Proceedings Volume 10437

Advanced Free-Space Optical Communication Techniques and Applications III

cover
Proceedings Volume 10437

Advanced Free-Space Optical Communication Techniques and Applications III

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 5 December 2017
Contents: 5 Sessions, 14 Papers, 3 Presentations
Conference: SPIE Security + Defence 2017
Volume Number: 10437

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10437
  • Short Range Communications
  • Systems and Components
  • Propagagtion and Mitigation Techniques
  • Poster Session
Front Matter: Volume 10437
icon_mobile_dropdown
Front Matter: Volume 10437
This PDF file contains the front matter associated with SPIE Proceedings Volume 10437, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Short Range Communications
icon_mobile_dropdown
Free Space Optical Interconnect (FSOI) modules for short range data transfer applied to board to board high rate communication
Myriam Kaba, Maxime Mallet, Laurence Pujol, et al.
To provide more flexibility in inter-board communication in blade chassis, we developed a Free Space Optical Interconnect (FSOI) system for short range high speed data transfer. We designed robust and low footprint components compliant with both a use in milaero environment and an operation up to 5 and 10 Gbps. The 5Gpbs configuration demonstrated large tolerance to misalignment between emitter and receiver modules: +1.5/-1 mm along optical axis, lateral tolerance of +/-1 mm and angular tolerances of +/-1.5°. Reliable performances have been demonstrated over a temperature range from -30°C to 80°C and constraint environment as thermal and damp heat cycles and vibrations. Increase the data rate of the FSO device one step beyond up to 10 Gbps requires dealing with mode partitioning troubles generated by the use of VCSEL lasers. We designed and evaluated an improved opto-mechanical combination to overcome this drawback. The resulting device shows error free 10 Gbps data transfer while keeping large tolerance to Tx/Rx misalignments.
Review of optical wireless communications for data centers
A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.
Energy reduction using multi-channels optical wireless communication based OFDM
In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.
OWC with vortex beams in data center networks
Data centers are a key building block in the rapidly growing area of internet technology. A typical data center has tens of thousands of servers, and communication between them must be flexible and robust. Vortex light beams have orbital angular momentum and can provide a useful and flexible method for optical wireless communication in data centers. Vortex beams can be generated with orbital angular momentum but independent of polarization, and used in a multiplexed system. We propose a multiplexing vortex system to increase the communication capacity using optical wireless communication for data center networks. We then evaluate performance. This paper is intended for use as an engineering guideline for design of vortex multiplexing in data center applications.
Systems and Components
icon_mobile_dropdown
International standards for optical wireless communications: state-of-the-art and future directions
As the number of active OWC installations is growing fast, the standards for compatibility of co-existing neighbouring systems are being developed. The paper addresses the Laser Safety (IEC standards), ITU-T Study Group 15 standards (G.640 Co-location longitudinally compatible interfaces for free space optical systems), ITU-Radiocommunication Sector standards (P.1817-1 Propagation data required for the design of terrestrial free-space optical links), and the IEEE Work in Progress - standardization activity on Visible Light Communications. International standards of FSO communications have been reviewed and discussed. ITU, IEC, and IEEE International standards for Free-Space Optical links have been reviewed. The system reliability and availability as well as security issues will be addressed as well in the talk.
Acquisition and tracking for underwater optical communications
There is a growing requirement to transfer large volumes of data between underwater platforms. As seawater is transmissive in the visible band, underwater optical communications is an active area of interest since it offers the potential for power efficient, covert and high bandwidth datalinks at short to medium ranges. Short range systems have been successfully demonstrated using sources with low directionality. To realise higher data rates and/or longer ranges, the use of more efficient directional beams is required; by necessity, these must be sufficiently aligned to achieve the required link margin. For mobile platforms, the acquisition and tracking of each node is therefore critical in order to establish and maintain an optical datalink. This paper describes work undertaken to demonstrate acquisition and tracking in a 3D underwater environment. A range of optical sources, beam steering technologies, and tracking sensors have been assessed for suitability. A novel scanning strategy exploiting variable beam divergence was developed to provide robust acquisition whilst minimising acquisition time. A prototype system was assembled and demonstrated in a large water tank. This utilised custom quadrant detectors based on Silicon PhotoMultiplier (SiPM) arrays for fine tracking, and a Wide Field of View (WFoV) sCMOS camera for link acquisition. Fluidic lenses provided dynamic control of beam divergence, and AC modulation/filtering enabled background rejection. The system successfully demonstrated robust optical acquisition and tracking between two nodes with only nanowatt received optical powers. The acquisition time was shown to be dependent on the initial conditions and the transmitted optical power.
Underwater Wireless Acousto-Optic Waveguide (UWAOW)
The present study originated in the lack of research into achieving underwater total internal reflection (TIR) via the acousto-optic effect. The uniqueness of this technique exists in the fact that it is based on a high sound pressure level which induces a localised change in refractive index of seawater sufficient to achieve total internal reflection within the communication channel. Different transducer systems for generating the pressure wave have been investigated and take the form of a wave which may be either a standing wave, or a novel beamforming technique. The former is based on an array of transducers and with an acoustic mirror at the receiver in order to establish the standing wave. The alternative approach relies on the high intrinsic directionality of a novel beamformer where an annular transducer array is examined as an acoustic source. In this paper, the main characteristics of the acoustic optic waveguide will be presented. This will include both sound and light propagation in the ocean, TIR, novel beam propagation, the refractive index of water as a function of the externally applied acoustic pressure, and the acoustic technology. The modelled results, the limitations imposed by the challenging medium, and the system requirements required to obtain an Underwater Wireless Acousto-Optic Waveguide (UWAOW) will be also addressed.
