Proceedings Volume 8901

Optics and Photonics for Counterterrorism, Crime Fighting and Defence IX; and Optical Materials and Biomaterials in Security and Defence Systems Technology X

cover
Proceedings Volume 8901

Optics and Photonics for Counterterrorism, Crime Fighting and Defence IX; and Optical Materials and Biomaterials in Security and Defence Systems Technology X

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 31 October 2013
Contents: 9 Sessions, 33 Papers, 0 Presentations
Conference: SPIE Security + Defence 2013
Volume Number: 8901

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 8901
  • Detection and Recognition of Dangerous Materials I
  • Detection and Recognition of Dangerous Materials II
  • Identifying Suspicious Activity I
  • Identifying Suspicious Activity II
  • Poster Session
  • Biomaterials
  • Polymers and Applications
  • Modelling and Photonic Applications
Front Matter: Volume 8901
icon_mobile_dropdown
Front Matter: Volume 8901
This PDF file contains the front matter associated with SPIE Proceedings Volume 8901, including the Title Page, Copyright Information, Table of Contents, and the Conference Committee listing.
Detection and Recognition of Dangerous Materials I
icon_mobile_dropdown
Raman spectroscopy for the detection of explosives and their precursors on clothing in fingerprint concentration: a reliable technique for security and counterterrorism issues
S. Almaviva, S. Botti, L. Cantarini, et al.
In this work we report the results of RS measurements on some common military explosives and some of the most common explosives precursors deposited on clothing fabrics, both synthetic and natural, such as polyester, leather and denim cotton at concentration comparable to those obtained from a single fingerprint. RS Spectra were obtained using an integrated portable Raman system equipped with an optical microscope, focusing the light of a solid state GaAlAs laser emitting at 785 nm. A maximum exposure time of 10 s was used, focusing the beam in a 45 μm diameter spot on the sample. The substances were deposited starting from commercial solutions with a Micropipetting Nano-Plotter, ideal for generating high-quality spots by non-contact dispensing of sub-nanoliter volumes of liquids, in order to simulate a homogeneous stain on the fabric surface. Images acquired with a Confocal Laser Scanning Microscope provided further details of the deposition process showing single particles of micrometric volume trapped or deposited on the underlying tissues. The spectral features of each substance was clearly identified and discriminated from those belonging to the substrate fabric or from the surrounding fluorescence. Our results show that the application of RS using a microscope-based apparatus can provide interpretable Raman spectra in a fast, in-situ analysis, directly from explosive particles of some μm3 as the ones that it could be found in a single fingerprint, despite the contribution of the substrate, leaving the sample completely unaltered for further, more specific and propaedeutic laboratory analysis. The same approach can be envisaged for the detection of other illicit substances like drugs.
Detection of bottled explosives by near infrared
Hideo Itozaki, Hideo Sato-Akaba
Bottled liquids are not allowed through the security gate in the airport, because liquid explosives have been used by the terrorists. However, passengers have a lot of trouble if they cannot bring their own bottles. For example, a mother would like to carry her own milk in the airplane for her baby. Therefore the detection technology of liquid explosives should be developed as soon as possible. This paper shows that near infrared spectroscopy can detect bottled explosives quickly. The transmission method cannot deal with milk in the sense of liquid inspection. Here we examined the reflection method to the test of milk. The inspection method with light cannot make test for the metal can. We also use ultrasonic method to check metal can simultaneously in order to expand test targets.
Spatially offset Raman spectroscopy for explosives detection through difficult (opaque) containers
Guy T. Maskall, Stuart Bonthron, David Crawford
With the continuing threat to aviation security from homemade explosive devices, the restrictions on taking a volume of liquid greater than 100 ml onto an aircraft remain in place. From January 2014, these restrictions will gradually be reduced via a phased implementation of technological screening of Liquids, Aerosols and Gels (LAGs). Raman spectroscopy offers a highly sensitive, and specific, technique for the detection and identification of chemicals. Spatially Offset Raman Spectroscopy (SORS), in particular, offers significant advantages over conventional Raman spectroscopy for detecting and recognizing contents within optically challenging (Raman active) containers. Containers vary enormously in their composition; glass type, plastic type, thickness, reflectance, and pigmentation are all variable and cause an infinite range of absorbances, fluorescence backgrounds, Rayleigh backscattered laser light, and container Raman bands. In this paper we show that the data processing chain for Cobalt Light Systems’ INSIGHT100 bottlescanner is robust to such variability. We discuss issues of model selection for the detection stage and demonstrate an overall detection rate across a wide range of threats and containers of 97% with an associated false alarm rate of 0.1% or lower.
