Proceedings Volume 8774

Optical Sensors 2013

cover
Proceedings Volume 8774

Optical Sensors 2013

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 17 May 2013
Contents: 8 Sessions, 53 Papers, 0 Presentations
Conference: SPIE Optics + Optoelectronics 2013
Volume Number: 8774

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 8774
  • Fiber Optic Sensors
  • Optical Biosensors I
  • Novel Materials and Functionalizations
  • Integrated Optical Sensors
  • Interferometric Sensors
  • Advanced Components
  • Poster Session
Front Matter: Volume 8774
icon_mobile_dropdown
Front Matter: Volume 8774
This PDF file contains the front matter associated with SPIE Proceedings Volume 8690, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Fiber Optic Sensors
icon_mobile_dropdown
Two-dimensional hybrid metallo-dielectric nanostructures directly realized on the tip of optical fibers for sensing applications
G. Quero, M. Consales, A. Crescitelli, et al.
We recently introduced a reliable fabrication process enabling the integration of dielectric and metallic nanostructures directly on the tip of optical fibers, involving conventional deposition and nanopatterning techniques suitably adapted to directly operate on the fiber tip1. By using this approach, we also demonstrated a first technological platform based on the integration, on the optical fiber tip, of 2D hybrid metallo-dielectric nanostructures supporting localized surface plasmon resonances, that can be efficiently used for label free chemical and biological sensing. In this contribution we want to emphasize the versatility of the proposed technological platform. In particular, we demonstrate how by acting on the numerous degrees of freedom it provides, we are able to improve the performances of our nanoprobes for label-free chemical and biological sensing applications. Finally, the possibility to create novel advanced devices by breaking the circular symmetry of the crystal nanostructure is also demonstrated.
Nanoliter-scale, regenerable ion sensor: sensing with surface functionalized microstructured optical fiber
Sabrina Heng, Mai-Chi Nguyen, Roman Kostecki, et al.
The first nanoliter-scale regenerable ion sensor based on microstructured optical fiber (MOF) is reported. The air holes of the MOF are functionalized with a monoazacrown bearing spiropyran to give a switchable sensor that detects lithium ions down to 100 nM in nanoliter-scale volumes. Ion binding is turned on and off on upon irradiation with light, with the sensor being unaffected by multiple rounds of photoswitching. Unbound ions are flushed from the fiber in the ‘off’ state to allow the sensor to be reused. The integration of an ionophore into the sensor paves the way for the development of highly specific light-based sensing platforms that are readily adaptable to sense a particular ion simply by altering the ionophore design.
Remote distributed optical fibre dose measuring of high gamma-irradiation with highly sensitive Al- and P-doped fibres
A. V. Faustov, A. Gusarov, M. Wuilpart, et al.
We present our results on measuring distributed Radiation-Induced Absorption (RIA) by means of a commercially available Optical Frequency Domain Reflectometry (OFDR) system. We also compare distributed OFDR RIA measurements with spatially integrated spectral transmission detection using an Optical Spectra Analyser (OSA). We have chosen four different highly gamma-radiation sensitive fibres, two of which were doped with Al and two with P. The dose rate during irradiations was about 590 Gy/h. The irradiations were conducted at temperatures of 30°C and 80°C. Different temperatures were needed for studying the temperature dependence of the annealing speed of RIA. All four fibres demonstrated a strong saturation-like increase of RIA with the dose accumulation up to several tens of dB/m as detected by the OSA. In case of the OFDR measurements the change of the absorption in an optical fibre resulted in a clear change of the slope of the corresponding Rayleigh backscattering trace. The RIA dependences measured with the OFDR were in a reasonable agreement with the measurements obtained with the OSA. This allows us to use the RIA dependences on absorption dose obtained by means of OSA for the distributed dose reconstruction based on the OFDR technique. We also irradiated different lengths of one of the P-doped fibers to see if it influences accuracy of the distributed dose detection and to find out the minimal possible length of the probe. The results of the presented experiments provide a basis for a dose estimation model based on RIA in which temperature oscillations are taken into account.
Influence of the lamination process on the plastic optical fiber sensors embedded in composite materials
Piotr Lesiak, Mateusz Szeląg, Stefan Awietjan, et al.
Silica-based HB fibers have severe limitations due to their coating layers while embedded into a composite: the hard coating layer easily transmits radial stress to the sensing fiber and changes its birefringence. Two coating layers – hard and soft – attached to the HB fiber do not influence fiber birefringence since the second (soft) layer can easily absorb any lateral force. On the other hand, a soft coating does not provide any proper transmission of the longitudinal strain. Additionally, fused-silica fibers have an upper strain limit of approximately 2% strain. In highly loaded engineering structures structural monitoring strain is becoming increasingly important. Hence, soft polymer materials used in the manufacturing process of highly birefringent microstructured polymer optical fibers (mPOFs) can solve this limitation. In this paper we present interactions between a composite material and mPOFs during the manufacturing process. The lamination process can dramatically change the group birefringence of the mPOFs. Measurements for fiber embedded in composite materials and fiber in free space were made and compared. A simple explanation of these differences is presented at the end of the paper.
Inscription of first order fiber Bragg gratings in sapphire fibers by 400 nm femtosecond laser pulses
Tino Elsmann, Tobias Habisreuther, Albrecht Graf, et al.
We demonstrate the inscription of fiber Bragg gratings in single crystalline sapphire using the second harmonic of a Ti:Sa-amplified femtosecond laser system. With the laser wavelength of 400 nm first order gratings were fabricated. The interferometric inscription was performed out using the Talbot interferometer. This way, not only single gratings but also multiplexed sensor arrays were realized. For evaluating of the sensor signals an adapted multimodal interrogation setup was build up, because the sapphire fiber is an extreme multimodal air clad fiber. Due to the multimodal reflection spectrum, different peak functions have been tested to evaluate the thermal properties of the grating. The temperature sensors were tested for high temperature applications up to 1200°C with a thermal sensitivity in the order of 25 pm/K which is more than the doubled of that one reached with Bragg gratings in conventional silica fibers.
Spectral-domain measurement of polarimetric sensitivity of a side-hole fiber to temperature and hydrostatic pressure
The spectral dependence of the polarimetric sensitivity of a birefringent side-hole fiber to temperature and hydrostatic pressure was measured using a simple experimental setup comprising a broadband source, a polarizer, a birefringent fiber under test, a birefringent delay line, an analyzer and a compact spectrometer. The spectral interferograms, characterized by the equalization wavelength at which spectral interference fringes have the highest visibility (the largest period) due to the zero overall group birefringence, were processed to retrieve the phase as a function of wavelength. First, from the retrieved phase functions corresponding to different temperatures of the fiber under test, the spectral polarimetric sensitivity to temperature was obtained. Second, from the retrieved phase functions corresponding to different hydrostatic pressures in a chamber with the fiber under test, the spectral polarimetric sensitivity to hydrostatic pressure was obtained.
