Proceedings Volume 10246

Smart Sensors, Actuators, and MEMS VIII

Luis Fonseca, Mika Prunnila, Erwin Peiner
cover
Proceedings Volume 10246

Smart Sensors, Actuators, and MEMS VIII

Luis Fonseca, Mika Prunnila, Erwin Peiner
Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 11 July 2017
Contents: 13 Sessions, 52 Papers, 25 Presentations
Conference: SPIE Microtechnologies 2017
Volume Number: 10246

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10246
  • Tuesday Plenary Session
  • Modeling and Simulation I
  • Modeling and Simulation II
  • Chemical and Biochemical Sensors I
  • Chemical and Biochemical Sensors II
  • Physical Sensors I
  • Physical Sensors II
  • Materials and Processes
  • Energy Devices I
  • Energy Devices II
  • Interfacing and System Integration
  • Poster Session
Front Matter: Volume 10246
icon_mobile_dropdown
Front Matter: Volume 10246
This PDF file contains the front matter associated with SPIE Proceedings Volume 10246, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Tuesday Plenary Session
icon_mobile_dropdown
MEMS microphone innovations towards high signal to noise ratios (Conference Presentation)
Alfons Dehé
After decades of research and more than ten years of successful production in very high volumes Silicon MEMS microphones are mature and unbeatable in form factor and robustness. Audio applications such as video, noise cancellation and speech recognition are key differentiators in smart phones. Microphones with low self-noise enable those functions. Backplate-free microphones enter the signal to noise ratios above 70dB(A). This talk will describe state of the art MEMS technology of Infineon Technologies. An outlook on future technologies such as the comb sensor microphone will be given.
Modeling and Simulation I
icon_mobile_dropdown
Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)
PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.
Fluid-structure interaction modelling of the roof tile-shaped modes in piezoelectric plate microresonators
V. Ruiz-Díez, J. Toledo, J. Hernando-García, et al.
In this paper, the fluid-structure interaction in cantilever-type devices vibrating in the first and higher roof tile-shaped modes is studied. These modes can be most efficiently excited by a thin piezoelectric film on top of the structure in combination with a tailored electrode design. The electrical and optical characterization of the different devices and modes is carried out in liquid media and then the performance of the resonators is evaluated in terms of quality factor and resonant frequency. The effect of the fluid on the in-liquid response is studied using analytical and finite element method models. For the latter, a fully coupled fluid-structure interaction model is developed and compared to a simpler model, in which no coupling feedback from the fluid to the structure is taken into account. The results show that, despite the substantially larger computational effort, the consideration of the fluid-structure coupling is absolutely necessary to explain the experimental results for higher order modes.
Optimal design of a microgripper-type actuator based on AlN/Si heterogeneous bimorph
D. Ruiz, A. Díaz-Molina, O. Sigmund, et al.
This work presents a systematic procedure to design piezoelectrically actuated microgrippers. Topology optimization combined with optimal design of electrodes is used to maximize the displacement at the output port of the gripper. The fabrication at the microscale leads us to overcome an important issue: the difficulty of placing a piezoelectric film on both top and bottom of the host layer. Due to the non-symmetric lamination of the structure, an out-of-plane bending spoils the behaviour of the gripper. Suppression of this out-of-plane deformation is the main novelty introduced. In addition, a robust formulation approach is used in order to control the length scale in the whole domain and to reduce sensitivity of the designs to small manufacturing errors.
Topologically optimised flexure hinge based XY stage
Adil Han Orta, Evren Samur, Cetin Yilmaz
The purpose of this study is to develop a millimeter scale two degree of freedom planar actuation mechanism (XY stage) with flexure hinges that can generate micrometer scale motion at high frequencies. To amplify the micro scale motion in X and Y directions, two identical levers are used. According to the analytical and computational results, a prototype is developed for validation. Piezoelectric actuators are used in the system because of their compactness and large force capacity. The levers in the XY stage are topologically optimized so that the first resonance frequency of the system is maximized, which enlarges the operation range of the system.
