Proceedings Volume 9085

Sensors and Systems for Space Applications VII

cover
Proceedings Volume 9085

Sensors and Systems for Space Applications VII

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 23 June 2014
Contents: 8 Sessions, 30 Papers, 0 Presentations
Conference: SPIE Defense + Security 2014
Volume Number: 9085

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9085
  • Pervasive Technologies Supporting Responsive Space
  • Radiation Hardening and Space Weather Effects Mitigation
  • Dual-Use Civil-Military Sensors and Systems I
  • Resilient and Secure Architectures and Processes for Dual Military-Civil Space Operations
  • Connectivity and Dissemination for Space Applications I
  • Connectivity and Dissemination for Space Applications II
  • Dual-Use Civil-Military Sensors and Systems II
Front Matter: Volume 9085
icon_mobile_dropdown
Front Matter: Volume 9085
This PDF file contains the front matter associated with SPIE Proceedings Volume 8085, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
Pervasive Technologies Supporting Responsive Space
icon_mobile_dropdown
Effects of star crossings on the detection of dim objects in orbit and mitigation strategies for improving detection
Brent Gessel, S. Cain
Detecting objects in space that are potentially hazardous to satellites or our population is an important problem that is growing every year as more objects are launched and collisions between objects introduce more debris. The problem of detecting these objects using Earth-based optical telescopes is challenging, but is generally dictated by available light and atmospheric seeing conditions. In this paper a related problem is described and demonstrated involving the detection of objects that are near brighter objects like stars. Starlight creates the expected problem of increasing the amount of noise and extra light in the region around it, but in this paper the effect of spatial operations carried out by traditional space object detection algorithms is factored in. These spatial processing effects magnify the contribution of stray starlight and cause large zones around stars to form that make detection of any space debris within them very difficult. This paper documents a new algorithm that can mitigate this effect and facilitate the detection of objects near stars.
Using ATCOM to enhance long-range imagery collected by NASA’s flight test tracking cameras at Armstrong Flight Research Center
Located at Edwards Air Force Base, Armstrong Flight Research Center (AFRC) is NASA’s premier site for aeronautical research and operates some of the most advanced aircraft in the world. As such, flight tests for advanced manned and unmanned aircraft are regularly performed there. All such tests are tracked through advanced electro-optic imaging systems to monitor the flight status in real-time and to archive the data for later analysis. This necessitates the collection of imagery from long-range camera systems of fast moving targets from a significant distance away. Such imagery is severely degraded due to the atmospheric turbulence between the camera and the object of interest. The result is imagery that becomes blurred and suffers a substantial reduction in contrast, causing significant detail in the video to be lost. In this paper, we discuss the image processing techniques located in the ATCOM software, which uses a multi-frame method to compensate for the distortions caused by the turbulence.
FalconSAT-7: a membrane space telescope
Geoff Andersen, Olha Asmolova, Thomas Dickinson
The USAF Academy Department of Physics is building FalconSAT-7, a membrane solar telescope to be deployed from a 3U CubeSat in LEO. The primary optic is a 0.2m photon sieve.—a diffractive element consisting of billions of tiny holes in an otherwise opaque polymer sheet. The membrane, its support structure, secondary optics, two imaging cameras and associated control/recording electronics are all packaged within half the CubeSat volume. Once in space the supporting pantograph structure is deployed, pulling the membrane flat under tension. The telescope will then be steered towards the Sun to gather images at H-alpha for transmission to the ground. Due for launch in 2016, FalconSAT-7 will serve as a pathfinder for future surveillance missions.
Design and operation of SUCHI: the space ultra-compact hyperspectral imager for a small satellite
