively detect strong spots on the surfaces of both stars as well as distinct circumstellar shells of emission (likely water/CO) around R Car. In a close contest, Joel Sanchez (IAA-CSIC/Spain) was named the winner of the 2014 interferometric imaging beauty contest. This process has shown that new comers" can use publicly-available imaging software to interpret VLTI/PIONIER imaging data, as long as sufficient observations are taken to have complete uv coverage { a luxury that is often missing. We urge proposers to request adequate observing nights to collect sufficient data for imaging and for time allocation committees to recognise the importance of uv coverage for reliable interpretation of interferometric data. We believe that the result of the proposed broad international project will contribute to inspiring trust in the image reconstruction processes in optical interferometry.
Image reconstruction with MATISSE at the VLTI
Rainer Köhler, Jan Philipp Ruge, Jörg-Uwe Pott, et al.
MATISSE (Multi-AperTure mid-Infrared SpectroScopic Experiment) is a mid-infrared spectro-interferometer project combining up to four UTs/ATs beams of the VLTI. It will measure closure phase relations, thus offering the capability for image reconstruction. The VLTI offers the possibility to position the Auxiliary Telescopes at several different stations, which gives much better uv-coverage than fixed telescopes. We carried out simulated observations with MATISSE, in order to find out the requirements for efficient image reconstruction. In particular, we study how many different telescope configurations are necessary to obtain sufficient coverage of the uv-plane. We analyse which stations are the most important for an optimal uv-coverage. We also examine which measurement precision is necessary to reconstruct images suitable for the science goals of MATISSE.
Posters: Wednesday
icon_mobile_dropdown
Comparison between nulling and standard interferometry: a first assessment
Imaging accurate and high dynamics structures in exoplanetary systems, debris and protoplanetary disks is a key to understand the formation of extra-solar planets and discuss the probability of the existence of earth like planets. Hyperspectral imaging and model fitting are intended to use all spectro-interferometric information, such as the differential phase, visibility and null as a function of wavelength, to boost the inversion stability and accuracy and relax the level of instrumental specifications. Here we introduce the general formalism, the transfer function between the source and the measures, the main fundamental noises sources and the general inverse problem formalism.
GRAVITY: the calibration unit
N. Blind, F. Eisenhauer, M. Haug, et al.
We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.
Integration and testing of the GRAVITY infrared camera for multiple telescope optical beam analysis
Paulo Gordo, Antonio Amorim, Jorge Abreu, et al.
The GRAVITY Acquisition Camera was designed to monitor and evaluate the optical beam properties of the four ESO/VLT telescopes simultaneously. The data is used as part of the GRAVITY beam stabilization strategy. Internally the Acquisition Camera has four channels each with: several relay mirrors, imaging lens, H-band filter, a single custom made silica bulk optics (i.e. Beam Analyzer) and an IR detector (HAWAII2-RG). The camera operates in vacuum with operational temperature of: 240k for the folding optics and enclosure, 100K for the Beam Analyzer optics and 80K for the detector. The beam analysis is carried out by the Beam Analyzer, which is a compact assembly of fused silica prisms and lenses that are glued together into a single optical block. The beam analyzer handles the four telescope beams and splits the light from the field mode into the pupil imager, the aberration sensor and the pupil tracker modes. The complex optical alignment and focusing was carried out first at room temperature with visible light, using an optical theodolite/alignment telescope, cross hairs, beam splitter mirrors and optical path compensator. The alignment was validated at cryogenic temperatures. High Strehl ratios were achieved at the first cooldown. In the paper we present the Acquisition Camera as manufactured, focusing key sub-systems and key technical challenges, the room temperature (with visible light) alignment and first IR images acquired in cryogenic operation.
A low-noise HAWAII detector system and new cold optics for the CLASSIC/CLIMB beam combiner instrument of the CHARA array
Udo Beckmann, Claus Connot, Matthias Heininger, et al.
As part of a new collaboration between CHARA and the Max Planck Institute for Radio Astronomy, we have developed a new detector system for the CLASSIC/CLIMB beam combiner of the CHARA Array. This detector is based on the Rockwell HAWAII-1 HgCdTe focal plane array and has lower readout noise (∼5 electrons) than the current PICNIC based system. Presently, CLASSIC/CLIMB observations at different wavelength bands can be made only successively by selecting individual filters in a filter wheel. Therefore, another upgrade goal is to install a non-deviating prism in order to image the H- and K’-band light onto separate detector pixels and to simultaneously observe in the H and K’ bands. The detector control electronics were built at the Max Planck Institute for Radio Astronomy. The goal was to achieve the lowest possible readout noise and electronic pick-up noise. The detector readout noise can be significantly reduced by the following approach: First, the analog detector output signal is processed by a moving boxcar filter consisting of an analog approximation of a finite impulse response filter with a response time adapted to the 10 MHz sample rate of an analog-to-digital converter. Second, a digital filter averages up to 1024 samples for each addressed pixel. This hybrid (analog plus digital) filter approach gives a unique flexibility of a programmable bandwidth for optimum noise reduction.