Multianalyte detection using fiber optic particle plasmon resonance sensor based on plasmonic light scattering interrogation
Hsing-Ying Lin, Chen-Han Huang, Lai-Kwan Chau
A highly sensitive fiber optic particle plasmon resonance sensor (FO-PPR) is demonstrated for label-free biochemical detection. The sensing strategy relies on interrogating the plasmonic scattering of light from gold nanoparticles on the optical fiber in response to the surrounding refractive index changes or molecular binding events. The refractive index resolution is estimated to be 3.8 × 10−5 RIU. The limit of detection for anti-DNP antibody spiked in buffer is 1.2 × 10−9 g/ml (5.3 pM) by using the DNP-functionalized FO-PPR sensor. The image processing of simultaneously recorded plasmonic scattering photographs at different compartments of the sensor is also demonstrated. Results suggest that the compact sensor can perform multiple independent measurements simultaneously by means of monitoring the plasmonic scattering intensity via photodiodes or a CCD. The potential of using a combination of different kinds of noble metal nanoparticles with different types of functionalized probes in multiple cascaded detection windows on a single fiber to become an inexpensive and ultrasensitive linear-array sensing platform for higher-throughput biochemical detection is provided.
Optical Biosensors I
icon_mobile_dropdown
Raman and surface-enhanced Raman scattering (SERS) biosensing
Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 order of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry, as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to detect and identify small molecules, nucleic acids and proteins, and also for cellular and in vivo sensing. This contribution gives an overview of recent developments in SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique.
Raman-spectroscopy-based biosensing for applications in ophthalmology
Giulia Rusciano, Paola Capriglione, Giuseppe Pesce, et al.
Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.
Surface-enhanced Raman imaging of red blood cell membrane with highly uniform active substrates obtained using block copolymers self-assembly
Gianluigi Zito, Anna Malafronte, Alden Dochshanov, et al.
In this communication, we discuss the application of ordered, ultrahigh-density templates of nano-textured Ag-particles obtained by self-assembling of inorganic-containing polystyrene-block-poly(4-vinylpyridine) copolymer (PS-b-P4VP) micelles, for the spectroscopic surface-enhanced Raman imaging in-vitro of red blood cells (RBCs) and its capability to identify the vibrational fingerprint of the plasma membrane of the cell physisorbed to the SERS substrate. Hexagonal arrays of PS-b-P4VP micelles, with selective inclusion of Ag nanoparticles (NPs) in the polar core, prepared by in situ reduction of a suitable precursor, are obtained by polymer self-assembly upon fast solvent evaporation during spin coating on the supporting substrate. UV irradiation and/or plasma oxygen treatment remove the polymer matrix leaving immobilized nano-islands of Ag-NPs. Such a kind of SERS-active substrate consists of a reproducible and uniform twodimensional hexagonal array of silver clusters with a diameter ranging from 25 to 30 nm (single particles having typically diameters of 5 nm) and nano-island gap distances of the order of 5-8 nm on silicon and 15 nm on glass , while giving rise to high enhancement factors and addressing the issue of SERS reproducibility. The basic substrate supporting the plasmonic coating used in this work is either of silicon or glass. This last allows working in back scattering configuration permitting real time monitoring, via microscopy, of the RBCs on which Raman measurements are being carried out. The template is thus applied for surface-enhanced Raman analysis of the red blood cell (RBC) membrane in confocal micro-Raman configuration demonstrating to have SERS imaging potential thanks to the uniformity of the nano-textured substrate. The first experimental evidence of SERS imaging of a red blood cell membrane in-vitro is demonstrated.
Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection
Eduard Gilli, Sylvia R. Scheicher, Michael Suppan, et al.
There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in – result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface. The fluorescence of these detection arrays is imaged using a simple set-up based on a digital consumer camera. Image processing for spot detection and intensity calculation is accomplished using customized software. Using this combined TIRF excitation and imaging based detection approach allowes for effective suppression of background fluorescence from the sample, multiplexed detection in an array format, as well as internal calibration and background correction.
Electrochemical surface plasmon resonance biosensor for study of DNA desorption and hybridization
Luca Ferrari, Hana Šípová, Ivo Tichý, et al.
We report a system, which combines electrochemical and surface plasmon resonance (SPR) techniques on the same sensing chip. Each channel of a four-channel laboratory SPR sensor is supplemented with two planar gold electrodes (the reference and the counter electrodes), whereas the gold layer of SPR chip is used as the working electrode. A custom electronics enables to set an arbitrary potential between the reference and working electrodes and to measure the current flow between the counter and the working electrodes. Information from standard electrochemical techniques, i.e. cyclovoltammetry and chronoamperometry can be acquired with the system while simultaneously monitoring the shift in the surface plasmon resonance. The electrochemical SPR biosensor was used to study desorption of thiolated DNA probes with a negative potential. By comparing the acquired electrochemical and SPR signals, we show that DNA probes as well as a monolayer of alkanethiols can be desorbed by applying negative potentials to the SPR chip surface. Moreover, it is shown that the DNA probes can be reabsorbed on the SPR sensor surface and the complementary DNA can be detected without loss in detection sensitivity.
High-Q optical nanobeam cavities for label-free sensing
The design, modeling, fabrication, and experimental measurements on optical nanobeam cavities that change resonant frequency in response to changes in the refractive index of the surrounding environment are presented. Nanobeam cavities based on Silicon-On-Insulator (SOI) that work at telecommunication wavelengths (1550 nm) provide an ideal platform for label-free sensing, due to their features of high resonance Q-factors, high sensitivity and capability for integration with silicon CMOS.
Optical sensors for therapeutic drug monitoring of antidepressants for a better medication adjustment
Therapeutic drug monitoring provides the attending physicians with detailed information on a patient’s individual serum level especially during long-term medication. Due to the fact that each patient tolerates drugs or their metabolites differently a medication adjustment can reduce the number and intensity of noticeable side-effects. In particular, psychotropic drugs can cause unpleasant side-effects that affect a patient’s life almost as much as the mental disease itself. The tricyclic antidepressants amitriptyline is commonly used for treatment of depressions and was selected for the development of an immunoassay using the direct optical sensor technique Reflectometric Interference Spectroscopy (RIfS). RIfS is a simple, robust and label-free method for direct monitoring of binding events on glass surfaces. Binding to the surface causes a shift of the interference spectrum by a change of the refractive index or physical thickness. This technique can be used for time-resolved observation of association and dissociation of amitriptyline (antigen) and a specific antibody using the binding inhibition test format. An amitriptyline derivative is immobilized on the sensor surface and a specific amount of antibodies can bind to the surface unless the binding is inhibited by free amitriptyline in a sample. No fluorescent label is needed making the whole assay less expensive than label-based methods. With this recently developed immunoassay amitriptyline concentrations in buffer (PBS) can easily be detected down to 500 ng/L.