S. T. Crites, P. G. Lucey, R. Wright, et al.
The primary payload on the University of Hawaii-built ‘HiakaSat’ micro-satellite will be the Space Ultra Compact Hyperspectral Imager (SUCHI). SUCHI is a low-mass (<9kg), low-volume (10x10x36 cm3) long wave infrared hyperspectral imager designed and built at the University of Hawaii. SUCHI is based on a variable-gap Fabry-Perot interferometer employed as a Fourier transform spectrometer with images collected by a commercial 320x256 microbolometer array. The microbolometer camera and vacuum-sensitive electronics are contained within a sealed vessel at 1 atm. SUCHI will collect spectral radiance data from 8 to 14 microns and demonstrate the potential of this instrument for geological studies from orbit (e.g. mapping of major rock-forming minerals) and volcanic hazard observation and assessment (e.g. quantification of volcanic sulfur dioxide pollution and lava flow cooling rates). The sensor has been integrated with the satellite which will launch on the Office of Responsive Space ORS-4 mission scheduled for 2014. The primary mission will last 6 months, with extended operations anticipated for approximately 2 years. A follow-on mission has been proposed to perform imaging of Earth’s surface in the 3-5 micron range with a field of view of 5 km with 5.25 m sampling (from a 350 km orbit). The 19-kg proposed instrument will be a prototype sensor for a constellation of small satellites for Earth imaging. The integrated satellite properties will be incorporated into the Hawaii Space Flight Laboratory’s constellation maintenance software environment COSMOS (Comprehensive Openarchitecture Space Mission Operations System) to ease future implementation of the instrument as part of a constellation.
Radiation Hardening and Space Weather Effects Mitigation
icon_mobile_dropdown
Chalcogenide glass thin-film optics for infrared applications
Chalcogenide glasses are increasingly used in infrared-transparent optical systems for space applications due to their relatively low density (compared to Ge or ZnSe), tunable spectral and thermo-mechanical properties, and molding capability. Remaining challenges include their application to thin-film optics and coatings. The high refractive indices of chalcogenide glasses (n ˃ 2.7) suggest the possibility for high reflecting coatings based on few periods of alternating layers with high index contrast. As2Se3 thin film deposited by thermal evaporation is investigated using ellipsometry which show optical properties consistent with bulk material. Also we demonstrate a novel method for fabrication of antireflection coating using porous chalcogenide. Possibility of negligible extinction coefficient and low refractive index of this porous coating promises broadband suppression of undesired Fresnel reflections at the interface from infrared optics.
AE9/AP9/SPM: new models for radiation belt and space plasma specification
W. Robert Johnston, T. Paul O’Brien, Gregory P. Ginet, et al.
A new set of models, AE9/AP9/SPM, has been developed for use in space system design and other climatological applications. They describe energetic electron, proton, and plasma fluxes in the Earth’s inner magnetosphere based on 30 independent data sets from satellite-based sensors. The models provide particle flux maps including estimates of both measurement uncertainties and space weather variability. Furthermore, the model architecture permits the Monte-Carlo estimation of the time evolution of fluxes and derived quantities, e.g. the median and 95th percentile, along an arbitrary orbit. This overview will particularly address the latest AE9/AP9 version release.
Dual-Use Civil-Military Sensors and Systems I
icon_mobile_dropdown
Development of a spherical aerial vehicle for urban search
Kang Hou, Hanxu Sun, Qingxuan Jia, et al.
With the ability to provide close surveillance in narrow space or urban areas, spherical aerial vehicles have been of great interest to many scholars and researchers. The spherical aerial vehicle offers substantial design advantages over the conventional small aerial vehicles. As a kind of small aerial vehicles, spherical aerial vehicle is presented in this paper. Firstly, the unique structure of spherical aerial vehicle is presented in detail. And then as the key component of the spherical aerial vehicle, the meshed spherical shell is analyzed. The shell is made of carbon fiber and is used to protect the inner devices, so the deformation of the shell is analyzed and simulated. Then the experimental results verify the above analysis and the composite carbon fiber material makes the mesh spherical shell small deformation. Considering the whole vehicle has a shell outside, the lift affect of the meshed spherical shell is analyzed. The simulation and experiment results are basically consistent with theoretical analysis, and the impact of the meshed shell has small resistance for the airflow through the sphere.
Using Atmospheric Polarization Patterns for Azimuth Sensing
Todd M. Aycock, Art Lompado, Benjamin M. Wheeler
Unpolarized light from the Sun incident upon the Earth’s atmosphere becomes polarized and presents a polarization pattern in the viewable sky dome that depends on the position of the Sun, the viewer’s position on the Earth, and the time of the observation. In clear and slightly overcast skies, both the degree of linear polarization and the polarization orientation can be predicted to first order using Rayleigh scattering theory. Conversely, measuring this polarization pattern provides information about the pose of a sensing platform equipped with an imaging polarimeter. We present here an investigation of the predicted polarization patterns in conjunction with a set of polarimetric measurements to show how the pointing direction of the platform hosting the polarimeter can be recovered. This direction derives solely from the measured polarization of a subsection of the hemispherical polarization pattern centered near the zenith and can be determined to high accuracy.