Phase tracking with differential dispersion
Differential chromatic dispersion in single-mode optical fibres leads to a loss of contrast of the white light fringe. For the GRAVITY instrument, this aspect is critical since it limits the fringe tracking performance. We present a real-time algorithm that compensates for differential dispersion due to varying fibre lengths using prior calibration of the optical fibres. This correction is limited by the accuracy to which the fibres stretch is known. We show how this affects the SNR on the white light fringe for different scenarios and we estimate how this phenomenon might eventually impact the astrometric accuracy of GRAVITY observations.
The performance of the MROI fast tip-tilt correction system
The fast tip-tilt (FTT) correction system for the Magdalena Ridge Observatory Interferometer (MROI) is being developed by the University of Cambridge. The design incorporates an EMCCD camera protected by a thermal enclosure, optical mounts with passive thermal compensation, and control software running under Xenomai real-time Linux. The complete FTT system is now undergoing laboratory testing prior to being installed on the first MROI unit telescope in the fall of 2014. We are following a twin-track approach to testing the closed-loop performance: tracking tip-tilt perturbations introduced by an actuated flat mirror in the laboratory, and undertaking end-to-end simulations that incorporate realistic higher-order atmospheric perturbations. We report test results that demonstrate (a) the high stability of the entire opto-mechanical system, realized with a completely passive design; and (b) the fast tip-tilt correction performance and limiting sensitivity. Our preliminary results in both areas are close to those needed to realise the ambitious stability and sensitivity goals of the MROI which aims to match the performance of current natural guide star adaptive optics systems.
The new classic data acquisition system for NPOI
The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.
6-station, 5-baseline fringe tracking with the new classic data acquisition system at the Navy Precision Optical Interferometer
The Navy Precision Optical Interferometer (NPOI) has a station layout which makes it uniquely suited for imaging. Stellar surface imaging requires a variety of baseline lengths and in particular long baselines with resolution much smaller than the diameter of the target star. Because the fringe signal-to-noise ratio (SNR) is generally low on such long baselines, fringe-tracking cannot be carried out on those baselines directly. Instead, baseline bootstrapping must be employed in which the long baseline is composed of a number of connected shorter baselines. When fringes are tracked on all the shorter baselines fringes are also present on the long baseline. For compact sources, such as stellar disks, the shorter baselines generally have higher SNR and making them short enough that the source is unresolved by them is ideal. Thus, the resolution, or number of pixels across a stellar disk, is roughly equal to the ratio of the length of the long baseline to the length of the short baselines. The more bootstrapped baselines, the better the images produced. If there is also a wide wavelength coverage, wavelength bootstrapping can also be used under some circumstances to increase the resolution further. The NPOI is unique in that it allows 6-station, 5-baseline bootstrapping, the most of any currently operating interferometer. Furthermore, the NPOI Classic beam combiner has wavelength coverage from 450 nm to 850 nm. However, until now, this capability has not been fully exploited. The stellar surface imaging project which was recently funded by the National Science Foundation is exploiting this capability. The New Classic data acquisition system, reported separately, is the hardware which delivers the data to the fringe-tracking algorithm. In this paper we report on the development of the fringe-tracking capability with the New Classic data acquisition system. We discuss the design of the fringe tracking algorithm and present performance results from simulations and on sky observation.
The GRAVITY metrology system: narrow-angle astrometry via phase-shifting interferometry
Magdalena Lippa, Nicolas Blind, Stefan Gillessen, et al.
The VLTI instrument GRAVITY will provide very powerful astrometry by combining the light from four tele- scopes for two objects simultaneously. It will measure the angular separation between the two astronomical objects to a precision of 10 μas. This corresponds to a differential optical path difference (dOPD) between the targets of few nanometers and the paths within the interferometer have to be maintained stable to that level. For this purpose, the novel metrology system of GRAVITY will monitor the internal dOPDs by means of phase- shifting interferometry. We present the four-step phase-shifting concept of the metrology with emphasis on the method used for calibrating the phase shifts. The latter is based on a phase-step insensitive algorithm which unambiguously extracts phases in contrast to other methods that are strongly limited by non-linearities of the phase-shifting device. The main constraint of this algorithm is to introduce a robust ellipse fitting routine. Via this approach we are able to measure phase shifts in the laboratory with a typical accuracy of λ=2000 or 1 nm of the metrology wavelength.