Novel Materials and Functionalizations
icon_mobile_dropdown
Recognition as a challenging label-free optical sensing system
Optical biosensors are increasingly used in application areas of environmental analysis, healthcare and food safety. The quality of the biosensor’s results depends on the interaction layer, the detection principles, and evaluation strategies, not only on the biopolymer layer but also especially on recognition elements. Using label-free optical sensing, non-specific interaction between sample and transducer has to be reduced, and the selectivity of recognition elements has to be improved. For this reason, strategies to avoid non-specific interaction even in blood and milk are discussed, a variety of upcoming recognition is given. Based on the classification of direct optical detection methods, some examples for the above mentioned applications are reviewed. Trends as well as advantages of parallel multisport detection for kinetic evaluation are also part of the lecture.
UV-light-assisted functionalization for sensing of light molecules
Riccardo Funari, Bartolomeo Della Ventura, Antonio Ambrosio, et al.
An antibody immobilization technique based on the formation of thiol groups after UV irradiation of the proteins is shown to be able to orient upside antibodies on a gold electrode of a Quartz Crystal Microbalance (QCM). This greatly affects the aptitude of antibodies in recognizing small antigens thereby increasing the sensitivity of the QCM. The capability of such a procedure to orient antibodies is confirmed by the Atomic Force Microscopy (AFM) of the surface that shows different statistical distributions for the height of the detected peaks, whether the irradiation is performed or not. In particular, the distributions are Gaussian with a standard deviation smaller when irradiated antibodies are used compared to that obtained with no treated antibodies. The standard deviation reduction is explained in terms of higher order induced on the host surface resulting from the trend of irradiated antibodies to be anchored upside on the surface with their antigen binding sites free to catch recognized analytes. As a result the sensitivity of the realized biosensor is increased by even more than one order of magnitude.
Optical sensors based on metal oxide nanowires for UV/IR detection
Jose Luis Pau, Carlos García Nuñez, Antonio García Marín, et al.
Metal oxide nanowires (NWs) present high stability and excellent optical, electrical and mechanical properties. Their synthesis is cost-effective since they can be produced by means of conventional ovens using vapor phase transport or direct metal oxidation. In this work, n-type ZnO and p-type CuO NWs are deposited on pre-patterned electrodes of Aldoped ZnO (AZO) by dielectrophoresis. Performance of devices fabricated from single and multiple NWs are compared. Highly selective UV detection is demonstrated in n-type ZnO NW photoconductors with high external gains in the 0.09-1×108 range and slow time responses, both effects induced by surface effects. In contrast, n-p-n AZO/ CuO NW/AZO heterostructures show lower gains but faster optical responses, mainly limited by device parasitics. Given the CuO bandgap (1.2 eV), the results are quite promising for the development of hybrid metal oxide detection structures in imaging and photovoltaic applications.
Integrated Optical Sensors
icon_mobile_dropdown
Basic structures of integrated photonic circuits for smart biosensor applications
S. Germer, C. Cherkouk, L. Rebohle, et al.
The breadth of opportunities for applied technologies for optical sensors ranges from environmental and biochemical control, medical diagnostics to process regulation. Thus the specified usage of the optical sensor system requires a particular design and functionalization. Especially biochemical sensors incorporate electronic and photonic devices for the detection of harmful substances e.g. in drinking water. Here we present recent developments in the integration of a Si-based light emitting device (LED) [1-3, 8] into a photonic circuit for an optical waveguide-based biodetection system. This concept includes the design, fabrication and characterization of the dielectric high contrast waveguide as an important component, beside the LED, in the photonic system circuit. First approaches involve simulations of Si3N4/SiO2-waveguides with the finite element method (FEM) and their fabrication by plasma enhanced chemical vapour deposition (PECVD), optical lithography and reactive ion etching (RIE). In addition, we characterized the deposited layers via ellipsometry and the etched structures by scanning electron microscopy (SEM). The obtained results establish a basis for optimized Si-based LED waveguide butt-coupling with adequate coupling efficiency, low attenuation loss and a high optical power throughput.
Photoinduced absorption measurement on a microchip equipped with organic dye-doped polymer waveguide
T. Kawaguchi, K. Nagai, K. Yamashita
We have fabricated a waveguide-type optical sensing microchip and succeeded in on-chip photoinduced absorption (PIA) spectroscopy. The PIA microchip was fabricated with a conventional photolithographic technique and consisted of plastic optical waveguides and microfluidic channels. Furthermore, a serially-cascaded polymer waveguide doped with organic dyes was integrated on this microchip, which was fabricated using a self-written waveguide process. This dye-doped waveguide was pumped by a UV light emitting diode (UV-LED) and used as a probe light source with a broad emission spectrum. At the same time, a solution of test material in the microfluidic channel was synchronously pumped by a UV-LED or UV laser diode. Since the transmission spectrum of the photo-excited test material could be measured, the PIA spectra were obtained easily. In this study, we have demonstrated the on-chip PIA measurements for two classes of test materials, rare-earth complex and chlorophyll molecules. In the measurement for the aqueous solution of Neodymium (III) acetate hydrate, PIA signals attributed to the 4f-4f transition was observed. Furthermore, by varying the modulation frequency of the pulsed optical pumping, lifetime analysis of the excited 4f states was achieved. In the measurements for the ethanol solutions of chlorophyll a and chlorophyll b, PIA signals were observed at the wavelength near the Q-band absorption peaks. These spectra were very similar to the well-known feature for the photosystem II protein complex observed in a conventional PIA system. From these results, it is expected that the onchip PIA measurement technique is applicable to the transient analyses for the material systems with photoexcited charge transfer.
Lab on fiber by using the breath figure technique
The “Lab on Fiber” technology has been recently proposed as a valuable route for the realization of novel and highly functionalized technological platforms completely integrated in a single optical fiber in communication and sensing applications. As a follow up of the proposed technological approach, here, we present recent results on the fabrication of metallo-dielectric structures on the optical fiber tip by using a self-assembly technique. Our studies aim to attain advanced nanostructured sensors by exploiting easy and low cost fabrication processes suitable to be employed in massive production of technologically advanced devices. The pursued approach basically consists in the preliminary preparation of a patterned polymeric film by the breath figure technique, directly on the optical fiber tip, and in the successive metal deposition by evaporation. The experimental results demonstrate the successful creation of a metallodielectric honeycomb pattern on the optical fiber tip. The experimental spectral features are in good agreement with the numerical analysis, elucidating the photonic and plasmonic interactions occurring in the Lab onto the optical fiber tip. The sensing properties of the optical fiber probes have been successfully explored in terms of sensitivity to the surrounding refractive index changes demonstrating their potentialities for chemical and biological sensing applications.