Characterization of optically compressing diode array for spectroscopic applications
Spectroscopic detection and classification techniques suffer from the collection of excessive data and utilize only a fraction of the information collected for classification. Compressed Sensing (CS) techniques have been utilized in optical, photonic, electronic and controls applications. This limits data collection to the essentials and reduces the hardware, software, and computational requirements. Applying CS to just the general computational system results in the collection of data which is ultimately discarded. The result is excessive power consumption, mass, physical sizes, and complexity. Compressive Sensing requires, at a minimum, a non-uniform encoding system with a non-linear decompression system for total reconstruction. Pseudorandom encoding is frequently preferred. Total reconstruction of a compressed signal has been shown to be very computational intensive and other optical-based techniques have been demonstrated to accelerate the result. Prior work has demonstrated that total reconstruction is not necessary for effective classification via PCA and other spectroscopic relevant techniques. Prior work revised the system design and modified the signal processing, both electronic and computational, to reduce system requirements. To propagate this savings back into the photonics and optical chain, it is necessary to further develop alternative techniques. In particular, a modification to the traditional LDA allows the contraction of primary optics. In this presentation an optical detector scheme is detailed. A number of configurations are considered with the most savings achieved by a spatial integrating version that allows the maintenance of optical and photonic SNR by collecting a number of photons greater than or equal to the traditional LDA. Since primary optical diameter is largely specified by the need to subtend an angle sufficient to overcome system noise, optical diameters can be reduced by up to an order of magnitude. This also mitigates optical diameter driven resolution at the detector plane. Some third order and higher issues exist and are addressed. Theoretical development with limited empirical support is to be presented.
Effective criteria for the identification of substance using the spectral lines dynamics of reflected THz signal
We propose new effective criteria for the detection and identification of substances, including explosives. These criteria are integral criteria on time and they are based on the SDA (Spectral Dynamics Analysis) method. We apply these criteria for the detection of explosive in the most difficult cases of the explosive identification. In the first case, we consider the compound explosive. In the second case we consider the complicated shape of the PWM C4 explosive. In all cases we detect and identify the substance. We developed first version of code for real-time identification of substance.
Detection and Recognition of Dangerous Materials II
icon_mobile_dropdown
Spectroscopic studies of the several isomers of UO3
Lucas E. Sweet, Dallas D. Reilly, David G. Abrecht, et al.
Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and α-UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.
Experimental realization of SDA-method for the detection of substance at long distance
Vyacheslav A. Trofimov, Anton D. Denisov, Vasily V. Tikhomirov
Nowadays, the detection and identification of dangerous substances at long distance (several metres, for example) by using of THz pulse reflected from the object is an important problem. The main problem with this technique is the absorption of THz energy by water vapor. However, using THz pulsed radiation is possible at distance of some metres as it is well-known. Below we demonstrate possibility of THz signal measuring reflected from a flat metallic mirror placed about 3.2 metres from the parabolic mirror. Investigated object is placed before this mirror. Therefore, at present time our measurements contain features of both transmission and reflection modes. The reflecting mirror is used because of weak averaged power of femtosecond laser. This power is about 1 W. Nevertheless, the laser beam splits many times. Therefore, the averaged power falling on the THz emitter decreases at least 8 times. The pulse duration generated by the femtosecond laser is equal to 68 fs. In this mode of measurements we took measurements for a chocolate brick, cookies, a bag made from thick paperboard, many layers of thin papers (paper napkin for computer monitor). In particular, it should be stressed that a spectrum of the measured signal is highly sensitive to a angle position of the flat mirror. Therefore, at long distance the position of object, that reflects the THz pulse, will influence essentially on the measured spectrum. Other very important features of the measurements with the multilayer of paper are the strong modulation of the spectrum of the reflected signal. As a consequence, we see additional frequencies, which correspond to absorption frequencies of various explosives, in the spectrum of the reflected signal. In fact, these substances are absent in our experiment. The last important result consists of unusual influence of the cookies on the measured signal: it becomes strong modulated. Consequently, cookies act as disordered structures.
Standoff detection of bioaerosols over wide area using a newly developed sensor combining a cloud mapper and a spectrometric LIF lidar
Sylvie Buteau, Jean-Robert Simard, Gilles Roy, et al.
