Proceedings Volume 8346

Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012

cover
Proceedings Volume 8346

Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 2 May 2012
Contents: 12 Sessions, 42 Papers, 0 Presentations
Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring 2012
Volume Number: 8346

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 8346
  • Classical Spectral-gap Sensors II: Phononics-Photonics
  • Fiber Bragg Grating Sensors
  • Acoustic Sensors
  • Classical Spectral-gap Sensors III: Phoxonics-Optomechanics and Heat Management
  • Classical Spectral-gap Sensors IV: Photonics-Phononics
  • Fiber Optic Sensors
  • Wireless Sensors
  • Application of Sensors to Monuments of Cultural Heritage
  • Sensors for Structural Health Monitoring I
  • Sensors for Structural Health Monitoring II
  • Poster Session
Front Matter: Volume 8346
icon_mobile_dropdown
Front Matter: Volume 8346
This PDF file contains the front matter associated with SPIE Proceedings Volume 8346, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
Classical Spectral-gap Sensors II: Phononics-Photonics
icon_mobile_dropdown
Anisotropic metamaterials as sensing devices in acoustics and electromagnetism
Jose Sánchez-Dehesa, Daniel Torrent, Jorge Carbonell
We analyze the properties of acoustic and electromagnetic metamaterials with anisotropic constitutive parameters. Particularly, we analyze the so-called Radial Wave Crystals, which are radially periodic structures verifying the Bloch theorem. This type of crystals can be designed and implemented in acoustics as well as in electromagnetism by using anisotropic metamaterials. In acoustics, we have previously predicted that they can be employed as acoustic cavities with huge quality factors and also like dynamically driven antennas. Similar functionalities are here proven in the electromagnetic domain with, in particular, an analysis of the functionality of practical devices operating in the microwave regime. Starting from our recent works on anisotropic structures and their comparison in both application fields, we present a complete discussion concerning their properties in acoustics and electromagnetics.
Phononic crystal sensor for liquid property determination
Aleksandar Oseev, Ralf Lucklum, Manzhu Ke, et al.
Acoustic band gap materials, so-called phononic crystals, provide a new sensor platform. Phononic crystals are periodic composite materials with spatial modulation of elasticity, mass density as well as longitudinal and transverse velocities of elastic waves. When utilized as sensor, the input parameter to be measured changes characteristic properties of the phononic crystal in a distinct manner. These changes can be detected by measuring the transmission behavior of ultrasonic waves through the phononic crystal. The most optimal feature for detection is a sharp isolated transmission peak which corresponds to the input parameter. When applying as liquid property sensor one component building the phononic crystal is the liquid to be analyzed. Here we present recent results gathered from different sensor realizations. In the second part we report on experimental investigations based on laser vibrometry which provide deeper insides to the so-called extraordinary transmission. These analyses reveal that structural resonance effects are responsible for the smart properties of the device.
Topologically evolved photonic crystals: breaking the world record in band gap size
Osama R. Bilal, Mohammed A. El-Beltagy, Mahmoud I. Hussein
Using topology optimization, a photonic crystal (PtC) unit cell can be designed to exhibit favorable electromagnetic wave propagation properties. Among these is the opening of a band gap (BG) with the largest possible ratio of width to midgap frequency. In this paper the aim is to maximize the relative size of the first and fourth relative BGs of two-dimensional (2D) PtCs with a square lattice configuration. In addition, we examine the effects of the degree of unit cell symmetry on the relative BG size and on the geometric traits of the optimized topologies. We use a specialized genetic algorithm (GA) for our search. The results show that the type of symmetry constraint imposed has a significant, and rather subtle, effect on the unit cell topology and BG size of the emerging optimal designs. In pursuit of record values of BG size, we report two low-symmetry unit cells as an outcome of our search efforts to date: one with a relative BG size of 46% for TE waves and the other with a relative BG size of 47% for TM waves.
Fiber Bragg Grating Sensors
icon_mobile_dropdown
Smart pressure and temperature measurement on paper machine rolls: an embedded fiber Bragg grating sensor system enables continuous nip monitoring during paper production
Wolfgang Ecke, Matthias W. Schmitt, Yang Shieh, et al.
Special fiber Bragg grating (FBG) sensor embedding and interrogation schemes have been designed to capture the momentary peak pressure forces in the nip of adjacent paper machine rolls, and the spatial distribution of these nip forces along circumference and length of the roll, for production speeds of up to 2000 m/min. Additionally, this FBG sensor system measures the temperature distribution in the roll cover. FBG sensor embedment has been investigated and optimized for the implementation of pressure force measurements in various roll cover materials. These measurements enable immediate quality control during various stages of the production process. Draw Tower Grating sensor arrays, simultaneously performing spectrometric interrogation, and autonomous power supply technologies result in an extremely robust fiberoptic sensor system operating at rotation speeds of 700 rpm, equivalent to centrifugal accelerations of 300 G.
Automatically produced FRP beams with embedded FOS in complex geometry: process, material compatibility, micromechanical analysis, and performance tests
Markus Gabler, Viktoriya Tkachenko, Simon Küppers, et al.