Interferometric Sensors
icon_mobile_dropdown
Migrating the Mach-Zehnder chemical and bio-sensor to the mid-infrared region
L. Leidner, M. Ewald, M. Sieger, et al.
The properties of integrated optical phase-modulated Mach-Zehnder interferometers (IO-MZI) are used to set up a new generation of chemical and biochemical sensors working in the mid-infrared. First applications of the MZI principle were introduced in the beginning 1990s. They range from a gas sensor to monitor organic solvent concentrations1 to setting up an immunoassay for the detection of the herbicide simazine2. Most if not all sensors of MZI type operate at wavelengths of the visible or near infrared spectrum. There are several reasons to change this strategy and move into the mid-infrared spectral range (MIR): higher manufacturing tolerances, increased evanescent field penetration depth, signal amplification by surface enhanced infrared absorption effect (SEIRA), species identification by MIR fingerprints. The basis of the planned MIR-MZI is a GaAs waveguide pattern epitaxially grown on a substrate3. As a first step towards nanostructuring the waveguide surface, chemical deposition of Au nanoparticles on GaAs transducers was established. For the use of MIR-MZI sensors in bioanalytical assay development, chemical immobilization of molecular recognition elements on GaAs transducers was carried out. The modified surfaces were characterized by atomic force microscopy (AFM), dark field microscopy, contact angle measurements and ellipsometric data as well as by a modified version of Reflectometric Interference Spectroscopy (RIfS)4. It was possible to monitor both the immobilization of gold nanoparticles and time-resolved specific binding using a model antibody antigen assay. After successful setup of relevant assays with RIfS, e.g. the detection of bacteria or endocrine disruptors, the assays are designed to be transferred onto the mid-infrared Mach-Zehnder interferometer.
Differential length measurement using low coherence coupled tandem interferometry
Martin D. Smith, William N. MacPherson, Robert R. J. Maier
This paper presents the use of low coherence coupled tandem interferometry to measure the differential length of two independent Fabry-Perot (F-P) type microcavities. The two discrete F-P type microcavities are formed between the cleaved end of a fibre and a reflective surface, which could for example, be a pressure sensing membrane or any other component of a transducing element. The technique is an all-optical fibre based sensing configuration in which the sensing cavities are at widely separated locations in an environment where strong temperature gradients may exist. The sensing system is based on two sequential cavities arranged in tandem. The lengths of the cavities are probed by a temperature stabilised fibre based Michelson interferometer operating with a broadband light source. One arm of the probing Michelson interferometer is scanned using a piezo fibre stretcher resulting in an optical path length difference (OPD) between the two arms. The optical interconnecting leads from the probing Michelson interferometer to the two F-P locations are not an active part of the sensor configuration and therefore this configuration is largely insensitive to temperature and strain effects on these interconnecting leads. It is only the probing Michelson interferometer which has to be temperature stabilised. This arrangement allows the F-P measurement cavities to be separated by distances in the range of tens of meters.
New optical probe approach using mixing effect in planar photodiode for biomedical applications
Tânia Pereira, Pedro Vaz, Tatiana Oliveira, et al.
The laser diode self-mixing technique is a well-known and powerful interferometric technique that has been used in biomedical applications, namely for the extraction of cardiovascular parameters. However, to construct an optical probe using the self-mixing principle which is able to acquire signals in the human carotid artery, some problems are expected. The laser diode has a small aperture area, which means that, for physiological sensing purposes, it can be considered as a point-like detector. This feature imparts difficulties to quality recording of physiological signals since the number of photons collected and mixed in the cavity of the photodiode is very small. In order to overcome this problem, a new mixing geometry based on an external large area planar photodiode (PD) is used in the probe, enabling a much larger number of photons to be collected, hence improving the quality of the signal. In this work, the possibility to obtain the mixing effect outside the laser cavity using an external photodetector, such as a planar photodiode, is demonstrated. Two test benches were designed, both with of two reflectors. The first one, which reflects the light beam with the same frequency of the original one is fixed, and the second one, is movable, reflecting the Doppler shifted light to the photodetector. The first test bench has a fixed mirror in front of the movable mirror, creating an umbra and penumbra shadow above the movable mirror. To avoid this problem, another test bench was constructed using a wedged beam splitter (WSB) instead of a fixed mirror. This new assembly ensures the separation of a single input beam into multiple copies that undergo successive reflections and refractions. Some light waves are reflected by the planar surface of WSB, while other light beams are transmitted through the WSB, reaching the movable mirror. Also in this case, the movable mirror reflects the light with a Doppler frequency shift, and the PD receives both beams. The two test benches were designed to demonstrate that it is possible to obtain mixing effect outside the laser cavity, using a planar photodiode. The Doppler spectrograms from the signals acquired in the test benches show that the signal frequency changes along time which correspond to the modulus of the derivative of the mirror movement, as expected in the self-mixing signals. Nevertheless, the test bench A showed better results than the test bench B. This fact probably results from the attenuation that the original beam suffers in each reflection and refraction in the WBS. Tests developed in the test benches opened the possibility to construct a probe that uses a planar photodiode with a large area to collect medical signals, and improve the quality of the acquisition with a better SNR.
Advanced Components
icon_mobile_dropdown
Amorphous silicon balanced photodiode for microfluidic applications
Domenico Caputo, Giampiero de Cesare, Augusto Nascetti, et al.
In this paper, we present the first integration of an amorphous silicon balanced photosensor with a microfluidic network to perform on-chip detection for biomedical applications, where rejection of large background light intensity is needed. This solution allows to achieve high resolution readout without the need of high dynamic range electronics. The balanced photodiode is constituted by two series-connected a-Si:H/a-SiC:H n-i-p stacked junctions, deposited on a glass substrate. The structure is a three terminal device where two electrodes bias the two diodes in reverse conditions while the third electrode (i.e. the connection point of the two diodes) provides the output signal given by the differential current. The microfluidic network is composed of two channels made in PolyDimetilSiloxane (PDMS) positioned over the glass substrate on the photodiode-side aligning each channel with a diode. This configuration guarantees an optimal optical coupling between luminescence events occurring in the channels and the photosensors. The experiments have been carried out measuring the differential current in identical and different conditions for the two channels. We have found that: the measurement dynamic range can be increased by at least an order of magnitude with respect to conventional photodiodes; the balanced photodiode is able to detect the presence or absence of water in the channel; the presence of fluorescent molecules in the channel can be successful detected by our device without any need of optical filter for the excitation light. These preliminary results demonstrate the successful integration of a microfluidic network with a-Si:H photosensor for on-chip detection in biomedical applications.
Performances of amorphous silicon photodiodes integrated in chemiluminescence based um-TAS
Domenico Caputo, Massimo Nardini, Riccardo Scipinotti, et al.