Membrane based thermoelectric sensor array for space debris detection
Frank Haenschke, Ernst Kessler, Andreas Ihring, et al.
As manmade space debris in the low earth orbit becomes an increasing risk to space missions, which could even result in total mission loss, it has become even more critical to have detailed knowledge of the properties of these particles like the mass, the velocity and the trajectory. In this paper, we present a newly designed, highly sensitive impact detector array with 16 pixels for space debris analysis. The thermopile sensor array, which was developed in the project, consists of 16 miniaturized multi-junction thermopile sensors made by modern thin-film technology on Si wafers. Each thermopile sensor consists of 100 radially arranged junction pairs formed from evaporated antimony and bismuth thin films. The centrally located active (hot) junctions comprise the active area of 1 mm². The output e.m.f. of the sensor is proportional to the temperature difference between the active and the reference junctions. The thermopile requires no cooling and no bias voltage or current for operation. It generates no 1/f noise but only the thermal resistance (Nyquist) noise. The sensor can be used for DC and low frequency AC measurements. The impact energy of micro sized particles is measured by a calorimetric principle. This means that the kinetic energy of the particle is converted into heat by hitting the absorbing foil, which is glued on the surface of the membrane area. This setup in combination with a preceded velocity detector allows the measurement of the most interesting particle quantities mass, velocity and trajectory.
Constrained orbital intercept-evasion
Aleksandar Zatezalo, Dusan M. Stipanovic, Raman K. Mehra, et al.
An effective characterization of intercept-evasion confrontations in various space environments and a derivation of corresponding solutions considering a variety of real-world constraints are daunting theoretical and practical challenges. Current and future space-based platforms have to simultaneously operate as components of satellite formations and/or systems and at the same time, have a capability to evade potential collisions with other maneuver constrained space objects. In this article, we formulate and numerically approximate solutions of a Low Earth Orbit (LEO) intercept-maneuver problem in terms of game-theoretic capture-evasion guaranteed strategies. The space intercept-evasion approach is based on Liapunov methodology that has been successfully implemented in a number of air and ground based multi-player multi-goal game/control applications. The corresponding numerical algorithms are derived using computationally efficient and orbital propagator independent methods that are previously developed for Space Situational Awareness (SSA). This game theoretical but at the same time robust and practical approach is demonstrated on a realistic LEO scenario using existing Two Line Element (TLE) sets and Simplified General Perturbation-4 (SGP-4) propagator.
The art and science of missile defense sensor design
A Missile Defense Sensor is a complex optical system, which sits idle for long periods of time, must work with little or no on-­board calibration, be used to find and discriminate targets, and guide the kinetic warhead to the target within minutes of launch. A short overview of the Missile Defense problem will be discussed here, as well as, the top-level performance drivers, like Noise Equivalent Irradiance (NEI), Acquisition Range, and Dynamic Range. These top-level parameters influence the choice of optical system, mechanical system, focal plane array (FPA), Read Out Integrated Circuit (ROIC), and cryogenic system. This paper will not only discuss the physics behind the performance of the sensor, but it will also discuss the "art" of optimizing the performance of the sensor given the top level performance parameters. Balancing the sensor sub-­systems is key to the sensor’s performance in these highly stressful missions. Top-­level performance requirements impact the choice of lower level hardware and requirements. The flow down of requirements to the lower level hardware will be discussed. This flow down directly impacts the FPA, where careful selection of the detector is required. The flow down also influences the ROIC and cooling requirements. The key physics behind the detector and cryogenic system interactions will be discussed, along with the balancing of subsystem performance. Finally, the overall system balance and optimization will be discussed in the context of missile defense sensors and expected performance of the overall kinetic warhead.
Resilient and Secure Architectures and Processes for Dual Military-Civil Space Operations
icon_mobile_dropdown
SecureCPS: Defending a nanosatellite cyber-physical system
Lance Forbes, Huy Vu, Bogdan Udrea, et al.