The main goal of the presented work was to evolve a multifunctional beam composed out of fiber reinforced plastics (FRP) and an embedded optical fiber with various fiber Bragg grating sensors (FBG). These beams are developed for the use as structural member for bridges or industrial applications. It is now possible to realize large scale cross sections, the embedding is part of a fully automated process and jumpers can be omitted in order to not negatively influence the laminate. The development includes the smart placement and layout of the optical fibers in the cross section, reliable strain transfer, and finally the coupling of the embedded fibers after production. Micromechanical tests and analysis were carried out to evaluate the performance of the sensor. The work was funded by the German ministry of economics and technology (funding scheme ZIM). Next to the authors of this contribution, Melanie Book with Röchling Engineering Plastics KG (Haren/Germany) and Katharina Frey with SAERTEX GmbH & Co. KG (Saerbeck/Germany) were part of the research group.
Full spectral interrogation of fiber Bragg grating sensors for measurements of damage during steady-state vibration
S. Webb, K. Peters, M. A. Zikry, et al.
In this study we evaluate the measurements of a fiber Bragg grating (FBG) sensor subjected to a non-uniform static strain state and simultaneously exposed to vibration loading. The full spectral response of the sensor is interrogated in reflection at 100 kHz during two loading cases: with and without an added vibration load spectrum. The static tensile loading is increased between each test, in order to increase the magnitude of the non-uniform strain field applied to the FBG sensor. During steady-state vibration, the behavior of the spectral shape of the FBG reflection varies depending on the extent of non-uniform strain. With high-speed full spectral interrogation, it is potentially possible to separate this vibration-induced spectral change from spectral distortions due to non-uniform strain. Such spectral distortion contains valuable information on the static damage state of the surrounding host material.
Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity
Using long-period gratings (LPGs) inscribed in an endless single-mode photonic crystal fiber (PCF) and coating nanostructure film into air channels in the PCF cladding with modal transition of the LPG, we have developed a fiber-optic sensing platform for detection of chemicals. PCF-LPG possesses extremely high sensitivity to the change in refractive index and chemical selectivity by localizing binding and/or absorption events in analyte solution. In this work, we numerically and experimentally investigate the behaviors of modal transition in the PCF-LPG where the air channels of PCF cladding are azimuthally coated with two types of nanostructure polymers as primary and secondary coatings by electrostatic self-assembly (ESA) deposition technique. The primary coating does not affect PCF-LPG parameters such as grating resonance wavelengths and its intensity that can be used for sensing, but it increases the sensitivity to refractive index of chemical analytes in the air channels. The secondary coating is for selective absorption of analyte molecules of interest. Those two coatings significantly modify the cladding mode distribution of PCF-LPG and enhance the evanescent wave interaction with the external environment, leading to a highly sensitive and selective chemical sensor. The integrated sensor has potential in a variety of applications, especially for nano-liter scale measurement in situ. The functional nanostructure films which respond to different parameters can be introduced into the air channels of the PCF-LPGs as transducers with chemical selectivity. In this paper, we demonstrate a fiber-optic humidity sensor with the proposed nanofilm-coated PCF-LPG for detection of corrosion in civil infrastructural health monitoring.
Acoustic Sensors
icon_mobile_dropdown
Influence of propagation distance on the acoustic emission parameters in metal plates
Metal materials and structures are commonly inspected by the acoustic emission (AE) technique. Any event of crack propagation or corrosion development results in the emission of elastic waves which are captured by sensors on the surface of the material. Study of the AE signal incoming rate, as well as qualitative signal parameters, reveals crucial information on the extent of damage and the cracking mode. Based on laboratory experiments, classification criteria are established concerning the type of the active damage source. However, elastic wave propagation in metal plates is dispersive, forcing different frequencies to propagate on different velocities. This leads to shape distortion of the signals, altering their specific features, like duration, amplitude, number of cycles which are crucial for AE characterization. Due to dispersion, an AE event from a single source will be acquired with very different shape in distinct sensor positions and the differences will be accumulated as the propagation path increases. In the present paper numerical simulations of wave propagation in metal plates are conducted. The aim is to investigate plate wave dispersion, not from the classical ultrasonics, but from the AE point of view, quantifying the effect of distance on the shape of the propagating pulses and the specific AE parameters. Indicative experiments on metal plates confirm the effect of distance on the wave parameters. Consequently, a procedure to "correct" the AE parameters based on the propagating distance between the source crack and the sensor is discussed. This way the original AE parameters of the signal as emitted by the source are calculated and the effect of distortion which masks the original content is cleared out. It is shown that any classification scheme based on AE parameters, should incorporate the information of the source location relatively to the sensor since long propagation distance causes strong changes in the waveform, masking the information of the original source.