A detailed characterization of the performances of amorphous silicon photodiodes in the detection of chemiluminescent signal is carried out. Comparison with commercial CCD acquisition system has been done as benchmark. The underlying idea is the development of stand-alone and compact micro-total-analysys-systems (μ-TAS) that do not need bulky and expensive equipment for their operation as external focusing optics and excitation sources. The photosensor is p-i-n structures deposited by Plasma Enhanced Chemical Vapour Deposition on a glass substrate covered with a transparent conductive oxide that acts as bottom electrode and window layer for the light impinging through the glass. A PDMS layer with wells has been fabricated using an aluminum mold and bonded on the glass substrate with a well aligned with a photosensor. The experiments have been performed by filling a well with solutions containing different quantities of horseradish peroxidase. A good linearity of the photosensor response is observed across the entire measurement range that spans over three orders of magnitude. The system detection limit is 70 fg/μL. A very good agreement between results achieved with conventional off-chip CCD detection and the on-chip photodiode has been observed. Experiments with target molecules immobilized on a functionalized glass surface have been also performed in microfluidic regime, confirming the validity of the proposed integrated approach based on a-Si:H technology.
Poster Session
icon_mobile_dropdown
Mesoporous silica as the enzyme carrier for organophosphate detection and/or detoxification
Nina Frančič, Polonca Nedeljko, Aleksandra Lobnik
In the past decade, interest in mesoporous materials has developed dramatically since they can be useful in a number of applications, including adsorption and sensor technology. Mesoporous materials are a class of nanostrustures with well-defined mesoscale (2–50 nm) pores, surface areas up to 1000 m2/g and large pore volumes (~1.0 mL/g). In general, ordered mesoporous materials are formed from solution by co-assembly and cross-linking of network-forming inorganic species (typically oxides) in the presence of structure-directing agents (SDAs) [1]. The SDAs are typically surfactants or blockcopolymers that self-organize into mesoscale (2–50 nm) structures, according to the solution composition and processing conditions used [2]. Owing to their structural properties and regular morphology, mesoporous silicas (MPS) are promising materials for applications in the immobilization processes or as supports for bulky bio-molecules, such as enzymes. We report on the synthesis of mesoporous silica (MPS) particles and their potential use for immobilization of the enzyme hexahistidine tagged OPH (His6-OPH). Particle characterization points out a strong influence of the synthesis parameters (addition of ethyl acetate). BET results show a high specific surface area (300-450 m2/g) and an appropriate pore size distribution ranging from 10 to 40 nm. Immobilization of the enzyme His6-OPH, with the size of 72 kDa and isoelectric point (pI) of 8.5, was carried out in MPS particles of spherical morphology. Preliminary results indicate significant potential in use of encapsulated enzyme His6-OPH for the purpose of bio-sensing or in the detoxification processes of organophosphates.
A microfluidic platform with a flow-balanced fluidic network for osteoarthritis diagnosis
Kangil Kim, Yoo Min Park, Hyun C. Yoon, et al.
Osteoarthritis (OA) is one of the most common human diseases, and the occurrence of OA is likely to increase with the increase of population ages. The diagnosis of OA is based on patientrelevant measures, structural measures, and measurement of biomarkers that are released through joint metabolism. Traditionally, radiography or magnetic resonance imaging (MRI) is used to diagnose OA and predict its course. However, diagnostic imaging in OA provides only indirect information on pathology and treatment response. A sensing of OA based on the detection of biomarkers insignificantly improves the accuracy and sensitivity of diagnosis and reduces the cost compared with that of radiography or MRI. In our former study, we proposed microfluidic platform to detect biomarker of OA. But the platform can detect only one biomarker because it has one microfluidic channel. In this report, we proposes microfluidic platform that can detect several biomarkers. The proposed platform has three layers. The bottom layer has gold patterns on a Si substrate for optical sensing. The middle layer and top layer were fabricated by polydimethysiloxane (PDMS) using soft-lithography. The middle layer has four channels connecting top layer to bottom layer. The top layer consists of one sample injection inlet, and four antibody injection inlets. To this end, we designed a flow-balanced microfluidic network using analogy between electric and hydraulic systems. Also, the designed microfluidic network was confirmed by finite element model (FEM) analysis using COMSOL FEMLAB. To verify the efficiency of fabricated platform, the optical sensing test was performed to detect biomarker of OA using fluorescence microscope. We used cartilage oligomeric matrix protein (COMP) as biomarker because it reflects specific changes in joint tissues. The platform successfully detected various concentration of COMP (0, 100, 500, 1000 ng/ml) at each chamber. The effectiveness of the microfluidic platform was verified computationally and experimentally.
Nanoplasmonic sensor for chemical measurements
R. Iovine, L. La Spada, L. Vegni
In this paper plasmonic nanoparticles arranged in an array configuration for the detection of glycerol concentration in aqueous solution, are presented. Glycerol concentration measurement is crucial for several application fields, such as biomedical engineering, medicine and biofuels fabrication. The detection of glycerol presence in aqueous solution is not simple, due to the fact that its refractive index shows small changes when different concentrations are considered. For this purpose, an LSPR (Localized Surface Plasmon Resonance) sensor, based on near field interaction of non-spherical dielectric-filled metallic particles (nanoshell) deposited on a silica substrate, is proposed. In this configuration an enhancement of the LSPR phenomenon with high sensitivity performances and a uniform near electric field distribution are obtained. In this way a shift in the position of the sensor response is related to the different concentration of the material under test. Numerical results, performed by full-wave simulations, show that the sensor can be used for the recognition of glycerol and its concentration in a highly accurate and sensitive way.
Optical biosensor based on cadmium sulfide-silver nanoplate hybrid structure
S.X. Lin, M.M. K. Wong, P. K. Pat, et al.
Research on surface plasmons (SPs), one of the major field in nanophotonics, explores the properties of a confined electromagnetic field over dimensions in the order of or smaller than the working wavelength. The present work focuses on the impact of SPs on the photophysical properties of chromophore, especially in photoluminescence (PL) enhancement. In the applications of SPs in bio-labeling, the modulation of active nanoparticles with noble metallic nanoparticles is a prerequisite and has provided fundamental research interest. The modulation of cadmium (Cd) chalocogenides nanoparticles with silver (Ag) nanoparticles emerges against a number of technical issues, such as forward cationic ion exchange in mutual nanoparticles, conjugation efficiency, and occurrence of PL quenching in very close mutual distance (smaller than 5 nm). To overcome these challenges cadmium sulfide (CdS) and Ag nanoplate (CdS-Ag NP) hybrid is synthesized by a forward-reverse cation exchange. The morphology, crystallinity, and atomic composition of the CdSAg NPs have been investigated using energy dispersive X-Ray spectroscopy and high resolution transmission electron spectroscopy. The CdS-Ag NPs are Cd2+-rich CdS nanoparticles covalently bonded to the surfactant of the Ag NPs. PL enhancement of measured CdS is attributed to the matching of the emission bands of CdS and the tailor-made localized surface plasmon resonance (LSPR) bands provided by the Ag NP. In addition, CdS-Ag NP in HeLa cell imaging has also been demonstrated, and no apoptosis was observed. The results provide a simple and flexible methodology for conjugating complex nanoparticles, thus offering promising practical applications in nanotechnology.