Recent inexpensive nanosatellite designs employ maneuvering thrusters, much as large satellites have done for decades. However, because a maneuvering nanosatellite can threaten HVAs on-­orbit, it must provide a level of security typically reserved for HVAs. Securing nanosatellites with maneuvering capability is challenging due to extreme cost, size, and power constraints. While still in the design process, our low-­cost SecureCPS architecture promises to dramatically improve security, to include preempting unknown binaries and detecting abnormal behavior. SecureCPS also applies to a broad class of cyber-­physical systems (CPS), such as aircraft, cars, and trains. This paper focuses on Embry-­Riddle’s ARAPAIMA nanosatellite architecture, where we assume any off-­the-­shelf component could be compromised by a supply chain attack.1 Based on these assumptions, we have used Vanderbilt’s Cyber Physical -­ Attack Description Language (CP-­ADL) to represent realistic attacks, analyze how these attacks propagate in the ARAPAIMA architecture, and how to defeat them using the combination of a low-­cost Root of Trust (RoT) Module, Global InfoTek’s Advanced Malware Analysis System (GAMAS), and Anomaly Detection by Machine Learning (ADML).2 Our most recent efforts focus on refining and validating the design of SecureCPS.
A resilient and secure software platform and architecture for distributed spacecraft
William R. Otte, Abhishek Dubey, Gabor Karsai
A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.
Cyber threat impact assessment and analysis for space vehicle architectures
Robert M. McGraw, Mark J. Fowler, David Umphress, et al.
This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.
Building space operations resiliency with a multi-tier mission architecture
A variety of naturally occurring (e.g., solar activity) and other (e.g., deliberate attack, residual space object impact) risk factors exist for orbital, aerial and ground-based assets. This paper provides an overview of multiple different risk sources to spacecraft. It then provides an overview of the multi-tier mission/operations architecture. The various types of craft that can participate are discussed as are prospective deployment patterns. Next, a mission plan for a high-resiliency sensing mission is presented. Finally, the paper concludes by considering next steps for testing this designed-forresilience multi-tier architecture.
An adaptive process-based cloud infrastructure for space situational awareness applications
Bingwei Liu, Yu Chen, Dan Shen, et al.
Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.
Securing resource constraints embedded devices using elliptic curve cryptography
Tony Tam, Mohamed Alfasi, Mohammad Mozumdar
The use of smart embedded device has been growing rapidly in recent time because of miniaturization of sensors and platforms. Securing data from these embedded devices is now become one of the core challenges both in industry and research community. Being embedded, these devices have tight constraints on resources such as power, computation, memory, etc. Hence it is very difficult to implement traditional Public Key Cryptography (PKC) into these resource constrained embedded devices. Moreover, most of the public key security protocols requires both public and private key to be generated together. In contrast with this, Identity Based Encryption (IBE), a public key cryptography protocol, allows a public key to be generated from an arbitrary string and the corresponding private key to be generated later on demand. While IBE has been actively studied and widely applied in cryptography research, conventional IBE primitives are also computationally demanding and cannot be efficiently implemented on embedded system. Simplified version of the identity based encryption has proven its competence in being robust and also satisfies tight budget of the embedded platform. In this paper, we describe the choice of several parameters for implementing lightweight IBE in resource constrained embedded sensor nodes. Our implementation of IBE is built using elliptic curve cryptography (ECC).
Connectivity and Dissemination for Space Applications I
icon_mobile_dropdown
Simulation study of unmanned aerial vehicle communication networks addressing bandwidth disruptions
Sixiao Wei, Linqiang Ge, Wei Yu, et al.
To date, Unmanned Aerial Vehicles (UAVs) have been widely used for numerous applications. UAVs can directly connect to ground stations or satellites to transfer data. Multiple UAVs can communicate and cooperate with each other and then construct an ad-hoc network. Multi-UAV systems have the potential to provide reliable and timely services for end users in addition to satellite networks. In this paper, we conduct a simulation study for evaluating the network performance of multi-UAV systems and satellite networks using the ns-2 networking simulation tool. Our simulation results show that UAV communication networks can achieve better network performance than satellite networks and with a lower cost and increased timeliness. We also investigate security resiliency of UAV networks. As a case study, we simulate false data injection attacks against UAV communication networks in ns-2 and demonstrate the impact of false data injection attacks on network performance.
Dynamic autonomous routing technology for IP-based satellite ad hoc networks
Xiaofei Wang, Jing Deng, Theresa Kostas, et al.