Investigation of co-travelling solitary wave collisions in a granular chain
Paul Anzel, Chiara Daraio
We present investigations into the collision of co-travelling solitary waves in a granular chain. Impulses are injected into the system by means of a piezo stack and the results are compared to a numerical model of discrete masses connected by non-linear springs. Similar to other solitary wave-carrying systems, a phase shift in both interacting solitary waves is observed due to their collision. Additionally, the formation of small secondary waves is observed in both numerical and experimental results. Insight into solitary wave interactions will be important for high-frequency excitation of a granular crystal, which may allow for improved Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) methods.
Monitoring the efficiency of plasticizer in fresh cement using ultrasound
D. G. Aggelis, D. Grammenou, T. E. Matikas
The importance of evaluating the quality of cementitious materials at an age as early as possible is well known. High performance cementitious materials usually include chemical admixtures like accelerators, plasticizers or air entraining agents in order to tailor the properties of the material at the fresh or hardened state. Ultrasonic methods have been developed for monitoring the hydration process. Measuring the transit time and amplitude of the pulse at regular intervals, the elastic modulus development with time can be calculated and therefore, the contribution of the admixtures can be evaluated. However, this requires monitoring for a period of at least a few hours, which although fast compared to the standard compressive test, still is not fast enough to allow decisions about accepting the material before placement in the construction forms based on the suitability of concrete. The general quality of concrete and specifically the contribution of the admixtures should be assessed immediately. In the present paper fresh cementitious material is examined by ultrasound. The excited frequency is varied in order to apply different wavelengths, which are influenced differently by the constituent materials. The effect of chemical plasticizer is examined through the release of air bubbles and the change in viscosity it imposes. Wave velocity vs. frequency curves for different mixes show that the existence of sand plays an important role due to interaction with different wave lengths. The possibility to characterize the effectiveness of chemical admixtures by a single dispersion and attenuation measurement just after mixing is discussed.
Classical Spectral-gap Sensors III: Phoxonics-Optomechanics and Heat Management
icon_mobile_dropdown
Dynamically tuned zero-gap phoXonic systems
A full electrodynamic and elastodynamic multiple scattering approach is employed to describe the optical and acoustic modes, and to account for their mutual interaction both in time and frequency domain in one-dimensional phoXonic crystal slabs. We report on the occurrence of nonlinear acousto-optic interactions and demonstrate the effect of the hypersonic tuning of photonic Dirac points in the optical and telecom frequencies. Potential sensing capabilities are examined under moderate acousto-optic interactions in the proximity of crossing photonic bands enabling light to slow down, stop or reverse. Quarter-wave stack arrangements are considered in the optical (polymeric-based slab) and IR (Si-based slab) frequencies. Such structures support two bands that cross symmetrically, without forming a photonic gap. In the vicinity of the Dirac point (crossing bands), dynamic tuning achieves efficient transfer of energy between the bands using weak and slow modulations of the wave velocity. Finally, through hypersonic light modulation, we may achieve efficient electromagnetic pulse reversal and switching.
Classical Spectral-gap Sensors IV: Photonics-Phononics
icon_mobile_dropdown
Optical sensing elements based on ordered semiconductor and metal nanoparticle arrays and surface plasmons
The optical properties of regular nanoparticle arrays consisting of spherical semiconductor and noble metal nanoparticles are providing interesting aspects for the development of novel and powerful sensor concepts. In this contribution, we demonstrate femtosecond laser-induced transfer of metallic and semiconductor thin films as a unique tool for realizing controllable structures of any desired configuration of exactly spherical nanoparticles, having diameters between 40 nm and 1500 nm. The optical properties of nanoparticles and nanoparticle arrays fabricated by this new approach are investigated spectroscopically and by scattering of surface plasmon-polaritons (SPPs). SPP-scattering constitutes a novel method to obtain insight into the contribution of different multipole moments to the scattering properties of the particles. Furthermore, the particles can be combined with 3D photonic structures fabricated using two-photon polymerization, providing new approaches to the development of nanophotonic devices and 3D metamaterials. Here, we demonstrate an optical sensor with a sensitivity of 365 nm/RIU and a figure of merit of 21.5 in the visible spectral range.
Fiber Optic Sensors
icon_mobile_dropdown
Photonic crystal fiber monitors for intracellular ice formation
Emily Battinelli, Mark Reimlinger, Rosalind Wynne
An all-silica steering wheel photonic crystal fiber (SW-PCF) device with real-time analysis for cellular temperature sensing is presented. Results are provided for water-filled SW-PCF fibers experiencing cooling down near -40°C. Cellular temperature sensors with fast response times are of interest particularly to the study of cryopreservation, which has been influential in applications such as tissue preservation, food quality control, genetic engineering, as well as drug discovery and in- vitro toxin testing. Results of this investigation are relevant to detection of intracellular ice formation (IIF) and better understanding cell freezing at very low temperatures. IIF detection is determined as a function of absorption occurring within the core of the SW-PCF. The SW-PCF has a 3.3μm core diameter, 125μm outer diameter and steering wheel-like air hole pattern with triangular symmetry, with a 20μm radius. One end of a 0.6m length of the SW-PCF is placed between two thermoelectric coolers, filled with ~0.1μL water. This end is butt coupled to a 0.5m length of single mode fiber (SMF), the distal end of the fiber is then inserted into an optical spectrum analyzer. A near-IR light source is guided through the fiber, such that the absorption of the material in the core can be measured. Spectral characteristics demonstrated by the optical absorption of the water sample were present near the 1300-1700nm window region with strongest peaks at 1350, 1410 and 1460nm, further shifting of the absorption peaks is possible at cryogenic temperatures making this device suitable for IIF monitoring applications.