The fiber coupler and beam stabilization system of the GRAVITY interferometer
We present the installed and fully operational beam stabilization and fiber injection subsystem feeding the 2nd generation VLTI instrument GRAVITY. The interferometer GRAVITY requires an unprecedented stability of the VLTI optical train to achieve micro-arcsecond astrometry. For this purpose, GRAVITY contains four fiber coupler units, one per telescope. Each unit is equipped with actuators to stabilize the telescope beam in terms of tilt and lateral pupil displacement, to rotate the field, to adjust the polarization and to compensate atmospheric piston. A special roof-prism offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical train. We describe the assembly, integration and alignment and the resulting optical quality and performance of the individual units. Finally, we present the closed-loop performance of the tip-tilt and pupil tracking achieved with the final systems in the lab.
The GRAVITY metrology system: modeling a metrology in optical fibers
N. Blind, Heinrich Huber, F. Eisenhauer, et al.
GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must measure the distance of 2 stars with a precision of 10 micro-arcseconds. This means the metrology has to measure the optical path difference between the two beam combiners of GRAVITY to a level of 5 nm. The metrology design presents some non-common paths that have consequently to be stable at a level of 1 nm. Otherwise they would impact the performance of GRAVITY. The various tests we made in the past on the prototype give us hints on the components responsible for this error, and on their respective contribution to the total error. It is however difficult to assess their exact origin from only OPD measurements, and therefore, to propose a solution to this problem. In this paper, we present the results of a semi-empirical modeling of the fibered metrology system, relying on theoretical basis, as well as on characterisations of key components. The modeling of the metrology system regarding various effects, e.g., temperature, waveguide heating or mechanical stress, will help us to understand how the metrology behave. The goals of this modeling are to 1) model the test set-ups and reproduce the measurements (as a validation of the modeling), 2) determine the origin of the non-common path errors, and 3) propose modifications to the current metrology design to reach the required 1nm stability.
GRAVITY: the impact of non-common optical paths within the metrology system
The laser metrology system in the GRAVITY instrument plays a crucial role in an attempt at high-precision narrow-angle astrometry. With a design goal of achieving 10 microarcseconds precision in astrometry, the system must measure the optical path difference between two beam combiners within GRAVITY to an accuracy of better than 5nm. However in its current design, some parts of the optical paths of the metrology system are not common to the optical paths of starlight (the science path) which it must measure with high accuracy. This state of the design is true for most but not all the baselines which will be used by the GRAVITY instrument. The additional non-common optical paths could produce inaccurate path length measurements and consequently inaccurate measurements of the differential phase between fringe packets of two nearby celestial objects, which is the main astrometric observable of the instrument. With reference to the stability and the sensitivity of the non-common paths, this paper describes the impact of a biased differential phase measurement on the narrowangle astrometry and the image reconstruction performance of the GRAVITY instrument. Several alternative designs are also discussed.
Integrated optics interferometric four telescopes nuller
Ronny Errmann, Stefano Minardi, Lucas Labadie, et al.
Nulling interferometry has been identified as a competitive technique for the detection of extrasolar planets. The technique consists in combining out-of-phase pairs of telescopes to null effectively the light of a bright star an reveal the dim glow of the companion. We have manufactured and tested with monochromatic light an integrated optics component which combines a linear array of 4 telescopes in the nulling mode envisaged by Angel&Wolf.1 Our testbench simulates the motion of a star in the sky. The tests have demonstrated a nulling scaling as the fourth power of the baseline delay.
The GRAVITY spectrometers: optical qualification
Senol Yazici, Christian Straubmeier, Michael Wiest, et al.
GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present the arrangement, direction of spectral dispersion and shift of polarization channels for both spectrometers, and the curvature of the spectra in the science spectrometer. In Section 2 we determine the best focus position of the detectors. The overall contrast of images at different positions of the detector stage is computed with the standard deviation of pixel values in the spectra containing region. In Section 3 we analyze high dynamic range images for each spectrometer and resolution obtained at the afore determined best focus positions. We deduce the ensquared energy from the FWHM of Gaussian fits perpendicular to the spectra.