IP-based routing for military LEO/MEO satellite ad hoc networks is very challenging due to network and traffic heterogeneity, network topology and traffic dynamics. In this paper, we describe a traffic priority-aware routing scheme for such networks, namely Dynamic Autonomous Routing Technology (DART) for satellite ad hoc networks. DART has a cross-layer design, and conducts routing and resource reservation concurrently for optimal performance in the fluid but predictable satellite ad hoc networks. DART ensures end-to-end data delivery with QoS assurances by only choosing routing paths that have sufficient resources, supporting different packet priority levels. In order to do so, DART incorporates several resource management and innovative routing mechanisms, which dynamically adapt to best fit the prevailing conditions. In particular, DART integrates a resource reservation mechanism to reserve network bandwidth resources; a proactive routing mechanism to set up non-overlapping spanning trees to segregate high priority traffic flows from lower priority flows so that the high priority flows do not face contention from low priority flows; a reactive routing mechanism to arbitrate resources between various traffic priorities when needed; a predictive routing mechanism to set up routes for scheduled missions and for anticipated topology changes for QoS assurance. We present simulation results showing the performance of DART. We have conducted these simulations using the Iridium constellation and trajectories as well as realistic military communications scenarios. The simulation results demonstrate DART’s ability to discriminate between high-priority and low-priority traffic flows and ensure disparate QoS requirements of these traffic flows.
Toward effectiveness and agility of network security situational awareness using moving target defense (MTD)
Linqiang Ge, Wei Yu, Dan Shen, et al.
Most enterprise networks are built to operate in a static configuration (e.g., static software stacks, network configurations, and application deployments). Nonetheless, static systems make it easy for a cyber adversary to plan and launch successful attacks. To address static vulnerability, moving target defense (MTD) has been proposed to increase the difficulty for the adversary to launch successful attacks. In this paper, we first present a literature review of existing MTD techniques. We then propose a generic defense framework, which can provision an incentive-compatible MTD mechanism through dynamically migrating server locations. We also present a user-server mapping mechanism, which not only improves system resiliency, but also ensures network performance. We demonstrate a MTD with a multi-user network communication and our data shows that the proposed framework can effectively improve the resiliency and agility of the system while achieving good network timeliness and throughput performance.
Connectivity and Dissemination for Space Applications II
icon_mobile_dropdown
Quantum technology for aerospace applications
In this paper, quantum technology is introduced with three key topics, including quantum computing, quantum communication, and quantum devices. Using these dimensions of quantum techniques we briefly introduce their contributions to aerospace applications. The paper will help readers to understand the basic concepts of the quantum technology and their potential applications in space, air, and ground applications such as highly accurate target positioning.
Polarization tracking for quantum satellite communications
Gang Wang, Dan Shen, Genshe Chen, et al.
Satellite networks and quantum communications offer complementary opportunities for enhanced operations. Quantum communications provide security for the transmissions between satellites and ground stations; while the free-space link of satellite networks provide the potential of long distance transmission of quantum bits (qubit) for space communications. However, with the promising advantages of the two approaches, challenges remain to fully develop quantum-based satellite communications such as robust and reliable information detection which is difficult to achieve due to the movement of satellites. In this paper, a tracking algorithm is proposed for polarization-encoded quantum satellite communications where polarization states are used to determine the bit transfer between the transmitter and receiver. The polarization tracking is essential for the decoding of a qubit and the quantum key distribution (QKD). A practical channel model for free-space quantum communications is adopted in this paper. With the estimated polarization, a novel dynamic polarization compensation scheme is also proposed. The results show that our methods can accurately estimate the polarization, providing much lower quantum bit error rate (QBER) by compensation, as compared with the direct qubit detection without polarization tracking and compensation scheme.
Quantum key distribution for security guarantees over QoS-driven 3D satellite networks
Ping Wang, Xi Zhang, Genshe Chen, et al.
In recent years, quantum-based communication is emerging as a new technique for ensuring secured communications because it can guarantee absolute security between two different remote entities. Quantum communication performs the transmission and exchange of quantum information among distant nodes within a network. Quantum key distribution (QKD) is a methodology for generating and distributing random encryption keys using the principles of quantum physics. In this paper, we investigate the techniques on how to efficiently use QKD in 3D satellite networks and propose an effective method to overcome its communications-distance limitations. In order to implement secured and reliable communications over wireless satellite links, we develop a free-space quantum channel model in satellite communication networks. To enlarge the communications distances over 3D satellite networks, we propose to employ the intermediate nodes to relay the unconditional keys and guarantee the Quantum Bit Error Rate (QBER) for security requirement over 3D satellite networks. We also propose the communication model for QKD security-Quality of Service (QoS) guarantee and an adaptive cooperative routing selection scheme to optimize the throughput performance of QKD-based satellite communications networks. The obtained simulation results verify our proposed schemes.