Modeling and Simulation II
icon_mobile_dropdown
Modeling high signal-to-noise ratio in a novel silicon MEMS microphone with comb readout
Johannes Manz, Alfons Dehe, Gabriele Schrag
Strong competition within the consumer market urges the companies to constantly improve the quality of their devices. For silicon microphones excellent sound quality is the key feature in this respect which means that improving the signal-to-noise ratio (SNR), being strongly correlated with the sound quality is a major task to fulfill the growing demands of the market. MEMS microphones with conventional capacitive readout suffer from noise caused by viscous damping losses arising from perforations in the backplate [1]. Therefore, we conceived a novel microphone design based on capacitive read-out via comb structures, which is supposed to show a reduction in fluidic damping compared to conventional MEMS microphones. In order to evaluate the potential of the proposed design, we developed a fully energy-coupled, modular system-level model taking into account the mechanical motion, the slide film damping between the comb fingers, the acoustic impact of the package and the capacitive read-out. All submodels are physically based scaling with all relevant design parameters. We carried out noise analyses and due to the modular and physics-based character of the model, were able to discriminate the noise contributions of different parts of the microphone. This enables us to identify design variants of this concept which exhibit a SNR of up to 73 dB (A). This is superior to conventional and at least comparable to high-performance variants of the current state-of-the art MEMS microphones [2].
An FE model of a cellular polypropylene: exploring mechanical properties
Several analytical models have been suggested to describe the changes in the electromechanical properties of Cellular Polypropylene (Cell-PP) due to charging. However, there is a limited number of studies considering the non-linear dependence of the piezoelectric coefficient d33 on the mechanical load applied. One of the main reasons for this nonlinearity is the stiffness of the film that increases proportionally to the applied mechanical load. Moreover the size and shape distribution of the enclosed voids is an important determinant of the electromechanical properties.

In this work, the geometry of a 3D model of Cell-PP is designed on the basis of analytical Splines. Both the manufacturing procedure of Cell-PP films (bi-axial stretching) and the pressure expansion treatment were simulated in order to account for a realistic void distribution. The FEA is done on a 2D cross-section of the modelled film. The modelled mechanical response is analysed based on increasing mechanical load applied. The load-deflection curves obtained from the analysis are then compared to the experimental results acquired via Dynamical Mechanical Analyzer (DMA) to validate the model. Four types of Cell-PP films, expanded at different pressures, were used in this validation. The aim is to develop a model that describes the effect of morphological parameters on the stiffness of the films by simulating the manufacturing procedure.
Efficient fluid transport by a bionically inspired micro-flapper: fluidic investigations using fully coupled finite element simulation
R. Behlert, G. Schrag, G. Wachutka
We studied the fluid transport by a bionically inspired micro-flapper fabricated in piezoelectric thin-film technology. The undulatory, wave-like motion of the proposed design is supposed to generate vortex chains in the surrounding fluid resulting in a directed jet stream and, hence, enhanced mass convection and heat transport inside the fluid. Fully-coupled finite element (FE) simulations have been carried out to investigate the fluid transport induced by such an excitation in order to assess the efficiency of the concept. The results show that there is a significant higher net flow for undulation compared to the simple, resonant-like up-and-down motion of the flap, which corroborates the feasibility of the concept.
Chemical and Biochemical Sensors I
icon_mobile_dropdown
Development of a lab-on-chip electrochemical immunosensor for detection of Polycyclic Aromatic Hydrocarbons (PAH) in environmental water
Shifa Felemban, Patricia Vazquez, Jan Dehnert, et al.
The work described in this manuscript focuses on how the integration of immunoassay techniques in combination with electrochemical detection can provide a portable and very accurate solution for detection of water pollutants that are detrimental for human health. In particular, we focus our work on the quantification of polycyclic aromatic hydrocarbons (PAHs) in polluted water. Our integrative approach facilitates a real-time detection of this family of organic compounds, by reducing the time of analysis to less than one hour. Additionally, the use of a lab-on-a-chip platform delivers a portable solution that could be used in situ.