An iterative search method for strain measurement in EFPI sensors
In this paper, a new method is given for estimating strain in extrinsic, Fabry-Perot, interferometric (EFPI) fiber-optic sensors under sinusoidal excitation at the sensor. The algorithm has a low complexity and is appropriate for low-cost applications. It is an iterative search algorithm based upon a known, sinusoidal excitation and a mean-square-error objective function. The algorithm provides an estimate of the maximum time-varying strain due to the excitation. It is shown that, for a broad range of parameters, the algorithm converges to the global minima with a high degree of probability. Empirical test results for two fiber-optic sensors with different gauge lengths along with corresponding measurements from a resistive strain gauge are given and shown to compare very well.
Performance optimization of bundled fiber optic displacement sensors
Erik A. Moro, Michael D. Todd, Anthony D. Puckett
Bundled intensity-modulated fiber optic displacement sensors offer high-speed (kHz-MHz) performance with micrometer-level accuracy over a broad range of axial displacements, and they are particularly well-suited for applications where minimally invasive, non-contacting sensing is desired. Furthermore, differential versions of these sensors have the potential to contribute robustness to fluctuating environmental conditions. The performance limitations of these sensors are governed by the relationship between axial displacement and measured power at the locations of receiving fibers within a bundled probe. Since the propagating transmission's power level is spatially non-uniform, the relative locations of receiving fibers within a bundled probe are related to the sensor's output, and in this way fiber location is related to sensor performance. In this paper, measured power levels are simulated using a validated optical transmission model, and a genetic algorithm is employed for searching the intensity-modulated bundled displacement sensor's design space for bundle configurations that offer high-overall combinations of desired performance metrics (e.g., linearity, sensitivity, accuracy, axial displacement range, etc...). The genetic algorithm determines arrangements of fibers within the bundled probe that optimize a performance-based cost function and have the potential to offer high-performance operation. Multiple converged results of the genetic algorithm generated using different cost function structures are compared. Two optimized configurations are prototyped, and experimental sensor performance is related to simulated performance levels. The prototypes' linearity, sensitivity, accuracy, axial displacement range, and sensor robustness are described, and sensor bandwidth limitations are discussed. This paper has been approved by Los Alamos National Laboratory for unlimited public distribution (LA-UR 12-00642).
Photonic crystal fiber nanospectrometer
Mark Reimlinger, Emily Battinelli, Rosalind Wynne
A silica-based steering wheel core photonic crystal fiber (SW-PCF) with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. Results are provided for PCF structures filled with sample materials for spectroscopic identification. Portable and compact spectroscopic detectors with long interaction lengths (> few mm) specially outfitted for extreme environmental conditions are of interest to both military and civil institutions who wish to monitor air/water composition. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants in gaseous or aqueous samples. The absorption spectrum of the SW-PCF detection system was measured as a function of the fiber interaction length and material volume. The SW-PCF measured spectra agreed with reference spectra. The SW-PCF has a core diameter of 3.9μm, outer diameter of 132.5μm. A nearly 5 cm length of the SW-PCF was coupled to the surface of a thin nanofeatured chip. The remaining end of the SW-PCF section is coupled to a laser light source centered at λ=635nm. The diffraction pattern produced by the nano-featured chip is captured by an objective lens and CCD camera for image analysis. The position of the intensity pattern extracted from the analyzed image indicates the spectral components of the absorption characteristics for the detected sample. This nano-featured spectrometer offers spectral resolution down to 0.1nm that makes it possible to detect substances with very detailed spectral features.
Self-repairing waveguide sensor with highly repeatable strain response
In this article we present experimental demonstrations of a self-writing polymer waveguide strain sensor that can selfrepair after failure. The original sensor is fabricated between two multi-mode optical fibers by ultraviolet (UV) lightwaves in the photopolymerizable resin system via a self-writing process. After the original sensor fails, the repaired sensor is grown from the existing waveguide to bridge the gap between the two optical fibers. Multiple self-repairs of a single sensor were demonstrated. When the sensor was packaged within a polyimide capillary, the cyclic response showed almost no hysteresis and the response over the entire strain range was monotonic.
Wireless Sensors
icon_mobile_dropdown
Wireless vibration sensor using frequency modulation technique
Minhyuck Kim, Hwan-Sik Yoon, Sehun Kim, et al.