Resident space object tracking using an interacting multiple model mixing scheme
A multiple model estimation scheme is proposed to enhance the robustness of a resident space object (RSO) tracker subject to its maneuverability uncertainties (unplanned or unknown jet firing activities) and other system variations. The concept is based on the Interacting Multiple Model (IMM) estimation scheme. Within the IMM framework, two Extended Kalman Filter (EKF) models: (i) a 6 State (Position and Velocity of a constant orbiting RSO) EKF and (ii) a 9 state (Position, Velocity, and Acceleration of a maneuvering RSO) EKF are designed and implemented to achieve RSO maneuvering detection and enhanced tracking accuracy. The IMM estimation scheme is capable of providing enhanced state vector estimation accuracy and consistent prediction of the RSO maneuvering status, thus offering an attractive design feature for future Space Situational Awareness (SSA) missions. The design concept is illustrated using the Matlab/Based Simulation testing environment.
Dual-Use Civil-Military Sensors and Systems II
icon_mobile_dropdown
Towards large scale multi-target tracking
Ba-Ngu Vo, Ba-Tuong Vo, Stephan Reuter, et al.
Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.
Space object surveillance using incidental measurements from vehicle-board sensors
This article envisions surveillance and estimation in a future data-rich space environment, wherein spacecraft and other systems sense and record myriad environmental parameters incidentally to their primary missions. In this future environment, a wide range of sensor data will be available, but much of the data may be incidental, and hence subject to fluctuation, gaps, and low fidelity. Here, we explore estimation using such incidental-measurement data streams. Specifically, two canonical incidental-measurement-based estimation problems are posed—one concerned with recovering diffusive processes from an incidentally-mobile sensor, the other concerned with object (target) tracking using incidental measurements. Basic formal analyses of these estimation problems are pursued, and simulation results are also presented.
A nano-satellite to study the Sun and the Earth
M. Meftah, A. Irbah, A. Hauchecorne, et al.
Since the launch of the first artificial satellite in 1957, more than 6,000 satellites have been sent into space. Despite technological advances, the space domain remains little accessible. However, with the miniaturization of electronic components, it has recently become possible to develop small satellites with which scientific goals can be addressed. Micro-satellites have demonstrated that these goals are achievable. However, completion times remain long. Today, we hope through the use of nano-satellites to reduce size, costs, time of development and accordingly to increase accessibility to space for scientific objectives. Nano-satellites have become important tools for space development and utilization, which may lead to new ways of space exploration. This paper is intended to present a future space mission enabled by the development of nano-satellites and the underlying technologies they employ. Our future mission expands observations of the Sun (total solar irradiance and solar spectral irradiance measurements) and of the Earth (outgoing long-wave radiation, short-wave radiation measurements and stratospheric ozone measurements). Constellations of nano-satellites providing simultaneous collection of data over a wide area of geo-space may be built later and present a great interest for Sun-Earth relationships.
Dexterous and expedient approach strategies considering non-zero eccentricity orbits and J2 perturbations
Charles Remeikas, Yunjun Xu, Khanh Pham, et al.
Recently bio-inspired rendezvous strategies have been investigated for applications in space situation awareness. Particularly, closed-loop solutions have been developed for the cases that the target object is in a circular orbit without considering any orbital perturbations. In this paper, the minimum-fuel consumption bio-inspired motions are further studied. The follow cases considering the J2 perturbation, the non-zero eccentricities, and different boundary conditions are analyzed: (1) the target object is at the local vertical local horizontal coordinate origin; (2) the target is moving in the local vertical local horizontal coordinate; (3) the rendezvous object approaches the target object from the R-bar, V-bar, and Z-bar directions, respectively. Fast solutions can be obtained for the rendezvous object to approach the target object with minimum energy consumption.
Low-complexity image compression with scalable quality control
Bruce H. Pillman, Michael E. Napoli
The Rice algorithm is a standard for numerically lossless image compression, especially for space applications, as described by the Consultative Committee for Space Data Systems. It is remarkably simple and adaptable and delivers effective compression for a wide range of signals. The present work investigates an extension of the standard Rice algorithm to support lossy compression, referred to as Enhanced Rice, or ERICE. The extended system allows compression to scale gracefully from numerically lossless to visually lossy and is only slightly more complex than the numerically lossless system.