Simulation of continuously logical ADC (CL ADC) of photocurrents as a basic cell of image processor and multichannel optical sensor systems
The paper considers results of design and modeling of continuously logical analog-to-digital converters (ADC) based on current mirrors for image processor and multichannel optical sensor systems with parallel inputs-outputs. For such multichannel serial-parallel analog-to-digital converters (SP ADC) it is needed base photoelectron cells, which are considered in paper. Its have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the continuously logical ADC of photocurrents and its base digit cells (ABC) and its simulations. We consider CL ADC for Gray and binary codes. Each channel of the structure consists of several base digit cells (ABC) on 20-30 CMOS FETs and one photodiode. The supply voltage of the ABC is 1-3.3V, the range of an input photocurrent is 0.1 – 10μA, the transformation time is 30ns at 5-8 bit binary or Gray codes, power consumption is about 1mW. One channel of ADC with iteration is based on one ABC-3(G) and SHD, and it has only 40 CMOS transistors. The general power consumption of the ADC, in this case, is only 50-100μW, if the maximum input current is 1μA. The CL ADC opens new prospects for realization of linear and matrix image processor and photo-electronic structures with picture operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers, and so forth.
The arms arrangement influence on the sensitivity of Mach–Zehnder fiber optic interferometer
Stanislav Kepak, Jakub Cubik, Jan Doricak, et al.
Fiber-optic sensors based on phase shift measurements are one of the most sensitive sensors at all. In general they are capable to measure various phenomena, for example displacement, rotation, temperature, acoustic pressure, liquid flow and level, strain etc. In our paper we have used interferometer configuration based on the Mach–Zehnder principle with polarization maintaining components and narrowband DFB laser operating at a wavelength of 1550 nm. In this configuration it is important to isolate the reference arm against measured phenomena and on the other hand to increase the sensitivity of the measuring arm to maximize phase shift induced by the measured phenomenon. The paper describes various measurement arrangements of measuring and reference arm and their influence on the measurement sensitivity. The obtained frequency ranges are evaluated for all mentioned combinations.
Rock massif temperature changes measurement with regard to thermal responses generated by a thermal response test device
In this article are presented results from application of fiber optical DTS system within long term research of temperature energy accumulation in Paskov rock massif. In this area was established special measuring station for that purpose, because rock massif in Paskov area has ideal properties for temperature changes measurement. The twelve geothermal boreholes were drilled during this research, which were then used for rock massif heating by Thermal Response Test device. With the help of DTS system was observed how the temperature distribution and penetration in between boreholes in rock massif is. Thanks to the DTS system we were able to determine the Thermal Response Test device heating power influence on the nearest monitoring boreholes.
Development of absorption fiber optic sensor for distributed measurement of ammonia gas
J. Aubrecht, L. Kalvoda
Polymer-clad silica optical fibers are employed for development of different absorption optic fiber sensors of gaseous analytes. In our case, the physical principles of the detection are combined with a chemical reaction between analyte and suitable opto-chemical absorption reagents. Selected organometallic complex reagents with different lengths of lateral aliphatic chains are studied with respect to the type of central ions and their coordinative conditions to surrounding ligands. The effect of solvent type on solubility and the long-term stability of the prepared reagents in solid matrix are presented and discussed. Various methods are also tested in order to achieve an effective reagent immobilization into the polymer matrix, which creates optical fiber cladding. The chemical reaction of the reagents with ammonia based on ligand exchange process is accompanied by changes of visible-near-infrared optical absorption influencing via evanescent field on the guided light intensity. Experimental results suggest that the selected reagents provide optical properties suitable for practical sensing applications and that the sensitized PCS optical fibers could be used for detection of ammonia gas.
Usage of Raman DTS for wooden material analysis
The contribution deals with a usage of Raman DTS for thermal transmittance monitoring and moisture monitoring in wooden buildings and constructions. Temperature measurement and thermal transmittance is notable for an analysis of moisture distribution inside of wooden girders that are the basic construction parts of wooden buildings during their seasoning and sanitation. In this contribution the results from measurements within real wooden objects will be presented and these results will be compared with laboratory experiments under controlled conditions. For wood sanitation two types of heating are used – flow of hot air and microwave heating. A multimode fiber 62,5/125 in primary coating is applied for measurements, this fiber is putted on the inside and outside surface of wooden construction. Here the fiber meanders are created inside of wooden girders with spacing of 1 cm. Optical fibers are laid in two mutual perpendicular cuts with usage of temperature resolution better than 0,05°C. The measured length of wooden girder is 1,4 m for unambiguously temperature specification inside the girder and its thermal transmittance. The temperature maps of various types of wooden girders are the results of analysis. Different multimode fibers with particular fiber coatings are included in the analysis. These measurements have been provided with Sentinel DTS and they are parts of a wide set DTS application for building industry. We are trying to specify the influence of fiber bending on temperature sensitivity, how to join measuring fiber to transporting fiber, critical length of both fibers and many others. Raman DTS can replace large number of thermometers and provide continuous information about temperature distribution.
Assay for optical determination of biogenic amines using microtiterplates
Polona Nedeljko, Matejka Turel, Aleksandra Lobnik
Direct determination of catecholamine noradreanaline (NOR) is presented using o-phthaldialdehyde (OPA) as an indicator reagent. The fluorescent assay in which OPA forms with NOR a fluorescent complex (OPA-NOR) can be monitored at neutral, physiological conditions (pH 7) and performed in microtiterplates. The determination of NOR is optimal in the concentration range from 4.0×10-7 to 1.0×10-5 M and limit of detection is 4.0×10-7 M. The OPA-NOR complex maximum intensity is reached within 5 minutes. Dopamine and adrenaline could not be determined using the same approach.
Analysis of Fano-line shapes from agile resonant waveguide grating sensors using correlation techniques
The asymmetric Fano resonance lineshape, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Correlation approach is robust to asymmetry of Fano lineshapes and allows more accurate determination than usual fitting options such as Gaussian or Lorentz shape fitting. Our findings are illustrated with resonance profiles from silicon nitride “chirped” RWGs operated at visible wavelengths. The scheme circumvents the classical but demanding spectral or angular scans: instead of varying angle or wavelength through fragile moving parts or special optics, a RWG structure parameter is varied. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using plain images of these “pixelated” Fano profiles allows multiplex refractive index based sensing with a sensitivity down to 2×10-5 RIU as demonstrated experimentally. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses.