Optimization of a displacement assay that investigates the presence and concentration of Benzo[a]pyrene in water, allows with the miniaturization of the standard ELISA format into a highly accurate system that provides fast results. The limits of detection obtained are comparable to those of available state-of-the art tools, and achieve the values set by European Drinking Water Directive, 0.10ng/l, as the limit for PAHs in drinking water.
Gravimetric humidity sensor based on ZnO nanorods covered piezoresistive Si microcantilever
Jiushuai Xu, Maik Bertke, Xiaojing Li, et al.
A ZnO nanorods film covered silicon resonant cantilever sensor is developed for atmosphere humidity detection by monitoring the resonant frequency shifts induced by the additional weight of adsorbed water molecules. Two different crystalline seed-layer deposition methods were applied to grow different nanorods films. The morphology of the ZnO films were characterized and the sensor sensitivities were measured under different relative humidity (RH) levels. The experiments results showed that this novel humidity sensor with ZnO nanorods has a sensitivity of 101.5 ± 12.0 ppm/RH% (amount of adsorbed water of 36.9 ± 4.4 ng/RH%), indicating its potential for portable sensing applications.
MEMS-based array for hydrogen sulfide detection employing a phase transition
B. Bierer, C. Dinc, H. Gao, et al.
The monitoring of hydrogen sulfide in biogas is crucial due to its highly corrosive properties. Most notably, the lifetime of heat and power generation machinery suffers from high levels of hydrogen sulfide. Here an approach to enable large-scale, low cost deployment of selective, quasi-continuous hydrogen sulfide detection systems is presented. A chip featuring three individually controllable hotplates has been developed for this purpose. Each hotplate device consists of a heating structure and an interdigitated electrode structure, which we use to control the temperature and determine the resistivity of copper(II)oxide nanospheres, respectively. The fundamental process to determine the hydrogen sulfide concentration is based on a phase transition that occurs in the temperature regime below 200°C. The transition process may be reversed at temperatures above 300°C thus resetting the sensing layer. However, the reversal takes times, which is why we use a total of six hotplates simultaneously to enable a quasi-continuous monitoring of the hydrogen sulfide concentration.
Chemical and Biochemical Sensors II
icon_mobile_dropdown
Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator
In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic’s diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.
Inkjet-printed dissolved oxygen and pH sensors on flexible plastic substrates
A. Moya, M. Zea, E. Sowade, et al.
There are a broad range of applications such as analytical sensors, biosensing and medical applications that require the monitoring of dissolved oxygen (DO) and pH using sensitive, stable, compact and low cost sensors. Here we develop full inkjet printing sensors to measure DO and pH. They have been fabricated using commercially available gold and platinum inks in plastic substrates. The inks are specially designed formulation which allows their sintering at temperatures as low as 150 and 190 °C for Au and Pt respectively. This is a key point in the development of low-cost sensors made on plastic and paper substrates. These sensors integrate in a single platform all the basic elements for pH and DO recording, allowing the measures without any external electrode. The DO is directly measured with a gold working electrode, and the pH sensors is achieved after electrodepositing iridium oxide film over platinum working electrode. The printed electrodes for DO sensing exhibits excellent linearity between 0 and 8 mg L _ 1 range, with correlation factors greater than 0.99, obtaining low limits of detection, 0.17 mgL _ 1 and a sensitivity of 0.06 A(mgL) _ 1. IrOx pH sensors exhibit a super-Nernstian response in sensitivity repeatedly and reversibly between 65 mV/pH in the pH range of 3 to 10. This work demonstrates that these sensors are suitable for the determination of DO and pH and provide a cost-effective solution for future electrochemical monitoring systems.
Wax microfluidics light-addressable valve with multiple actuation
M. Díaz-González, G. Boix, C. Fernández-Sánchez, et al.
This work reports on the design, fabrication and performance of a novel light-actuated wax microvalve. This valve is capable of multiple-actuation (30 and 15 open-close cycles in air and water, correspondingly), shows a fast response (≤500 ms) and has a low energy-consumption per actuation (≤1 J). The valve is inherently latched in both open and close states and is leak-proof to at least 80 kPa. It is actuated (both open and close) by light pulses from an external LED. Many valves (< 100 cm2) can be easily integrated in a single chip with a wax microfluidics technology. Fabrication is based on a low-cost and fast prototyping process compatible with the presence of temperature sensitive biocomponents.