In recent years, wireless strain sensors have received attention as an efficient method to measure response of a structure in a remote location. Wireless sensors developed for remote measurement include RF wireless sensor modules and microstrip antenna-based sensors. In this paper, a simple wireless vibration sensor based on a piezoelectric sensor and the Frequency Modulation (FM) technique is developed for remote measurement of vibrating structures. The piezoelectric sensor can generate a voltage signal proportional to dynamic strain of the host structure. The voltage signal is then frequency modulated and transmitted wirelessly to a remote station by a simple FM transmitter circuit. Finally, the received signal is demodulated by a conventional FM radio circuit, and the vibration measurement data can be recovered. Since this type of wireless sensor employs a simple FM circuit, they do not require any wireless data transmission protocols allowing a low-cost wireless sensor in compact format. The proposed concept of the wireless vibration measurement is experimentally verified by measuring vibration of an aluminum cantilever beam. The proposed sensor could potentially be an efficient and cost effective method for measuring vibration of remote structures for dynamic testing or structural health monitoring.
System identification of a tied arch bridge using reference-based wireless sensor networks
Colby Hietbrink, Matthew J. Whelan
Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.
Application of Sensors to Monuments of Cultural Heritage
icon_mobile_dropdown
Application of non-destructive techniques to assess the state of Hagia Sophia's mosaics
Antonia Moropoulou, Maria Karoglou, Kyriakos C. Labropoulos, et al.
The church of Hagia Sophia in Istanbul is a world heritage monument that epitomizes the byzantine ecclesiastic architecture. The church is decorated with mosaics from various historic periods. The preservation state of the mosaics is of high importance. In this study, non-destructive techniques (ground penetrating radar, infra-red thermography, fibreoptics microscopy) were employed on south upper gallery mosaic areas. The main aim of this on-site investigation was the evaluation of the preservation state of the mosaics and the previous interventions (materials characterization and decay diagnosis) in order to assess the performance of previous conservation/restoration interventions, as well as to verify the presence of mosaics in layers below the external plaster surfaces. Results indicated that is indeed possible to locate the grid of rendered mosaics. Regarding the preservation state of the mosaics, it was indicated that the main environmental decay factors were the high relative humidity levels with co-action of salt damp as well as the air pollutants. Moreover, it was revealed that previous incompatible restoration/conservation interventions have often accelerated the mosaics' degradation processes. Using non-destructive techniques it was possible to identify areas where the mosaic materials (tesserae and mortars) presented decay problems and in addition identify sub-layers that pose risk of detachment or decay intensification. In this way, NDT can contribute to the development of a strategic planning for mosaics conservation, protection and revealing.
Investigation of the contribution possibilities of non-destructive methods of testing for the diagnosis and quality control of building materials with emphasis given on sustainable construction
In this work, the contribution potential of non-destructive methods of testing is studied in order to assess, diagnose and assert building materials' diagnosis & quality control, with emphasis given on Sustainable Construction. To this end, the following techniques are implemented: fiber-optics microscopy, digital image processing, scanning electron microscopy, pulse/lock-in thermography, acoustic emission as well as ultrasounds. Furthermore, in addition to the above, the maturity method for measurement of compressive strength is applied and correlated to the array of full field non-destructive methods of testing. The results of the study clearly demonstrate how effective non-destructive methods of testing can be, in revealing and determining highly applicable data in a real-time, in situ and efficient manner.
Application of infrared thermometry and ultrasonic velocity for the investigation of the building materials of historic monuments of Dion, Greece
E. Papanikolaou, P. Spathis, B. Christaras, et al.
The sanctuaries of Demeter and Asklepios are part of the Dion archaeological site that sits among the eastern foothills of Mount Olympus and covers roughly 100 hectares. The excavations finds from this area are dated since the Hellenistic, Roman and Early Christian times. The main building materials are limestones and conglomerates. Sandstones, marbles, and ceramic plinths were also used. The materials consist mainly of calcite and/or dolomite, whereas the deteriorated surfaces contain also secondary and recrystallized calcite and dolomite, gypsum, various inorganic compounds, fluoroapatite, microorganisms and other organic compounds. Cracks and holes were observed in various parts of the stones. The most proper approach to select effective methods for the structural and surface consolidation, the cleaning, the protection and the overall conservation of these structures is the knowledge of the processes contributing to their deterioration. The influence of the water presence to the behavior of the materials was examined by in situ IR thermometer measurements. Temperature values increased from the lower to the upper parts of the building stones and they significantly depend on the orientation of the walls. The results indicate the existence of water in the bulk of the materials due to capillary penetration. To confirm these observations measurements of the following physical characteristics of the building materials have been studied: open porosity, pore size distribution, water absorption and desorption, capillary absorption and desorption. The existence of water in the bulk of the materials due to capillary penetration, the cycles of wet-dry conditions, correlated with the intensive surface and underground water presence in the whole surrounding area, lead to partial dissolution-recrystallization of the carbonate material and loss of the structural cohesion and the surface stability.
Sensors for Structural Health Monitoring I
icon_mobile_dropdown
Critical and subcritical damage monitoring of bonded composite repairs using innovative non-destructive techniques
Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.
Environmental barrier coating (EBC) durability modeling using a progressive failure analysis approach
Ali Abdul-Aziz, Galib Abumeri, William Troha, et al.