Detection modules for FSO receiver operating in the wavelength range of 8-12 um
Waldemar Gawron, Przemysław Kalinowski, Maciej Fimiarz, et al.
In this paper some constructions and test results of new detection modules for Free Space Optics (FSO) operated in the 8-12μm wavelength range are presented. In this spectrum, FSO communication is less sensitive to atmosphere features. The main requirements for detectors construction applied in FSO receiver correspond to both operational and functional parameters. These devices should be characterized by high detectivity and operation speed. It is necessary to achieve low value of error rate in the case of high attenuation of laser beam and small-aperture receiving optics. In this way, the design of the FSO transceiver is simplified. In practice, detection performance close to fundamental limits are required. Additionally, for the present optical links, subnanosecond response time is also very important. This can be achieved using of HgCdTe photodiode in the form of modified N+pP+ heterostructure with immersion lens, reverse biasing and TEC cooling. Immersion lens enables optimization of the detector physical dimensions, decreasing detector capacity and time constant detector. The high detectivity of the detection module was achieved by both matching the photodiode to the preamp and minimizing noises. The paper is review of designing and investigation process of the detection modules for FSO application. Some results of the performed simulations and experiments are also discussed. Finally, further refinements will be conducted taking into account parameters of FSO receiver.
Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics
Kamil Pierscinski, Janusz Mikołajczyk, Dariusz Szabra, et al.
In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.
Propagagtion and Mitigation Techniques
icon_mobile_dropdown
A new encoding scheme for visible light communications with applications to mobile connections
David M. Benton, Paul St. John Brittan
A new, novel and unconventional encoding scheme called concurrent coding, has recently been demonstrated and shown to offer interesting features and benefits in comparison to conventional techniques, such as robustness against burst errors and improved efficiency of transmitted power. Free space optical communications can suffer particularly from issues of alignment which requires stable, fixed links to be established and beam wander which can interrupt communications. Concurrent coding has the potential to help ease these difficulties and enable mobile, flexible optical communications to be implemented through the use of a source encoding technique. This concept has been applied for the first time to optical communications where standard light emitting diodes (LEDs) have been used to transmit information encoded with concurrent coding. The technique successfully transmits and decodes data despite unpredictable interruptions to the transmission causing significant drop-outs to the detected signal. The technique also shows how it is possible to send a single block of data in isolation with no pre-synchronisation required between transmitter and receiver, and no specific synchronisation sequence appended to the transmission. Such systems are robust against interference -- intentional or otherwise -- as well as intermittent beam blockage.
Aspects of scintillation modelling in LEO-ground free-space optical communications
Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non-ideal tracking are also discussed. Eventually, satellite measurements are discussed together with model calculations. It is found that the model calculation with the modified HAP turbulence profile fits the measurements. The plane wave assumption is valid for calculation of scintillation. The flat earth model is accurate enough to model scintillation over elevation when using the extended Rytov theory. The effect of beam wander is negligible. Further work needs to be carried out to elaborate a new scintillation model from the measurements and theory.
15 Gb/s OFDM-based VLC using direct modulation of 450 GaN laser diode
Shaun Viola, Mohamed Sufyan Islim, Scott Watson, et al.
A record data rate for visible light communications (VLC) using a transistor outline (TO) packaged Gallium Nitride (GaN) laser diode is reported. Using a system 3 dB bandwidth of 1.4 GHz data transmission at 15 Gb/s is reported. This is achieved due to the use of orthogonal frequency division multiplexing (OFDM) in combination with a high system signal to noise ratio (SNR) and adaptive bit loading extending the effective bandwidth to 2.5 GHz. To the best of authors knowledge this is the highest reported data rate for single channel VLC.
Poster Session
icon_mobile_dropdown
The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems
There are many room temperature applications to include free space optics (FSO) communication system combining quantum cascade lasers sources where HgCdTe long-wave (8-12 micrometer) infrared radiation (LWIR) detector reaching ultrafast response time < 1 ns and nearly background limited infrared photodetection (BLIP) condition are implemented. Both nearly BLIP detectivity and ultra-response time stay in contradiction in detector’s optimization process. That issue could be circumvented by implementation of the hyperhemispherical GaAs immersion lens into structure to increase optical to electrical area ratio giving flexibility in terms of response time optimization. The optimization approach depends on voltage condition. The generation - recombination (GR) mechanism within active layer was found to be important for forward and weak reverse conditions while photogenerated carrier transport is significant for higher reverse bias. Except of applied voltage, the drift time strongly depends on thickness of the absorption region. Reducing the thickness of the active region, the short drift times could be reached, but that solution significantly reduces quantum efficiency and lowers detectivity. Taking that into consideration a special multilayer heterostructure designs are developed. The p-type absorber is promising due to both high ambipolar mobility and low thermal GR driven by the Auger 7 mechanism. Theoretical simulations indicate that depending on bias condition and T = 300 K the multilayer barrier LWIR HgCdTe structure could reach response time below < 100 ps while biased and ≤ 1 ns while unbiased. Immersed detectivity reaches > 109 cmHz1/2/W. Since commercially available FSO could operate separately in SWIR, MWIR and LWIR range - the dual band detectors should be implemented into FSO. This paper shows theoretical performance of the dual band back-to-back MWIR and LWIR HgCdTe detector operating at 300 K pointing out the MWIR active layer influence on LWIR operating regime.