Development of biosensors for non-invasive measurements of heart failure biomarkers in saliva
Albert Alcacer, Angelos Streklas, Abdoullatif Baraket, et al.
Biomedical engineering research today is focused on non-invasive techniques for detection of biomarkers related to specific health issues 1. Three metal layer microelectrode (μE) sensors have been implemented to detect specific biomarkers which can be found in human saliva related with heart failure problems 2 such as interleukin and Tumore Necrosis Factor-α (TNF-α), and used as highly sensitive saliva sensors. We designed specialized μEs combining different technologies for multiple measurements aiming to a lab-on-a-chip future integration. Measurements are based to basic principles of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Thus, certain planar technology was used involving three metal layers of gold, platinum and silver deposited over an oxidized silicon substrate following standard cleanroom procedures of lithography for the definition of μEs, sputtering physical vapor deposition (PVD) for gold, evaporation PVD for silver and platinum, and plasma enhanced chemical vapor deposition (PECVD) for passivation layer of silicon nitride.
Physical Sensors I
icon_mobile_dropdown
MEMS direction finding acoustic sensor
Gamani Karunasiri, Fabio Alves, William Swan
Conventional directional sound sensing systems employ an array of spatially separated microphones to achieve directivity. However, there are insects such as the Ormia ochracea fly that can determine the direction of sound using a miniature hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are coupled mechanically with a separation of only 0.5 mm and yet have a remarkable sensitivity to the direction of sound. The MEMS based sensor mimicking the fly’s hearing system was fabricated using an SOI substrate with a 25 μm device layer. The sensor consists of two 1.5 mm x1.6 mm wings connected in the middle by a 2.7 mm x 30 μm bridge. The entire structure is connected to the substrate by two torsional legs at the center. The frequency response of the sensor showed two resonance frequencies at approximately 1.1 kHz (rocking) and 1.5 kHz (bending). The resonance at 1.1 kHz is due to rocking of the wings by twisting the legs and the other at 1.5 kHz is due to bending of the bridge. The response of the sensor was probed electronically using comb finger capacitors integrated to the edges of the wings and with the help of an MS3110 chip. A peak output voltage of about 9V/Pa was measured for sound incident normal to the device at the resonance frequency of the bending mode. The bearing of the incident sound under these conditions could be determined to within a few degrees. These findings indicate the potential use of the MEMS sensor to locate sound sources with high accuracy.
A multi-functional MEMS-SPM for quantitative characterization of nano-objects
Zhi Li, Sai Gao, Uwe Brand, et al.
Based upon the micro-fabrication technology, a series of MEMS scanning probe microscopes (MEMS-SPM) have been developed in the national metrology institute Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. In comparison with those traditional AFMs, the MEMS-SPM features generally a vertical deflection up to 10 μm with a resolution of 0.2 nm, a non-linearity less than 0.03%, and a testing force up to several hundreds of μN with a force resolution down to 1 nN by means of a capacitive displacement sensing technique. As a result, these MEMS-SPMs can be successfully applied in the field of nanodimensional and nanomechanical metrology. Mechanical design of the MEMS-SPM is reported in this manuscript. Proof-of-principle measurements using a prototype of the MEMS-SPM are detailed in this manuscript, verifying the capabilities of the MEMS-SPM.
Asymmetric resonance response analysis of a thermally excited silicon microcantilever for mass-sensitive nanoparticle detection
Maik Bertke, Gerry Hamdana, Wenze Wu, et al.