The GRAVITY spectrometers: thermal behaviour
Imke Wank, Christian Straubmeier, Michael Wiest, et al.
GRAVITY is a 2nd generation VLTI Instrument o which operates on 6 interferometric baselines by using all 4 Unit Telescopes. It will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. At the 1. Physikalische Institut of the University of Cologne, which is part of the international GRAVITY consortium, two spectrometers, one for the sciene object, and one for the fringe tracking object, have been designed, manufactured and tested. These spectrometers are two individual devices, each with own housing and interfaces. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the Beam Combiner Instrument (BCI) cryostat. The outer casings are mounted thermal isolated to the base plate by glass fiber reinforced plastic (GRP) stands, copper cooling structures conduct the cold inside the spectrometers where it is routed to components via Cu cooling stripes. The spectrometers are covered with shells made of multi insulation foil. There will be shown and compared 3 cooling installations: setups in the Cologne test dewar, in the BCI dewar and in a mock-up cad model. There are some striking differences between the setup in the 2 different dewars. In the Cologne Test dewar the spectrometers are connected to the coldplate (80K); a Cu cooling structure and the thermal isolating GRP stands are bolted to the coldplate. In the BCI dewer Cu cooling structure is connected to the bottom of the nitrogen tank (80K), the GRP stands are bolted to the base plate (240K). The period of time during the cooldown process will be analyzed.
The GRAVITY spectrometers: optical design and first light
Christian Straubmeier, Senol Yazici, Michael Wiest, et al.
Operating on 6 interferometric baselines, i.e. using all 4 unit telescopes (UTs) of the Very Large Telescope Interferometer (VLTI) simultaneously, the 2nd generation VLTI instrument GRAVITY will deliver narrow-angle astrometry with 10μas accuracy at the infrared K-band. At this angular resolution, GRAVITY will e.g. be able to detect the positional shift of the photo-center of a flare at the Galactic Center within its orbital timescale of about 20 minutes, using the observed motion of the flares as dynamical probes of the gravitational field around the supermassive black hole Sgr A*. Within the international GRAVITY consortium, the 1. Physikalische Institut of the University of Cologne is responsible for the development and construction of the two spectrometers of the camera system: one for the science object, and one for the fringe tracking object, both being operated in cryo-vacuum conditions. In this contribution we describe the basic functionality of the two units and present the final optical design of the two spectrometers as it got realised successfully until end of 2013 with minor changes to the Final Design Review (FDR) of October 2011. In addition we present some of the first light images of the two spectrometers, taken at the laboratory of the Cologne institute between Dec. 2012 and Oct. 2013 respectively. By the end of 2013 both spectrometers got transferred to the PI institute of GRAVITY, the Max-Planck-Institute for Extraterrestrial Physics, where at the time of writing they are undergoing system-level testing in combination with the other sub-systems of GRAVITY.
The GRAVITY instrument software/hardware related aspects
Thomas Ott, Ekkehard Wieprecht, Leonard Burtscher, et al.
The GRAVITY Instrument Software (INS) is based on the common VLT Software Environment. In addition to the basic Instrument Control Software (ICS) which handles Motors, Shutters, Lamps, etc., it also includes three detector subsystems, several special devices, field bus devices, and various real time algorithms. The latter are implemented using ESO TAC (Tools for Advanced Control) and run at a frequency of up to 4 kHz. In total, the instrument has more than 100 ICS devices and runs on five workstations and seven vxWorks LCUs.
The GRAVITY instrument software/high-level software
Leonard Burtscher, Ekkehard Wieprecht, Thomas Ott, et al.
GRAVITY is the four-beam, near-infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of high-level applications during observations: the acquisition procedure and the gathering and merging of data to the final FITS file.
The GRAVITY/VLTI acquisition camera software
Narsireddy Anugu, Paulo J. V. Garcia, Ekkehard Wieprecht, et al.
The acquisition camera for the GRAVITY/VLTI instrument implements four functions: a) field imager: science field imaging, tip-tilt; b) pupil tracker: telescope pupil lateral and longitudinal positions; c) pupil imager: telescope pupil imaging and d) aberration sensor: The VLTI beam higher order aberrations measurement. We present the dedicated algorithms that simulate the GRAVITY acquisition camera detector measurements considering the realistic imaging conditions, complemented by the pipeline used to extract the data. The data reduction procedure was tested with real aberrations at the VLTI lab and reconstructed back accurately. The acquisition camera software undertakes the measurements simultaneously for all four AT/UTs in 1 s. The measured parameters are updated in the instrument online database. The data reduction software uses the ESO Common Library for Image Processing (CLIP), integrated in to the ESO VLT software environment.