A standoff sensor called BioSense was developed to demonstrate the capacity to map, track and classify bioaerosol clouds from a distant range and over wide area. The concept of the system is based on a two steps dynamic surveillance: 1) cloud detection using an infrared (IR) scanning cloud mapper and 2) cloud classification based on a staring ultraviolet (UV) Laser Induced Fluorescence (LIF) interrogation. The system can be operated either in an automatic surveillance mode or using manual intervention. The automatic surveillance operation includes several steps: mission planning, sensor deployment, background monitoring, surveillance, cloud detection, classification and finally alarm generation based on the classification result. One of the main challenges is the classification step which relies on a spectrally resolved UV LIF signature library. The construction of this library relies currently on in-chamber releases of various materials that are simultaneously characterized with the standoff sensor and referenced with point sensors such as Aerodynamic Particle Sizer® (APS). The system was tested at three different locations in order to evaluate its capacity to operate in diverse types of surroundings and various environmental conditions. The system showed generally good performances even though the troubleshooting of the system was not completed before initiating the Test and Evaluation (T&E) process. The standoff system performances appeared to be highly dependent on the type of challenges, on the climatic conditions and on the period of day. The real-time results combined with the experience acquired during the 2012 T & E allowed to identify future ameliorations and investigation avenues.
Evaluation of adaptive algorithms for detection and classification of fluorescent aerosols in the atmosphere
Photon counting technologies are developed and could be used in the future to measure the return from laser induced fluorescence. Currently, the spectral detection of light emitted by fluorescing aerosols is performed with ICCD, Intensified Charge Coupled Device. The signal to noise ratio of ICCD devices is smaller by a factor of √2compared to photon counting devices having the same sensitivity. We studied the impact of this difference of signal to noise ratio on the capability of multivariate detection and classification algorithms to operate on various conditions. Signal simulations have been performed to obtain ROC (Receiver Operation Characteristics) Curves and Confusion Matrix to obtain the detection performance and the ability of algorithms to discriminate a potential source from another. Two detection algorithms are used, the Integrated Laser Induced Fluorescence(ILIF) and the Matched Filter. For the classification, three algorithms are used, the Adaptive Matched Filter (AMF), the Adaptive Coherent Estimator (ACE) and the Adaptive Least Squares (ALS). The best algorithm for detection is the AMF using the signature of the material present in a cloud, the ILIF detector performs very well. For the classification, the three algorithms are surprisingly giving the same results for the same data. The classification performs better if the distance between the signatures recorded in a database is important. The performance of the detector and of the classificator improves with an increase of the signal to noise ratio and is consistently and significantly better for the photon counting compared to ICCD.
Identifying Suspicious Activity I
icon_mobile_dropdown
Radon transform based automatic metal artefacts generation for 3D threat image projection
Najla Megherbi, Toby P. Breckon, Greg T. Flitton, et al.
Threat Image Projection (TIP) plays an important role in aviation security. In order to evaluate human security screeners in determining threats, TIP systems project images of realistic threat items into the images of the passenger baggage being scanned. In this proof of concept paper, we propose a 3D TIP method which can be integrated within new 3D Computed Tomography (CT) screening systems. In order to make the threat items appear as if they were genuinely located in the scanned bag, appropriate CT metal artefacts are generated in the resulting TIP images according to the scan orientation, the passenger bag content and the material of the inserted threat items. This process is performed in the projection domain using a novel methodology based on the Radon Transform. The obtained results using challenging 3D CT baggage images are very promising in terms of plausibility and realism.
Defining human contrast sensitivity and discrimination from complex imagery
S. Triantaphillidou, J. Jarvis, G. Gupta, et al.
Shape, form and detail define image structure in our visual world. These attributes are dictated primarily by local variations in luminance contrast. Defining human contrast sensitivity (threshold of contrast perception) and contrast discrimination (ability to differentiate between variations in contrast) directly from real complex scenes is of outermost relevance to our understanding of spatial vision. The design and evaluation of imaging equipment, used in both field operations and security applications, require a full description of strengths and limitations of human spatial vision. This paper is concerned with the measurement of the following four human contrast sensitivity functions directly from images of complex scenes: i) Isolated Contrast Sensitivity (detection) Function (iCSF); ii) Contextual Contrast Sensitivity (detection) Function (cCSF); iii) Isolated Visual Perception (discrimination) Function (iVPF) and iv) Contextual Visual Perception (discrimination) Function (cVPF). The paper also discusses the following areas: Barten’s mathematical framework for modeling contrast sensitivity and discrimination; spatial decomposition of image stimuli to a number of spatial frequency bands (octaves); suitability of three different relevant image contrast metrics; experimental methodology for subjective tests; stimulus conditions. We finally present and discuss initial findings for all four measured sensitivities.