The asymmetric resonance responses of a thermally actuated silicon microcantilever of a portable, cantilever-based nanoparticle detector (Cantor) is analysed. For airborne nanoparticle concentration measurements, the cantilever is excited in its first in-plane bending mode by an integrated p-type heating actuator. The mass-sensitive nanoparticle (NP) detection is based on the resonance frequency (f0) shifting due to the deposition of NPs. A homemade phase-locked loop (PLL) circuit is developed for tracking of f0. For deflection sensing the cantilever contains an integrated piezo-resistive Wheatstone bridge (WB). A new fitting function based on the Fano resonance is proposed for analysing the asymmetric resonance curves including a method for calculating the quality factor Q from the fitting parameters. To obtain a better understanding, we introduce an electrical equivalent circuit diagram (ECD) comprising a series resonant circuit (SRC) for the cantilever resonator and voltage sources for the parasitics, which enables us to simulate the asymmetric resonance response and discuss the possible causes. Furthermore, we compare the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator revealing parasitic heating of the WB as the origin of the asymmetry. Moreover, we are able to model the phase component of the sensor output using the ECD. Knowing and understanding the phase response is crucial to the design of the PLL and thus the next generation of Cantor.
Thermoelectric bolometers based on silicon membranes
Aapo Varpula, Andrey V. Timofeev, Andrey Shchepetov, et al.
State-of-the-art high performance IR sensing and imaging systems utilize highly expensive photodetector technology, which requires exotic and toxic materials and cooling. Cost-effective alternatives, uncooled bolometer detectors, are widely used in commercial long-wave IR (LWIR) systems. Compared to the cooled detectors they are much slower and have approximately an order of magnitude lower detectivity in the LWIR. We present uncooled bolometer technology which is foreseen to be capable of narrowing the gap between the cooled and uncooled technologies. The proposed technology is based on ultra-thin silicon membranes, the thermal conductivity and electrical properties of which can be controlled by membrane thickness and doping, respectively. The thermal signal is transduced into electric voltage using thermocouple consisting of highly-doped n and p type Si beams. Reducing the thickness of the Si membrane improves the performance (i.e. sensitivity and speed) as thermal conductivity and thermal mass of Si membrane decreases with decreasing thickness. Based on experimental data we estimate the performance of these uncooled thermoelectric bolometers.
Physical Sensors II
icon_mobile_dropdown
Oscillator circuit for monitoring the gas damping effect of piezoelectric microresonators
J. Toledo, V. Ruiz-Díez, P. Schwarz, et al.
In this work, an aluminium nitride based piezoelectric resonator (05-mode) was fabricated and characterized to study how various factors, such as pressure, gas composition, the resonator geometry or the order of the vibrational mode, influence the resonant frequency and quality factor of micro resonators.

In order to determine the resonant parameters of interest, an interface circuit was implemented and included within a closed-loop scheme. The effect of viscosity and density of the gases under test on the resonant parameters can be determined through a calibration process using different gases, an impedance analyser and theoretical values of density and viscosity reported in the literature.

Depending on gas species different gas damping effects in the molecular, transitional and viscous flow regimes were observed. However, as the resonant mode number increases and therefore the resonant frequency, the acoustic wavelength reduces, the contribution of acoustic effects on the energy loss cannot be neglected any more in comparison with viscous effects. Our results demonstrate the performance of the resonator in different gases (Air, N2, Ar, CO2 and He) and pressures (0.1-950 mbar) by developing and applying specific experimental setup.
Comparative assessment of PVDF and PVDF-TrFE piezoelectric polymers for flexible actuators applications
In this paper, a comparison between PVDF and PVDF-TrFE films in terms of deposition conditions and their effect on the piezoelectric response is presented. Solutions of PVDF and PVDF-TrFE were prepared and deposited via spin-coating on different substrates. For the post-processing, special interest was taken to phase inversion at different temperatures. Other protocols, such as baking for removal of solvent and crystallinity enhancement were also considered. Different characterization techniques were used in order to determine piezoelectric response of the manufactured samples. Values as high as 5 pm/V were obtained.
Thin film system with integrated load and temperature sensors for the technical application in deep drawing process
Saskia Biehl, Nancy Paetsch, Eike Meyer-Kornblum
In these days industry 4.0 resounded throughout the land and means the fourth industrial revolution. The industry has to tackle the task of a flexible and customer-oriented production. Therefor the need of sensor systems for the measurement of temperature and load, the two most important categories in production, is rising. For getting the real specification during the production process the integration of sensor elements in high load regions of machinery is very important. Thus wear resistant thin film sensor systems directly applied onto the surface of plant components are in development. These multilayer systems combine excellent wear resistance with sensory behaviour. The sensor data will lead to a deeper process understanding, to optimization of simulation tools, to reduction of rejects and to an improvement of flexibility in production.