GRAVITY data reduction software
V. Lapeyrere, P. Kervella, S. Lacour, et al.
We focus on the main algorithms of the data reduction software for the second generation VLTI instrument GRAVITY. From the interferometric data and the metrology signal, the pipeline recovers the complex visibility of the science target with an absolute phase with respect to the fringe tracker target. Visibilities are then calibrated and the relative astrometry is eventually computed when possible.
The interferometric baselines and GRAVITY astrometric error budget
GRAVITY is a new generation beam combination instrument for the VLTI. Its goal is to achieve microarsecond astrometric accuracy between objects separated by a few arcsec. This 106 accuracy on astrometric measurements is the most important challenge of the instrument, and careful error budget have been paramount during the technical design of the instrument. In this poster, we will focus on baselines induced errors, which is part of a larger error budget.
MATISSE: warm optics integration and performance in laboratory
S. Robbe-Dubois, S. Lagarde, P. Antonelli, et al.
MATISSE (Multi AperTure mid-Infrared SpectroScopic Experiment) is the spectro-interferometer of the European Southern Observatory VLT operating in the spectral bands L, M and N, and, combining four beams from the unit or auxiliary telescopes. The concept constitutes an evolution of the two-beam interferometric instrument MIDI operating on the VLTI. It will give access to the mapping and the distribution of the material, the gas and essentially the dust, in the circumstellar environments and will provide aperture synthesis images in the mid-infrared spectral regime. The Warm OPtics (WOP) of the instrument provides the functions of spectral band separation, optical path equalization and modulation, pupil positioning, beam anamorphosis, beam positioning, and beam commutation. It also allows the alignment function of the beams with the Cold Optics contained in two separate cryostats. This sub-system is presently aligned and tested at the Observatoire de la Côte d'Azur in Nice, France, to validate accuracy and stability. The present paper gives the results of the Warm OPtics laboratory tests.
Performance of the LINC NIRVANA fringe and flexure tracker at delivery
The LINC-NIRVANA Fringe and Flexure Tracking System has nearly completed assembly in the lab in Cologne, and will soon be ready for shipment and integration into the full LINC-NIRVANA system at MPIA Heidelberg. This paper provides an overview of the final assembly and testing phase in Cologne, concentrating on those aspects that directly affect instrument performance, including the detector performance and stability of the detector positioning system.
The balloon experimental twin telescope for infrared interferometry (BETTII): optical design
Todd J. Veach, Stephen A. Rinehart, John E. Mentzell, et al.
Here we present the optical and limited cryogenic design for The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an 8-meter far-infrared interferometer designed to fly on a high-altitude scientific balloon. The optical design is separated into warm and cold optics with the cold optics further separated into the far-infrared (FIR) (30-90 microns) and near-infrared (NIR) (1-3 microns). The warm optics are comprised of the twin siderostats, twin telescopes, K-mirror, and warm delay line. The cold optics are comprised of the cold delay line and the transfer optics to the FIR science detector array and the NIR steering array. The field of view of the interferometer is 2’, with a wavelength range of 30-90 microns, 0.5” spectral resolution at 40 microns, R~200 spectral resolution, and 1.5” pointing stability. We also present the design of the cryogenic system necessary for operation of the NIR and FIR detectors. The cryogenic system consists of a ‘Buffered He-7’ type cryogenic cooler providing a cold stage base temperature of < 280mK and 10 micro-Watts of heat lift and a custom in-house designed dewar that nominally provides sufficient hold time for the duration of the BETTII flight (24 hours).
Lithium Niobate active beam combiners: results of on-chip fringe locking, fringe scanning and high contrast integrated optics interferometry and spectrometry
Guillermo Martin, Samuel Heidmann, Fabrice Thomas, et al.
The context of this work is the development of integrated optic beam combiners devoted to high contrast interferometry, in particular for exoplanet spectral characterization and future spatial missions, where the use of compact and light optical beam combiners ensures robustness and stability of the interferometric signal. Thus, the development of materials allowing light confinement in both polarizations, together with a good transparency from the visible to the mid-IR and able to achieve electro-optic modulation, in order to finely tune the relative phase of the interacting fields, is knowing a rapid development. Lithium Niobate is an electro-optical material allowing index, and thus optical phase modification, by application of an external electric field. It is also well known for waveguide realization in the visible, near and midinfrared. Here we present results on near and mid-infrared beam combiners achieving different optical functions: a) three telescope AC beam combiner, devoted to phase closure studies; b) Phase locking and fringe scanning using double Mach-Zehnder concept. Optimization of the fringe contrast by real time on-chip phase and photometry balance and c) High Resolution Spectrometers in channel waveguides.