Ceramic matrix composites (CMCs) are getting the attention of most engine manufacturers and aerospace firms for turbine engine and other related applications. This is because of their potential weight advantage and performance benefits. As a protecting guard for these materials, a highly specialized form of environmental barrier coating (EBC) is being developed and explored for high temperature applications that are greater than 1100 °C1,2. The EBCs are typically a multilayer of coatings and are on the order of hundreds of microns thick. CMCs are generally porous materials and this feature is somewhat beneficial since it allows some desirable infiltration of the EBC. Their degradation usually includes coating interface oxidation as opposed to moisture induced matrix degradation which is generally seen at a higher temperature. A variety of factors such as residual stresses, coating process related flaws, and casting conditions may influence the strength of degradation. The cause of such defects which cause cracking and other damage is that not much energy is absorbed during fracture of these materials. Therefore, an understanding of the issues that control crack deflection and propagation along interfaces is needed to maximize the energy dissipation capabilities of layered ceramics. Thus, evaluating components and subcomponents made out of CMCs under gas turbine engine conditions is suggested to demonstrate that these material will perform as expected and required under these aggressive environmental circumstances. Progressive failure analysis (PFA) is applied to assess the damage growth of the coating under combined thermal and mechanical loading conditions. The PFA evaluation is carried out using a full-scale finite element model to account for the average material failure at the microscopic or macroscopic levels. The PFA life prediction evaluation identified the root cause for damage initiation and propagation. It indicated that delamination type damage initiated mainly in the bond and intermediate coating materials then propagated to the substrate. Results related to damage initiation and propagation; behavior and life assessment of the coating at the interface of the EBC/CMC are presented and discussed.
Numerical analysis for structural health monitoring of a damaged composite panel using PZT actuators and sensors
A. Nagabhushana, M. Spiegel, S. Adu, et al.
Reliable damage detection is crucial for assessing the integrity of a structure. In this paper, a numerical study of a composite panel fabricated to simulate a crack is undertaken using finite element methods (FEM). The damage to be considered is a transverse crack which pre-exists in the structure. The finite element models are developed for an undamaged and a damaged composite panel to compute the change in Lamb wave response due to the existence of a crack. The model is validated using shear lag analysis applied at the crack. The results are verified experimentally by comparing the results for an undamaged composite panel and a composite panel fabricated with a simulated crack using the vacuum assisted resin transfer molding (VARTM) process. The responses for each panel are obtained using surface mounted lead zirconate titanate (PZT) actuators and sensors. PZT is used to generate Lamb waves which produce stress throughout the panel thickness. Propagation characteristics of Lamb waves are varied by the presence of damage. The sensor data provide reliable information about the integrity of the structure. Numerical results are compared to the sensor output to ensure accuracy of the damage detection system.
Investigation of a moiré based crack detection technique for propulsion health monitoring
Mark R. Woike, Ali Abdul-Aziz, Gustave C. Fralick, et al.
The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA's Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moiré based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moiré pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 RPM and the Moiré pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.
Sensors for Structural Health Monitoring II
icon_mobile_dropdown
Turbine engine disk rotor health monitoring assessment using spin tests data
Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center's Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.
Real-time characterization of damage in ceramic matrix composites using IR thermography and acoustic emission
E. Z. Kordatos, D. G. Aggelis, K. G. Dassios, et al.
Infrared thermography is one of several non-destructive testing techniques which can be used for detection of damage in materials such as ceramic matrix composites. The purpose of this study is to apply a non-destructive methodology for analyzing the thermal effects in ceramic matrix composites caused by cyclic loading. Mechanical stresses induced by cyclic loading cause heat release in the composite due to failure of the interface, which results in increasing the material's temperature. The heat wave, generated by the thermo-mechanical coupling, and the intrinsic energy dissipated during mechanical cyclic loading of the sample were detected by an infrared camera. The results were correlated with acoustic emission events.
Application of compressed sensing in full-field structural health monitoring
Mulugeta Haile, Anindya Ghoshal
Embedded sensors are used in layers of composite structures to provide local damage detection. The presence of these sensors causes material and geometric discontinuities which in turn causes unwanted peaks of stress and strain with consequences on stiffness reduction. Often several of these sensors are embedded in structures aggregating the adverse effects of discontinuities to degrade the structural integrity. Structural damage is a sparse phenomenon and the mechanical metrics are smooth functions with few spikes near the location of damage. This sparsity and spikiness can be exploited to reduce the number of embedded sensors in composite structures. The goal of this paper is to adapt the compressed sensing theory and detect damage using far fewer sensors than conventionally possible. To demonstrate the efficacy of our approach, we performed a numerical experiment on a rectangular plate with a center hole, and have shown that the 2D strain-field can be recovered from few samples of discrete strain measurements acquired by embedded sensors.