Materials and Processes
icon_mobile_dropdown
Low cost nanomechanical surfaces stress based sensors fabricated by hybrid materials
P. Escudero, J. Yeste, R. Villa, et al.
We present the fabrication of nanomechanical surface stress based transducers by using the nowadays knowns as smart materials, to achieve a power-free array of sensors that change their reflective color depending on the surface stress change induced on each sensor. Nanocomposite materials of elastomeric polymers and ordered nanoparticles embedded inside the polymer were chosen for the fabrication process. These composite materials, besides being cheap and easily fabricated in mass production, present a mechanochromic behavior producing a color change of the material when applying a deformation process mainly due to the change in the distance between nanoparticles. We have fabricated arrays of mechanochromic membranes by infiltrating colloidal photonic crystals of polystyrene nanoparticles with Polydimethylsiloxane (PDMS). Hybrids PDMS and 3D or 2D colloidal photonic crystals were prepared, and compared its sensitivity to strain changes. The color, due to the Bragg diffraction (3D) or light scattering (2D), was analyzed by UV-visible spectrometry.
Zirconium diboride thin films for use in high temperature sensors and MEMS devices
David M. Stewart, George P. Bernhardt, Robert J. Lad
Sensors and MEMS devices operating in high temperature environments require stable thin films with high electrical conductivity for use as electrodes, bond pads, and other components. Metal films are unreliable because of thermodynamically driven morphological instability and agglomeration over long times. Zirconium diboride (ZrB2) is an ultra-high temperature conducting ceramic with a melting point of 3245°C, with low atomic diffusion rates compared to other materials. To evaluate ZrB2 as a high temperature film, 200 nm thick ZrB2 films were synthesized on r-sapphire substrates using e-beam co-evaporation of elemental Zr and B sources. Film stability was characterized after post-deposition thermal treatments from 600-1000°C in both reducing (vacuum) and oxidizing (air) environments. ZrB2 films deposited at room temperature are amorphous, but have short-range order characteristic of ZrB2 bonding. ZrB2 films grown at 600°C are polycrystalline with preferred <0001< texture, whereas at 850°C grains with preferred <10-10< and <10-11< texture become dominant. Negligible grain growth or morphology changes occur after annealing at 850°C for 55 hours in vacuum, and film electrical conductivity remains <105 S/m. Annealing in air, however, leads to ZrB2 film decomposition into ZrO2 and B2O3 phases, the latter of which is volatile. X-ray diffraction indicates that a 50 nm thick hexagonal boron nitride (h-BN) capping layer grown on top of ZrB2 via magnetron sputtering hinders oxidation, but the ZrB2 eventually transforms to ZrO2. These results indicate that ZrB2 films are attractive for potential use in sensors and MEMS devices in high temperature reducing environments, and for short times in oxidizing environments when covered with a h-BN capping layer.
FT-IR analysis of high temperature annealing effects in a-SiC:H thin films
Tobias Frischmuth, Michael Schneider, Thomas Grille, et al.
Hydrogenated amorphous SiC (a-SiC:H) is an attractive material for MEMS applications where high robustness or operation in harsh environments is targeted. In previous publications, it was demonstrated, that the properties of a-SiC:H thin films can be tailored over a wide range by changing the auxiliary table excitation power of a dual plasma source deposition process using an inductively coupled plasma-enhanced chemical vapour deposition system. In this work, the annealing behavior of dual plasma source deposited a-SiC:H thin films under argon atmosphere is investigated by using Fourier transform infrared (FT-IR) spectroscopy for chemical analysis. All investigated layers show a decrease of hydrogen containing bonds (X-Hx) and an increase of Si-C bonds with increasing annealing temperature in the FT-IR spectrum. This behaviour is directly linked to the effusion of hydrogen from the thin films at elevated temperatures. In addition, films deposited at higher auxiliary plasma power show more X-Hx and less Si-C bonds, indicating a higher hydrogen amount in those films. All layers shrink with increasing annealing temperature due to the effusion of hydrogen with a stronger shrink at higher PT values caused by the increased hydrogen amount. This shrink also leads to a densification of the thin films.