Posters: Thursday
icon_mobile_dropdown
Ultrafast laser inscribed integrated waveguide components for L-band interferometry
In this paper we report the fabrication and mid-infrared characterization (λ = 3.39 μm) of evanescent field directional couplers. These devices were fabricated using the femtosecond laser direct-writing technique in commercially available Gallium Lanthanum Sulphide (GLS) glass substrates. We demonstrate that the power splitting ratios of the devices can be controlled by adjusting the length of the interaction section between the waveguides, and consequently we demonstrate power splitting ratios of between 8% and 99% for 3.39 μm light. We anticipate that mid-IR beam integrated-optic beam combination instruments based on this technology will be key for future mid-infrared astronomical interferometry, particularly for nulling interferometry and earth-like exoplanet imaging.
Two, three, four, or six telescopes with phase referencing or closure phase relations: the best tactics for interferometric image reconstruction
Two simulated astronomical objects (a star cluster, and a young stellar object) were mock observed with the VLTI for different array configurations and instruments, and their images reconstructed and compared. The aim of the work is to infer when/if phase referencing with less telescopes is a better choice over closure phases with more telescopes. Three scenarios were put under scrutiny: Phase Referencing (PhR) with 2 telescopes vs Closure Phase (CPh) with 3 telescopes, PhR with 3 telescopes vs CPh with 4 telescopes, and PhR with 4 telescopes vs CPh with 6 telescopes. The number of nights is kept fixed for a given PhR vs CPh configuration. The UV -coverage was improved for the PhR case, by uniformly paving the (u, v) plane while keeping fixed the total number of sampled spatial frequencies. For the majority of the configurations, the results point to comparable performances of phase referencing and closure phases, when the UV-space is judiciously chosen.
A thermal spectral-spatial interferometric testbed
G. Savini, R. Juanola-Parramon, R. Stabbins, et al.
We present an ongoing effort to achieve a Double Fourier Modulating (DFM) interferometer in the thermal infrared wavelength range. We describe a testbed designed to combine a sky simulator in the form of a miniaturized complex calibration source at the focus of a parabolic collimator with an interferometer baseline consisting of two parallel telescopes each mounted on a motorized linear stage. The two input arms are combined after one of them is modulated via a fast-scanning piezoelectric roof-top mirror. The optical design and layout of the testbed, the choice of interferometer parameters as well as the calibration scene adopted as source are described.
Hierarchical fringe tracking
Romain G. Petrov, Thami Elhalkouj, Abdelkarim Boskri, et al.
The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general “common sense” statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups… The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by grids, and show that it allows piston measures from very broadband fringes with only 3 to 5 pixels per fringe tracker. We show the results of numerical simulation indicating that our device is a good achromatic spatial filter and allowing a first evaluation of its coupling efficiency, which is similar to this of a single mode fiber on a single aperture. Our very preliminary results indicate that HFT has a good chance to be a serious candidate for the most sensitive fringe tracking with the VLTI and also interferometers with much larger number of apertures. On the VLTI the first rough estimate of the magnitude gain with regard to the GRAVITY internal FT is between 2.5 and 3.5 magnitudes in K, with a decisive impact on the VLTI science program for AGNs, Young stars and planet forming disks.
Photometric calibration of NPOI visibilities
We present the results of a study done with data from the Navy Precision Optical Interferometer (NPOI). We use data from the Narrow Angle Trackers to perform a photometric calibration of the visibilities. We describe the method and preliminary results on improvements to the precision of the visibility amplitude calibration.
Alternative approach to precision narrow-angle astrometry for Antarctic long baseline interferometry
Yitping Kok, Michael J. Ireland, Aaron C. Rizzuto, et al.
The conventional approach to high-precision narrow-angle astrometry using a long baseline interferometer is to directly measure the fringe packet separation of a target and a nearby reference star. This is done by means of a technique known as phase-referencing which requires a network of dual beam combiners and laser metrology systems. Using an alternative approach that does not rely on phase-referencing, the narrow-angle astrometry of several closed binary stars (with separation less than 2′′), as described in this paper, was carried out by observing the fringe packet crossing event of the binary systems. Such an event occurs twice every sidereal day when the line joining the two stars of the binary is is perpendicular to the projected baseline of the interferometer. Observation of these events is well suited for an interferometer in Antarctica. Proof of concept observations were carried out at the Sydney University Stellar Interferometer (SUSI) with targets selected according to its geographical location. Narrow-angle astrometry using this indirect approach has achieved sub-100 micro-arcsecond precision.