Particle swarm optimization on low dimensional pose manifolds for monocular human pose estimation
Jürgen Brauer, Wolfgang Hübner, Michael Arens
Automatic assessment of situations with modern security and surveillance systems requires sophisticated discrimination capabilities. Therefore, action recognition, e.g. in terms of person-person or person-object interactions, is an essential core component of any surveillance system. A subclass of recent action recognition approaches are based on space time volumes, which are generated from trajectories of multiple anatomical landmarks like hands or shoulders. A general prerequisite of these methods is the robust estimation of the body pose, i.e. a simplified body model consisting of several anatomical landmarks. In this paper we address the problem of estimating 3D poses from monocular person image sequences. The first stage of our algorithm is the localization of body parts in the 2D image. For this, a part based object detection method is used, which in previous work has been shown to provide a sufficient basis for person detection and landmark estimation in a single step. The output of this processing step is a probability distribution for each landmark and image indicating possible locations of this landmark in image coordinates. The second stage of our algorithm searches for 3D pose estimates that best t to the 15 landmark probability distributions. For resolving ambiguities introduced by uncertainty in the locations of the landmarks, we perform an optimization within a Particle Swarm Optimization (PSO) framework, where each pose hypothesis is represented by a particle. Since the search in the high-dimensional 3D pose search space needs further guidance to deal with the inherently restricted 2D input information, we propose a new compact representation of motion sequences provided by motion capture databases. Poses of a motion sequence are embedded in a low-dimensional manifold. We represent each motion sequence by a compact representation referred to as pose splines using a small number of supporting point poses. The PSO algorithm can be extended to perform the optimization process directly on pose splines. Results of the proposed method are shown on the UMPM benchmark.
Human pose classification within the context of near-IR imagery tracking
Jiwan Han, Anna Gaszczak, Ryszard Maciol, et al.
We address the challenge of human behaviour analysis within automated image understanding. Whilst prior work concentrates on this task within visible-band (EO) imagery, by contrast we target basic human pose classification in thermal-band (infrared, IR) imagery. By leveraging the key advantages of limb localization this imagery offers we target two distinct human pose classification problems of varying complexity: 1) identifying passive or active individuals within the scene and 2) the identification of individuals potentially carrying weapons. Both approaches use a discrete set of features capturing body pose characteristics from which a range of machine learning techniques are then employed for final classification. Significant success is shown on these challenging tasks over a wide range of environmental conditions within the wider context of automated human target tracking in thermal-band (IR) imagery.
Learning transmodal person detectors from single spectral training sets
Hilke Kieritz, Wolfgang Hübner, Michael Arens
Annotating data for training a person detector is a tedious procedure. Therefore it is worthwhile to use freely available datasets. When detecting in the infrared spectrum it is not obvious that person images from the visible spectrum can be used to train a detector operable in IR. We show that it is possible to train a transmodel detector, which can be used to detect in IR as well as in the visible spectrum. Therefor we use integral channel features in combination with boosting based feature selection, in order to analyze which features are effective for generating the effect of transmodality.
Identifying Suspicious Activity II
icon_mobile_dropdown
Gait patterns for crime fighting: statistical evaluation
Kateřina Sulovská, Silvie Bělašková, Milan Adámek
The criminality is omnipresent during the human history. Modern technology brings novel opportunities for identification of a perpetrator. One of these opportunities is an analysis of video recordings, which may be taken during the crime itself or before/after the crime. The video analysis can be classed as identification analyses, respectively identification of a person via externals. The bipedal locomotion focuses on human movement on the basis of their anatomical-physiological features. Nowadays, the human gait is tested by many laboratories to learn whether the identification via bipedal locomotion is possible or not. The aim of our study is to use 2D components out of 3D data from the VICON Mocap system for deep statistical analyses. This paper introduces recent results of a fundamental study focused on various gait patterns during different conditions. The study contains data from 12 participants. Curves obtained from these measurements were sorted, averaged and statistically tested to estimate the stability and distinctiveness of this biometrics. Results show satisfactory distinctness of some chosen points, while some do not embody significant difference. However, results presented in this paper are of initial phase of further deeper and more exacting analyses of gait patterns under different conditions.