Spectral interferometry-based surface plasmon resonance sensing of liquid analyte refractive index change
Dalibor Ciprian, Petr Hlubina, Jiří Luňáček
Theoretical study of a polarimetric setup intended to measure the refractive index change of a liquid analyte is presented. The detection scheme is based on the excitation of surface plasmon resonance in Kretschmann configuration combined with spectral interferometry. The principle of the method is to observe the spectral interference fringes as a result of mixing of two orthogonal linearly polarized waves with an analyzer. The waves are reflected from the base of a coupling prism covered by a thin metal layer used for generation of surface plasmon waves. The polarimetric setup consists of a linear polarizer, a birefringent crystal, a SF10 coupling prism covered by a gold layer and a linear analyzer. The attenuated total reflection at the prism base serves for the excitation of surface plasmon waves. The output optical field is then analyzed by a spectrometer. The phase change of resulting interference spectrum contains the information about the refractive index change of investigated analyte. The shift of phase curve is related to the analyte refractive index change. The model computation is performed in the frame of thin-film optics and the dispersion properties of all included materials are taken into account.
Study and design of an optode for pH measurement
Mathias Fages, Denis Doizi, Guy Deniau
The GraftFast® process is a simple ant quick method to covalently graft a chemical on a substrate, provided that the chemical has an aromatic primary amine. Thus, this method is studied for an application in pH measurement via an optode. The aim of this PhD work, which started in October 2012, is to covalently graft a dye sensible to pH variations on an optical fiber, so as to be able to solve the stability issues encountered with other techniques used to assemble the dye and the optical fiber – like physical entrapment or electrostatic interactions. The work presented here explains the concept of an optode and the GraftFast® process. The first results obtained show the two dyes that will be studied, and that one ot those potential dyes, the neutral red, can be quite efficiently grafted on a gold substrate.
Hybrid interfaces for a new class of optical biosensors
L. De Stefano, A. Caliò, J. Politi, et al.
Interfaces play a key role in optical biosensor fabrication: biological molecules need to be integrated with inorganic transducers, both electrical and optical, preserving their functions and specificity. Single DNA stands, proteins, enzymes, and antibodies must be blocked on surface by absorption or covalently, depending on different chemistry used. In case of proteins and antibodies, also orientation of biological molecules is very important. In this work, we present our results on a biological passivation procedure that employs hydophobins, small amphiphilic proteins. Since these proteins complex with sugars in nature, we also suggest their utilization as functional layer in optical biosensor for glucose.
Detection and localization of building insulation faults using optical-fiber DTS system
Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.
Electromagnetic study of magneto-optic surface plasmon resonance effects for biosensing applications
Abdul Aleem Jamali, Sebastian Kübler, Nicolas Müglich, et al.
Biosensors are gaining interest in scientific research because of their wide variety of applications. Surface plasmon resonance (SPR) based biosensors are the most common platform for label-free biomolecular interaction analysis. In this paper, we present simulations of a magneto-optic SPR (MOSPR) biosensor by using a three-dimensional finite integration technique (FIT). In the past SPR based biosensors have been modeled with the FIT, here, we extend this technique by incorporating the anisotropic material Co for a MOSPR sensor. The MOSPR biosensor uses the properties of surface plasmon polaritons (SPPs) and transverse magneto-optic Kerr effect (TMOKE) simultaneously in the presence of an external magnetic field. We study the magneto-optical activity on the Au/Co/Au trilayer structures with opposite magnetization. The magneto-optic activity strongly depends on the metallic layer thicknesses and the refractive index of the dielectric. The simulation exhibits the electric and magnetic field distributions along the trilayer system. Based on the FIT simulations, we investigate the sensitivity of a MOSPR biosensor by changing the refractive index of the adjacent dielectric material from 1.33 to 1.40. Furthermore, we compare the performance of a MOSPR sensor to a SPR one. Finally experimental and simulation results of a MOSPR sensor in Kretschmann configuration are compared, verifying the used approach.
Compact and cost effective instrument for detecting drug precursors in different environments based on fluorescence polarization
J. C. Antolín-Urbaneja, I. Eguizabal, N. Briz, et al.
Several techniques for detecting chemical drug precursors have been developed in the last decade. Most of them are able to identify molecules at very low concentration under lab conditions. Other commercial devices are able to detect a fixed number and type of target substances based on a single detection technique providing an absence of flexibility with respect to target compounds. The construction of compact and easy to use detection systems providing screening for a large number of compounds being able to discriminate them with low false alarm rate and high probability of detection is still an open concern. Under CUSTOM project, funded by the European Commission within the FP7, a stand-alone portable sensing device based on multiple techniques is being developed. One of these techniques is based on the LED induced fluorescence polarization to detect Ephedrine and Benzyl Methyl Keton (BMK) as a first approach. This technique is highly selective with respect to the target compounds due to the generation of properly engineered fluorescent proteins which are able to bind the target analytes, as it happens in an “immune-type reaction”. This paper deals with the advances in the design, construction and validation of the LED induced fluorescence sensor to detect BMK analytes. This sensor includes an analysis module based on high performance LED and PMT detector, a fluidic system to dose suitable quantities of reagents and some printed circuit boards, all of them fixed in a small structure (167mm × 193mm × 228mm) with the capability of working as a stand-alone application.
Tubular optical waveguide particle plasmon resonance biosensor for multiplex real-time and label-free detection
Chen-Han Huang, Hsing-Ying Lin, Lai-Kwan Chau
A tubular optical waveguide particle plasmon resonance (TW-PPR) sensor is demonstrated for higher-throughput and sensitive label-free biochemical detections. Compared to other evanescent field absorption sensors, the TW-PPR sensor possesses merits of itself being a microchamber of a defined sample volume, a mechanical support for sensor coatings, and ease of systematic multichannel expansion. The sensor resolution is estimated to be 2.6 × 10−6 RIU in measuring solutions of various refractive indices (RIs). Additionally, the multichannel TW-PPR sensing system can perform independent measurements simultaneously and its limit of detection (LOD) of anti-DNP antibody and streptavidin separately measured by DNP-functionalized and biotin-functionalized TW-PPR microchambers is demonstrated to be 1.21 × 10−10 and 2.27 × 10−10 g/ml, respectively. Accurate determinations of these molecules with known concentrations spiked in artificial urine are examined and the sensor responses give excellent correlation with results demonstrated in standard buffer examinations, supporting the utility of the device for analyte screening in more complex media. The TWPPR sensor can be inexpensively fabricated and has a special niche as high-sensitivity refractive index sensor as well as biosensor for label-free monitoring biomolecular interactions in real-time. It is ideally suitable for disposable uses, especially promising for convenient higher-throughput biochemical sensing applications.
Comparison of optical and electrical investigations of meat ageing
Elena Prokopyeva, Pavel Tománek, Lucie Kocová, et al.