Fizeau interferometric imaging of Io volcanism with LBTI/LMIRcam
J. M. Leisenring, P. M. Hinz, M. Skrutskie, et al.
The Large Binocular Telescope (LBT) houses two 8.4-meter mirrors separated by 14.4 meters on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with a spatial resolution equivalent to that of a 22.8-meter telescope and the light- gathering power of single 11.8-meter mirror. Capitalizing on these unique capabilities, we used LBTI/LMIRcam to image thermal radiation from volcanic activity on the surface of Io at M-Band (4.8 μm) over a range of parallactic angles. At the distance of Io, the M-Band resolution of the interferometric baseline corresponds to a physical distance of ~135 km, enabling high-resolution monitoring of Io volcanism such as ares and outbursts inaccessible from other ground-based telescopes operating in this wavelength regime. Two deconvolution routines are used to recover the full spatial resolution of the combined images, resolving at least sixteen known volcanic hot spots. Coupling these observations with advanced image reconstruction algorithms demonstrates the versatility of Fizeau interferometry and realizes the LBT as the first in a series of extremely large telescopes.
HD 139614: the interferometric case for a group-Ib pre-transitional young disk
Lucas Labadie, Alexis Matter, Alexander Kreplin, et al.
The Herbig Ae star HD 139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD 139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.
Analysis of surface structures of chemically peculiar stars with modern and future interferometers
D. Shulyak, K. Perraut, Claudia Paladini, et al.
Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.
VLTI-MIDI observations of the peculiar symbiotic system HD330036
Sebastiano Ligori, Mauro D'Onofrio
We discuss here the results of the interferometric observations with MIDI at VLTI of the peculiar symbiotic system HD330036. The interferometric data resolve a complex dust nebula with possibly a bipolar shape or an elongated disk structure inclined at ∼ 70° to the line of sight and oriented with the polar axis at PA ∼ −5°. By fitting to the visibility data a radiative transfer model of the system we obtain a good fit assuming a distance of ∼ 500 pc, at the lower end of the range found in literature.
Optimal a posteriori fringe tracking in optical interferometry
Ferréol Soulez, Éric Thiebaut, Michel Tallon, et al.
The so-called “phase delay tracking” attempts to estimate the effects of the turbulence on the phase of the interferograms in order to numerically cophase the measured complex visibilities and to coherently integrate them. This is implemented by the “coherent fringe analysis” of MIDI instrument1 but has only been used for high SNR data. In this paper, we investigate whether the sensitivity of this technique can be pushed to its theoretical limits and thus applied to fainter sources. In the general framework of the maximum likelihood and exploiting the chromatic behavior of the turbulence effects, we propose a global optimization strategy to compute various estimators of the differential pistons between two data frames. The most efficient estimators appear to be the ones based on the phasors, even though they do not yet reach the theoretical limits.
A robust approach to estimate stellar angular diameters from photometry and spectral type
A. Chelli, L. Bourges, G. Duvert, et al.
Observing reference stars with a known diameter is almost the only possibility to calibrate optical interferometry observations. The JMMC Calibrator Workgroup develops methods to ascertain the angular diameter of stars since 2000 and provides this expertise in the SearchCal software and associated databases. We provide on a regularly basis the JSDC, a catalogue of such stars, and an open access to our server that dynamically finds calibrators near science objects by querying CDS hosted catalogs. Here we propose a novel approach in the estimation of angular stellar diameters based on observational quantities only. It bypasses the knowledge of the visual extinction and intrinsic colors, thanks to the use of absorption free pseudo-colors (AFC) and the spectral type number on the x-axis. This new methodology allows to compute the angular diameter of 443 703 stars with a relative precision of about 1%. This calibrator set will become after filtering the next JSDC release.
Design and implementation of the NPOI database and website
K. Newman, A. M. Jorgensen, M. Landavazo, et al.
The Navy Precision Optical Interferometer (NPOI) has been recording astronomical observations for nearly two decades, at this point with hundreds of thousands of individual observations recorded to date for a total data volume of many terabytes. To make maximum use of the NPOI data it is necessary to organize them in an easily searchable manner and be able to extract essential diagnostic information from the data to allow users to quickly gauge data quality and suitability for a specific science investigation. This sets the motivation for creating a comprehensive database of observation metadata as well as, at least, reduced data products. The NPOI database is implemented in MySQL using standard database tools and interfaces. The use of standard database tools allows us to focus on top-level database and interface implementation and take advantage of standard features such as backup, remote access, mirroring, and complex queries which would otherwise be time-consuming to implement. A website was created in order to give scientists a user friendly interface for searching the database. It allows the user to select various metadata to search for and also allows them to decide how and what results are displayed. This streamlines the searches, making it easier and quicker for scientists to find the information they are looking for. The website has multiple browser and device support. In this paper we present the design of the NPOI database and website, and give examples of its use.