WPSS: watching people security services
Henri Bouma, Jan Baan, Sander Borsboom, et al.
To improve security, the number of surveillance cameras is rapidly increasing. However, the number of human operators remains limited and only a selection of the video streams are observed. Intelligent software services can help to find people quickly, evaluate their behavior and show the most relevant and deviant patterns. We present a software platform that contributes to the retrieval and observation of humans and to the analysis of their behavior. The platform consists of mono- and stereo-camera tracking, re-identification, behavioral feature computation, track analysis, behavior interpretation and visualization. This system is demonstrated in a busy shopping mall with multiple cameras and different lighting conditions.
Usage of cornea and sclera back reflected images captured in security cameras for forensic and card games applications
Zeev Zalevsky, Asaf Ilovitsh, Yevgeny Beiderman
We present an approach allowing seeing objects that are hidden and that are not positioned in direct line of sight with security inspection cameras. The approach is based on inspecting the back reflections obtained from the cornea and the sclera of the eyes of people attending the inspected scene and which are positioned in front of the hidden objects we aim to image after performing proper calibration with point light source (e.g. a LED). The scene can be a forensic scene or for instance a casino in which the application is to see the cards of poker players seating in front of you.
Recent developments in automated lip-reading
Richard Bowden, Stephen Cox, Richard Harvey, et al.
Human lip-readers are increasingly being presented as useful in the gathering of forensic evidence but, like all humans, suffer from unreliability. Here we report the results of a long-term study in automatic lip-reading with the objective of converting video-to-text (V2T). The V2T problem is surprising in that some aspects that look tricky, such as real-time tracking of the lips on poor-quality interlaced video from hand-held cameras, but prove to be relatively tractable. Whereas the problem of speaker independent lip-reading is very demanding due to unpredictable variations between people. Here we review the problem of automatic lip-reading for crime fighting and identify the critical parts of the problem.
Poster Session
icon_mobile_dropdown
Ammonia detection using optical reflectance from porous silicon formed by metal-assisted chemical etching
An impact of morphology on reflectance of porous silicon was investigated. Depending on the metal-assisted chemical etching conditions the macro- micro structures could be formed. The reflectance properties of various porous silicon structures after ammonia adsorption were investigated. It was shown that increasing of ammonia concentration in the measurement camber leads to an increase of the reflectance. The most sensitive structures for ammonia detection are porous silicon having approximately size of pores - 10-15 μm. A fast response of porous silicon on the adsorption of ammonia molecules may be used for development of new sensors.
Investigating existing medical CT segmentation techniques within automated baggage and package inspection
Najla Megherbi, Toby P. Breckon, Greg T. Flitton
3D Computed Tomography (CT) image segmentation is already well established tool in medical research and in routine daily clinical practice. However, such techniques have not been used in the context of 3D CT image segmentation for baggage and package security screening using CT imagery. CT systems are increasingly used in airports for security baggage examination. We propose in this contribution an investigation of the current 3D CT medical image segmentation methods for use in this new domain. Experimental results of 3D segmentation on real CT baggage security imagery using a range of techniques are presented and discussed.
Ultra long range surveillance camera for critical infrastructure protection research range
M. Szustakowski, M. Życzkowski, M. Karol, et al.
Visible, LLTV and anti-fog cameras have different abilities to capture external information, and combining these abilities of the three cameras can greatly improve the environment perception ability of intruders or emergency situations. Designed specifically for professional surveillance use, multi active pixel sensor camera of this type allows targets to be monitored at long distance and tracked using the proportional pan, tilt and zoom system. In the article the research results of the camera to determine realistic and standardized parameters, e.g. range of detection, recognition and identification of humans are described. The paper presents measuring equipment, procedures and results.
The use of fiber optic sensors for the direct, physical protection of museums and cultural heritages
The fiber optic sensors are used in intrusion detection where the natural benefits of the material are matched by parallel developments in support technologies and applications experience. This paper describes some developments and applications by sensors and systems. In particular, for the immediate protection of museum collections and the protection of large area monuments and memorials.