The application of compressed sensing to long-term acoustic emission-based structural health monitoring
The acoustic emission (AE) phenomena generated by a rapid release in the internal stress of a material represent a promising technique for structural health monitoring (SHM) applications. AE events typically result in a discrete number of short-time, transient signals. The challenge associated with capturing these events using classical techniques is that very high sampling rates must be used over extended periods of time. The result is that a very large amount of data is collected to capture a phenomenon that rarely occurs. Furthermore, the high energy consumption associated with the required high sampling rates makes the implementation of high-endurance, low-power, embedded AE sensor nodes difficult to achieve. The relatively rare occurrence of AE events over long time scales implies that these measurements are inherently sparse in the spike domain. The sparse nature of AE measurements makes them an attractive candidate for the application of compressed sampling techniques. Collecting compressed measurements of sparse AE signals will relax the requirements on the sampling rate and memory demands. The focus of this work is to investigate the suitability of compressed sensing techniques for AE-based SHM. The work explores estimating AE signal statistics in the compressed domain for low-power classification applications. In the event compressed classification finds an event of interest, ι1 norm minimization will be used to reconstruct the measurement for further analysis. The impact of structured noise on compressive measurements is specifically addressed. The suitability of a particular algorithm, called Justice Pursuit, to increase robustness to a small amount of arbitrary measurement corruption is investigated.
Low-velocity impact damage identification using a novel current injection thermographic technique
Composite materials are widely used especially in the aerospace structures and systems. Therefore, inexpensive and efficient damage identification is crucial for the safe use and function of these structures. In these structures low-velocity impact is frequently the cause of damage, as it may even be induced during scheduled repair. Flaws caused by lowvelocity impact are dangerous as they may further develop to extended delaminations. For that purpose an effective inspection of defects and delaminations is necessary during the service life of the aerospace structures. Within the scope of this work, an innovative technique is developed based on current stimulating thermography. Electric current is injected to Carbon Fiber Reinforced Composite and aluminium (Al) plates with concurrent thermographic monitoring. For reference, both damaged and undamaged plates are inspected. Low-velocity impact damaged composite laminates at different energy levels are interrogated employing the novel technique. Live and pulse phase infrared thermography is employed for the identification of low-velocity impact damage at various energy levels while the electric current induces the transient thermal field in the vicinity of the defect. In all cases conventional ultrasonics (C-scan) were performed for the validation and assessment of the results of the innovative thermographic method.
Sensor topologies for application of strain energy damage diagnostics and prognostication
Timothy P. Kernicky, Matthew J. Whelan
Structural health monitoring methodologies devised over the past two decades have increasing shown improved robustness in capability to identify the onset of structural damage and locate the source of the damage. However, the pathway to prognostication and life-cycle assessment through structural health monitoring remains stalled by a lack of success in the diagnostic step of experimentally quantifying the severity of damage in suitable, engineering quantities. Of the methods devised, strain energy approaches have demonstrated not only strength in identifying and localizing structural damage but also uniquely provide a theoretical basis for quantifying damage through measurement of relative stiffness loss in individual members. Conventional applications of strain energy methods use distributed accelerometers, often being single-axis and oriented in the same direction. The limited degrees-of-freedom measured limits the modal parameter extraction to a reduced subset and yields only partial reconstruction of the strain energy in the system. Furthermore, it has been shown experimentally and proven analytically that improvement in strain energy methods through increased spatial density of the sampling array is constrained by the effect of measurement noise on the accuracy of the numerical computations. In this paper, alternative sensor topologies are explored for improving the reconstruction of strain energy estimates. An experimental component of the research includes strain energy estimates for a fixed-free beam heavily instrumented with accelerometers. Prescribed damage is incrementally applied to the beam to permit a basis for comparison amongst the sensor topologies in addressing the damage diagnostics problem with specific emphasis on quantification of severity through stiffness loss.
Poster Session
icon_mobile_dropdown
Aerosol printed carbon nanotube strain sensor
Bradley Thompson, Hwan-Sik Yoon
In recent years, printed electronics have received attention as a method to produce low-cost macro electronics on flexible substrates. In this regard, inkjet and aerosol printing have been the primary printing methods for producing passive electrical components, transistors, and a number of sensors. In this research, a custom aerosol printer was utilized to create a strain sensor capable of measuring static and dynamic strain. The proposed sensor was created by aerosol printing a multiwall carbon nanotube solution onto an aluminum beam covered with an insulating layer. After printing the carbon nanotube-based sensor, the sensor was tested under quasi-static and vibration strain conditions, and the results are presented. The results show that the printed sensor could potentially serve as an effective method for measuring dynamic strain of structural components.
Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)
In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.
Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate
Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.
Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems
G. Gkikas, Ch. Saganas, S. A. Grammatikos, et al.
The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.