Different ultrasonic, electromagnetic, electrical and optical methods are used for meat ageing detection. Muscles are turbid anisotropic media, they exhibit changes in electrical and optical properties according to the direction of the electrical and optical fields in the sample. The work assesses the feasibility of impedance measurements for meat ageing detection and their comparison with optical measurement of scattered light. The pork chop slices were used for their relative homogeneity. An investigation was carried out for the detection of the ageing of unpacked slices exposed directly to the air, and other packed in polyethylene bags. The electrical method is a promising method due to the possibility of getting much information and realizing cheap and fast enough measurement systems. The optical method allows measure the rotation of polarization plane in the range of 95 degrees within considered period. Nevertheless, further work has to be provided to determine closer relationships between optical scattering characteristics, electrical anisotropy in ageing-related tissue structural properties.
A new hyperspectral imaging based device for quality control in plastic recycling
The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.
Quality control in the recycling stream of PVC from window frames by hyperspectral imaging
Valentina Luciani, Silvia Serranti, Giuseppe Bonifazi, et al.
Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.
Polymer planar Bragg grating for sensing applications
M. Rosenberger, N. Hartlaub, G. Koller, et al.
Bragg gratings have become indispensable as optical sensing elements and are already used for a variety of technical applications. Mainly silica fiber Bragg gratings (FBGs) have been extensively studied over the last decades and are nowadays commercially available. Bragg grating sensors consisting of other materials like polymers, however, have only recently come into the focus of fundamental and applied research. Polymers exhibit significantly different properties advantageous for many sensing applications and therefore provide a good alternative to silica based devices. In addition, polymer materials are inexpensive, simple to handle as well as available in various forms like liquid resists or bulk material. Accordingly, polymer integrated optics attract increasing interest and can serve as a substitute for optical fibers.

We report on the fabrication of a planar Bragg grating sensor in bulk Polymethylmethacrylate (PMMA). The sensor consists of an optical waveguide and a Bragg grating, both written simultaneously into a PMMA chip by a single writing step, for which a phase mask covered by an amplitude mask is placed on top of the PMMA and exposed to the UV radiation of a KrF excimer laser. Depending on the phase mask period, different Bragg gratings reflecting in the telecommunication wavelength range are fabricated and characterized. Reflection and transmission measurements show a narrow reflection band and a high reflectivity of the polymer planar Bragg grating (PPBG). After connecting to a single mode fiber, the portable PPBG based sensor was evaluated for different measurands like humidity and strain. The sensor performance was compared to already existing sensing systems. Due to the obtained results as well as the rapid and cheap fabrication of the sensor chip, the PPBG qualifies for a low cost sensing element.
Low noise omnidirectional optical receiver for the mobile FSO networks
A high sensitive optical receiver design for the mobile free space optical (FSO) networks is presented. There is an array of photo-detectors and preamplifiers working into same load. It is the second stage sum amplifier getting all signals together. This topology creates a parallel amplifier with an excellent signal to noise ratio (SNR). An automatic gain control (AGC) feature is included also. As a result, the effective noise suppression at the receiver side increases optical signal coverage even with the transmitter power being constant. The design has been verified on the model car which was able to respond beyond the line of sight (LOS).
Monte Carlo simulation of spatial reflectance pattern of translucent material with subsurface structure
H. J. Juttula, A. J. Mäkynen
Translucent materials allow light to travel inside them while exposed to scattering or absorption events. Wood is an example of translucent material with long cylindrical cells forming an anisotropic internal structure. The most characteristic scattering phenomenon of laser light associated with wood surface is the elongation of spatial reflectance pattern in the direction of wood cells which is called the tracheid effect. We used Monte Carlo simulations of light to reproduce this effect with a model of translucent material with internal cylinder network and used the simulated backscattering patterns to predict macroscopic physical properties of the model. The cylinders represented the tracheid cells of softwood and they were filled with either air or water to produce a macroscopic moisture content of the simulated material. Different densities of material were modeled by varying the diameters of the cylinders. The effects of different moisture contents, densities and surface profiles to spatially resolved reflectance of light were observed by analyzing the shape of the simulated backscattering patterns. Partial least squares (PLS) models were created to predict moisture and density of models with unknown properties. Moisture was found to increase transmission and distance that light travels inside the material and also turning the orientation of the highest contour level by 90 degrees with respect to that of a dry sample while the size of the scattering pattern was found out to decrease as density increased. Density and moisture errors of PLS model predictions were 0.018 g/mm3 and 10.97 % with R2=0.921 and R2=0.925, respectively.
PCF interferometer based temperature sensor with high sensitivity
In this work, the use of a photonic crystal fiber (PCF) with a highly Germanium (Ge) doped core is exploited as temperature sensor for the first time (to our knowledge). The PCF has an outer diameter of 125 μm and consists of a microstructured cladding with an average pitch and hole diameter of Λ=4.6 μm and d=1.0 μm, respectively. A short PCF stub (~2.0 mm) is used for the preparation of an interferometer. The PCF is spliced between single mode fibers (SMF), meaning that the PCF holes are fully collapsed in the splicing region while the Ge-doped core is still present. The splice parameters were changed to make a short collapse region of (200±30) μm. The first splice is used to excite the fundamental core mode and multiple higher order cladding modes by applying a core-to-core offset. The second splice acts as spatial filter to detect only the light which is guided in and near the core. The interferometer is heated up to 500°C and the total wavelength shift with the temperature variation found to be 74 pm/°C which is more than 5 times higher than a fiber Bragg grating at 1550 nm (13 pm/°C). The PCF interferometer preparation requires only a few steps, cleaving and splicing the fibers. The short length, the high thermal sensitivity and stability of the structure make the device attractive for many sensing applications including high temperature ranges.
Coupling conditions for quasi-single mode optical fibers with different refractive index profile
This article is dealing with problems connected with coupling conditions for different types of quasi-single mode optical fibers with various refractive indices of core and cladding. The description of repeatable coupling conditions measurement and measurement of optical beam by the slit method is also presented. The heads of quasi-single mode optical fibers were measured and observed with the help of CCD camera and microscope. These instruments allow measuring of optical power redistribution in modal field.
Surface vs. bulk sensitivity of sensors based on Rayleigh anomalies in metallic nanogratings
Armando Ricciardi, Silvio Savoia, Alessio Crescitelli, et al.
This work provides numerical and experimental evidence that a significant difference exists between bulk and surface sensitivities in nanodevices based on Rayleigh anomalies (RAs) when employed for sensing the surrounding refractive index. In particular, recently proposed sensing schemes based on RAs in optical nanogratings are shown to be applicable only in the presence of bulk analytes. In the presence of thin overlays of analytes, instead, the (surface) sensitivity deteriorates up to two orders of magnitude by comparison with its bulk value, as well as with typical surface sensitivities exhibited by sensors based on surface plasmon resonances. This aspect is of fundamental importance as it severely limits the practical applicability of these devices to chemical and label-free biological sensing.