Passive automatic anti-piracy defense system of ships
M. Szustakowski, M. Życzkowski, W. Ciurapiński, et al.
The article describes the technological solution for ship self-defense against pirate attacks. The paper presents the design solutions in the field of direct physical protection. All the solutions are connected with the latest optoelectronic and microwave systems and sensors to detect, recognize and the threat posed by pirates. In particular, tests of effectiveness and the detection-range of technology demonstrator developed by a team of authors were carried out.
Photoacoustic detection by means of a differential double resonator cell applied to security and defence
Arturo Vallespi, Verónica Slezak, Alejandro Peuriot, et al.
The purpose of this article is to present a sensitive optical system for immediate detection of traces of ammonia by means of photoacoustic spectroscopy and study some properties with both a pulsed CO2 laser (TEA) and a CW CO2 laser. The laser beam is aimed to an innovative dual resonator differential cell, which lowest resonant frequency is the first longitudinal mode at 1205 Hz, filled with a flowing NH3 and N2 mixture. The chosen cell’s material is polypropylene, suitable for reducing the effects of adsorption. As a result of physical adsorption-desorption studies, based on a pulsed CO2 laser, 5 % PA signal decay from an enclosed sample of 248 ppmV of NH3 in N2 is recorded within 1 hour. The setup for CW CO2 laser excitation takes advantage of a differential microphone connected to both resonators by picking up out of phase signals. For this purpose, the beam is modulated at the cell’s resonance by means of a chopper with a special blade which allows both reflection and transmission of the laser beam; the direct and the reflected beam are alternatively aimed to one resonator and the other. The measurements show that for the double resonator configuration a signal increase is achieved, as expected from the study of the sensitivity of both resonators separately, which have been previously characterized. Measurements with this system indicate a limit of detection of 13ppbV at the 10P(32) laser line, deduced from one standard deviation of the PA signal from pure N2.
Biomaterials
icon_mobile_dropdown
Preparation, linear and NLO properties of DNA-CTMA-SBE complexes
Ana-Maria Manea, Ileana Rau, Francois Kajzar, et al.
Synthesis of deoxyribonucleic acid (DNA) - was cetyltrimethylammonium (CTMA) - sea buckthorn extract (SBE) at different concentrations is decribed. The complexes were processed into good optical quality thin films by spin coating on different substrates such as: glass, silica and ITO covered glass substrates. SBE contains many bioactive substances that can be used in the treatment of several diseases, such as cardiovascular disease, cancer, and acute mountain sickness. The obtained thin films were characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties as function of SBE concentration. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1 064.2 nm fundamental wavelength.
Polymers and Applications
icon_mobile_dropdown
Nanoscopic actuators in light-induced deformation of glassy azo-polymers
We present the theoretical and computer simulation studies of photo-mechanics in glassy azo-oligomers. Angular distributions of chromophores in respect to the backbones obtained at different temperatures served as input into a theoretical expression for the striction stress, which was found to be positive for the structure under investigation. The light-induced reorientation of typical propeller-like structures is shown to be a microscopic reason of the sample elongation. The azo-propellers work as nanoscopic actuators which convert the light energy into material deformation. This finding opens a way for prediction of photomechanical properties of glassy azo-compounds directly from their chemical structure.
Lasing and random lasing based on organic molecules
Lech Sznitko, Konrad Cyprych, Adam Szukalski, et al.
In this article we present the results of studies carried out on the selected polymeric systems doped with luminescent dyes. Our studies focused on polymers like DNA-CTMA and PVK which were doped with common laser dyes Rh6G and DCM. We show that simple incorporation of highly luminescent dye into polymeric matrix can form ;efficient solid laser materials. Moreover, naturally occurring inhomogeneities of polymeric layers prepared by a drop casting process can scatter out pumping light in such a way that a feedback is introduced to the system and coherent and incoherent random lasing can be observed.
Electro-optic properties of novel azobenzene polymers
Polymers containing azobenzene dyes or azobenzene lateral groups are of special interest for their application as optically active media, particularly, as polarization sensitive media for such applications: optical data storage, surface nanostructuration, photoswitching, alignment of liquid crystals, active optical elements etc. An intensive research was carried out previous years on synthesizis and investigation of the second order nonlinear optical response of azobenzene/polymer systems. The desirable properties of these materials are attributed to the highly efficient photoinduced trans-cis and vice versa isomerization of azobenzene moieties. This transformation is connected with the volume change of molecules, followed by an increase of their rotational mobility. The trans-cis izomerization process is exploited also in all optical poling of polymers and plays an important role in optical depoling. Generally these phenomena are induced by light with frequencies corresponding to one-photon absorption. They are possible also by multiphoton absorptions. In this paper we report the synthesis of side chain methacrylic polymers functionalized with azobenzene chromophores. A reversible change of thin film absorption is observed when illuminating it with monochromatic, linearly polarized light under the applied external DC field. The amount of change depends on the angle between the light polarization and the DC electric field direction.