An accurate assessment of uncertainties in model fits of interferometric data. The bootstrap method
R. Lachaume, M. Rabus, A. Jordán
We propose a method to overcome the usual limitation of data reduction pipelines and of the Optical Interferometry FITS format: the absence of correlated and non Gaussian errors. To do so, we use a bootstrap method that allows to sample the probability density function of the interferometric observables. We have applied the method to the accurate assessment of uncertainties on the stellar diameters of under-resolved stars.
Stellar interferometric beam combiners in the context of linear optics networks
C. Schmid
The performance of ground based optical stellar interferometers suffers from various atmospheric as well as instrumental disturbances. The mathematical modeling of any kind of disturbances is essential in order to properly design an interferometric instrument and to get realistic estimates of its envisaged performance. One of the instrumental disturbances that has recently gained particular interest is changes to the polarization state of the incoming stellar light. Conventional methods of modeling polarization of light, such as, e.g., the Mueller calculus, are usually separate from or outside the context of interference. In this contribution I introduce to stellar interferometry a mathematical formalism that is commonly used in the field of optical Quantum Information Science. I show that this formalism allows an elegant and easy-to-use integral treatment of polarization and interference for any beam combination scheme based on linear optical elements. In order to illustrate the formalism I apply it exemplarily to the modeling of some existing beam combiner concepts.
Simulating interferometric data of binary systems
Claudia Paladini, Alain Jorissen, Christos Siopis, et al.
Observing late type stars with an interferometer is rather easy" because of their brightness in the near-infrared and their extended atmosphere. On the other hand the interpretation of interferometric observations is very tricky, especially when it comes to asymmetric structures detected via phase measurements. Our team developed dedicated 2D Roche lobe models to interpret observations of binary candidates. The models are generated through a software that simulates binary systems in a realistic way, using a Roche representation of the stellar surfaces and the MARCS stellar atmosphere models. In this contribution we present the method and show examples of synthetic interferometric data.
Concept for fiber-based near-infrared interferometry of highest frequency resolution
E. A. Michael, F. Besser, R. Prado, et al.
We are presenting first experimental results for subsystems of a low-cost near-infrared heterodyne interferometer concept based on commercial 1.55μm fiber-components with relative phase-stabilization between both telescopes, a shot noise limited heterodyne scheme with ambient temperature operated photodiodes, an ultra-coherent fiber laser, and a ROACH-based correlator. After we worked on a first demonstration with two 14” amateur telescopes on Betelgeuse, the concept should be upgradable to connect mid- or large-class telescopes, also given that the employed fiber phase stabilization scheme will enable the operation of long baselines.
Cramer-Rao lower bound and object reconstruction performance evaluation for intensity interferometry
This paper addresses the fundamental performance limits of object reconstruction methods using intensity interferometry measurements. It shows examples of reconstructed objects obtained with the FIIRE (Forward-model Interferometry Image Reconstruction Estimator) code developed by Boeing for AFRL. It considers various issues when calculating the multidimensional Cramér-Rao lower bound (CRLB) when the Fisher information matrix (FIM) is singular. In particular, when comparing FIIRE performance, characterized as the root mean square difference between the estimated and pristine objects with the CRLB, we found that FIIRE performance improved as the singularity became worse, a result not expected. We found that for invertible FIM, FIIRE yielded lower root mean squared error than the square root of the CRLB (by a factor as large as 100). This may be due to various regularization constraints (positivity, support, sharpness, and smoothness) included in FIIRE, rendering it a biased estimator, as opposed to the unbiased CRLB framework used. Using the sieve technique to mitigate false high frequency content inherent in point-by-point object reconstruction methods, we also show further improved FIIRE performance on some generic objects. It is worth noting that since FIIRE is an iterative algorithm searching to arrive at an object estimate consistent with the collected data and various constraints, an initial object estimate is required. In our case, we used a completely random initial object guess consisting of a 2-D array of uniformly distributed random numbers, sometimes multiplied with a 2-D Gaussian function.