Structural health monitoring of aerospace materials used in industry using electrical potential mapping methods
S. A. Grammatikos, M.-E. Kouli, G. Gkikas, et al.
The increasing use of composite materials in aerostructures has prompted the development of an effective structural health monitoring system. A safe and economical way of inspection is needed in order for composite materials to be used more extensively. Critical defects may be induced during the scheduled repair which may degrade severely the mechanical properties of the structure. Low velocity impact LVI damage is one of the most dangerous and very difficult to detect types of structural deterioration as delaminations and flaws are generated and propagated during the life of the structure. In that sense large areas need to be scanned rapidly and efficiently without removal of the particular components. For that purpose, an electrical potential mapping was employed for the identification of damage and the structural degradation of aerospace materials. Electric current was internally injected and the potential difference was measured in order to identify induced damage in Carbon Fiber Reinforced Polymer (CFRP) structures. The experimental results of the method were compared with conventional C-scan imaging and evaluated.
Temperature and strain sensing techniques using Brillouin optical time domain reflectometry
Hisham Mohamad
Distributed strain sensing based on Brillouin Optical Time Domain Reflectometry (BOTDR) is seen as one of the most promising monitoring tools for assessing the performance of civil and geotechnical structures. Due to the distributed nature of fiber optic sensor, BOTDR not only useful to monitor the structures deformation in terms of global behavior, but also effectively detects anomalies in localized scale. Since the sensor has the ability to measure strain and temperature simultaneously, it is important that methods to separate the temperature effects are fully understood. Four known methods used to compensate temperature from BOTDR strain readings are briefly reviewed. Regardless of what method being used, this paper aims to clarify the importance of firstly calibrating the thermal characteristic of optical cables and determine the coefficient thermal expansion of the measurement host or structure. Example of BOTDR thermal measurement of an earth retaining structure is presented.
Development of a guided wave-based concrete strength estimation system using an integrated smart sensor
Ju-Won Kim, Seok Inn Hong, Changgil Lee, et al.
During the construction of concrete structures, real-time monitoring for their strength development is very crucial to determine the structures' readiness for in-service. However, it is very hard to estimate the compressive strength of the concrete nondestructively and in real-time. To provide the solution for this limitation, this study proposes a guided wavebased concrete strength estimation system using an embedded smart sensor module system. Because the guided waves could not propagate clearly inside the concrete, an embedded smart sensor module system was developed by attaching two piezoelectric ceramic sensors on a thin steel plate that could provide a propagating path for the guided waves. Because the boundary condition of the steel plate is changed according to the variation of the concrete strength, the guided wave signal obtained from the piezoelectric sensors might be changed with a certain pattern affected by the boundary condition. Therefore, the strength of the concrete can be estimated by analyzing the pattern-variations of the guided wave signals. To confirm the feasibility of the proposed methodology, an experimental study using a concrete specimen with the aforementioned embedded smart sensor module system is carried out and the optimized strength estimation equation is derived throughout a regression analysis.
Damage detection and identification in smart structures using SVM and ANN
M. Farooq, H. Zheng, A. Nagabhushana, et al.
A critical part of structural health monitoring is accurate detection of damages in the structure. This paper presents the results of two multi-class damage detection and identification approaches based on classification using Support Vector Machine (SVM) and Artificial Neural Networks (ANN). The article under test was a fiber composite panel modeled by a Finite Element Model (FEM). Static strain data were acquired at 6 predefined locations and mixed with Gaussian noise to simulate performance of real strain sensors. Strain data were then normalized by the mean of the strain values. Two experiments were performed for the performance evaluation of damage detection and identification. In both experiments, one healthy structure and two damaged structures with one and two small cracks were simulated with varying material properties and loading conditions (45 cases for each structure). The SVM and ANN models were trained with 70% of these samples and the remaining 30% samples were used for validation. The objective of the first experiment was to detect whether or not the panel was damaged. In this two class problem the average damage detection accuracy for ANN and SVM were 93.2% and 96.66% respectively. The objective of second experiment was to detect the severity of the damage by differentiating between structures with one crack and two cracks. In this three class problem the average prediction accuracy for ANN and SVM were 83.5% and 90.05% respectively. These results suggest that for noisy data, SVM may perform better than ANN for this problem.
Optical sensors for electrical elements of a medium voltage distribution network
Letizia De Maria, Daniele Bartalesi, Paolo Serragli, et al.
The aging of most of the components of the National transmission and distribution system can potentially influence the reliability of power supply in a Medium Voltage (MV) network. In order to prevent possible dangerous situations, selected diagnostic indicators on electrical parts exploiting reliable and potentially low-cost sensors are required. This paper presents results concerning two main research activities regarding the development and application of innovative optical sensors for the diagnostic of MV electrical components. The first concerns a multi-sensor prototype for the detection of pre-discharges in MV switchboards: it is the combination of three different types of sensors operating simultaneously to detect incipient failure and to reduce the occurrence of false alarms. The system is real-time controlled by an embedded computer through a LabView interface. The second activity refers to a diagnostic tool to provide significant real-time information about early aging of MV/Low Voltage (LV) transformers by means of its vibration fingerprint. A miniaturized Optical Micro-Electro-Mechanical System (MEMS) based unit has been assembled for vibration measurements, wireless connected to a remote computer and controlled via LabView interface. Preliminary comparative tests were carried out with standard piezoelectric accelerometers on a conventional MV/LV test transformer under open circuit and in short-circuited configuration.