Modelling and Photonic Applications
icon_mobile_dropdown
k-vector angular correlations in negative refraction for TM polarization in nanosphere dispersed liquid crystal (NDLC) metamaterial
We study the behavior of refracted angle for k-vector at the interface of uniaxial anisotropic media in the case of nanosphere dispersed liquid crystal (NDLC) matematerial. Finite Element (FE) calculations (COMSOL Multiphysics) are used to trace the propagation of the electromagnetic wave. Preliminary results on the influence of incident angle on refracted angle wave-vector are presented.
Semiconductor alloys for optoelectronic applications: ab initio modeling
Pawel Scharoch, Maciej Winiarski, Maciej Polak
Semiconductor alloys, for example group III metal nitrides and phosphides, such as AxB1-xN or ANxP1−x (where A,B metal atoms: Al, In, Ga) have been materials of interest for optoelectronic applications (light emitting diodes, lasers, detectors) for more then two decades. The potential possibility of tuning (via variation of the composition) of the band-gap and the lattice constant make them particularly attractive. The idea of tuning the band-gap (from infrared to ultraviolet), although simple in principle, requires solving a variety of practical problems, like lattice constants misfit of parent compounds, associated with atom sizes, thermodynamically determined phase segregation, system stability, band-gap bowing, efficiency of radiative transitions etc. The ab initio modeling is of particular importance in the field, since it allows to predict in a purely theoretical way the physical limits for various properties. It also provides a hint in which direction, technologically and experimentally, to proceed. We present the basic ideas behind the ab initio modeling and, as an example, the calculation results of structural, elastic and the electronic properties of chosen alloys are presented.
Gold nanoparticles as optical limiting materials against cw lasers
Maria Chiara Frare, Raffaella Signorini, Verena Weber, et al.
The goal of this work is to study the optical limiting properties of gold nanoparticles colloidal suspensions in organic solvent and to make a comparison with nanoparticles embedded in a polymeric matrix. The idea is to realize a solid state protection device based on gold nanoparticles (AuNPs) against cw lasers. This is desirable because polymers are usually cheap, flexible, and mechanically robust and temporally stable. In particular we use polycarbonate, a common polymer used to produce high quality optical lenses with superior mechanical properties. Thermally induced nonlinear optical properties of AuNPs, characterized by a surface plasmon resonance with a peak at about 520 nm where the human eye is most sensitive, have been reported for solution samples. The z-scan analysis performed on AuNPs in organic solvent confirms the presence of a nonlinear absorption coefficient comparable with literature for water colloids. We have investigated the optical limiting behavior of AuNPs doped thin film under cw illumination at 488 nm and their temporal response. A critical parameter in assessing the effectiveness of the optical limiting action is the time response of the material at varying input powers. It gives us information on the transmitted irradiance in a 300 milliseconds time interval, corresponding to the blinking time of the human eye, therefore on the total fluence reaching the retina. Finally we also report a characterization of the optical limiting action of film at 488, 514 and 647 nm.
Nanovectors as a complex solution for optical securing
Nanovectors technology is a comprehensive solution, which comprises unique luminescent nanolabels, dedicated equipment for reading of the same and verification algorithms – all devoted for anti-forgery protection of valuable objects. Nanovectors themselves have a complex and unique luminescence spectrum fingerprint resulting from the selection of their composition, type and substrates, which make any attempt to fake the spectral information practically impossible. Nanovectors constitute a special code enabling correct identification only for specified measurement conditions. Moreover, nanovectors may be used for marking of a wide range of products such as documents, ID cards, access cards and employee cards, spare parts, elements of packaging, liquids, greases etc. Either entire volume of objects during their production process, pressing in a specified location of an object after production or unique printing on the object’s surface may be conveniently employed. Nanovectors are most often manufactured as invisible security features and, therefore, special tools are necessary to detect their presence. This work was focused on experimental verification of reproducibility of Nanovectors reading and theoretical estimation of maximal number of distinguishable optical codes, which confirmed the ability to unequivocally design thousands of such spectral fingerprints.