Energy Devices I
icon_mobile_dropdown
Micro solid oxide fuel cells: a new generation of micro-power sources for portable applications
Francesco Chiabrera, Iñigo Garbayo, Nerea Alayo, et al.
Portable electronic devices are already an indispensable part of our daily life; and their increasing number and demand for higher performance is becoming a challenge for the research community. In particular, a major concern is the way to efficiently power these energy-demanding devices, assuring long grid independency with high efficiency, sustainability and cheap production. In this context, technologies beyond Li-ion are receiving increasing attention, among which the development of micro solid oxide fuel cells (μSOFC) stands out. In particular, μSOFC provides a high energy density, high efficiency and opens the possibility to the use of different fuels, such as hydrocarbons. Yet, its high operating temperature has typically hindered its application as miniaturized portable device. Recent advances have however set a completely new range of lower operating temperatures, i.e. 350-450°C, as compared to the typical <900°C needed for classical bulk SOFC systems. In this work, a comprehensive review of the status of the technology is presented. The main achievements, as well as the most important challenges still pending are discussed, regarding (i.) the cell design and microfabrication, and (ii.) the integration of functional electrolyte and electrode materials. To conclude, the different strategies foreseen for a wide deployment of the technology as new portable power source are underlined.
Alkaline fuel cell with nitride membrane
Shen-Huei Sun, Moritz Pilaski, Jens Wartmann, et al.
The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.
Parameter identification from frequency response of MEMS energy harvesters
Binh Duc Truong, Cuong Phu Le, Einar Halvorsen
In this study, we present theoretical analysis and numerical results on a simple technique for extracting unknown model parameters for MEMS electrostatic energy harvesters. We show that the frequency response can be utilized in a least-squares minimization scheme to estimate the damping coefficient, mechanical stiffness and transducer/load parasitic capacitances. The accuracy of the method is tested by application to simulated cases of linear and non-linear harvesters. A single data sweep from such a pseudo-experiment suffices to determine the unknown parameters of the electromechanical model with accuracy. The method is shown to work satisfactorily for both linear and nonlinear devices.
Powering a leadless pacemaker using a PiezoMEMS energy harvester
Nathan Jackson, Oskar Olszewski, Cian O'Murchu, et al.
MEMS based vibrational energy harvesting devices have been a highly researched topic over the past decade. The application targeted in this paper focuses on a leadless pacemaker that will be implanted in the right ventricle of the heart. A leadless pacemaker requires the same functionality as a normal pacemaker, but with significantly reduced volume. The reduced volume limits the space for a battery; therefore an energy harvesting device is required. This paper compares varying the dimensions of a linear MEMS based piezoelectric energy harvester that can harvest energy from the mechanical vibrations of the heart due to shock induced vibration. Typical MEMS linear energy harvesting devices operate at high frequency (<50 Hz) with low acceleration (< 1g). The force generated from the heart acts as a series of impulses as opposed to traditional sinusoidal vibration force with high acceleration (1-4 g). Therefore the design of a MEMS harvester that is based on shock-induced vibration is necessary. PiezoMEMS energy harvesting devices consisting of a silicon substrate and mass with aluminium nitride piezoelectric material were developed and characterized using acceleration forces that mimic the heartbeat. Peak powers of up to 25μW were obtained at 1 g acceleration with a powder density of approximately 1.5 mW cm-3.
Energy Devices II
icon_mobile_dropdown
Designing, modelling and testing of vibration energy harvester with nonlinear stiffness
This paper is focused on a design of a piezoelectric vibration energy harvester with an additional nonlinear stiffness. Common piezoelectric energy harvesters consist of a cantilever with piezoceramic layers and a tip mass for tuning up the operation frequency. This system is excited by mechanical vibrations and it provides an autonomous source of electrical energy. A linear stiffness of the cantilever has very narrow resonance frequency bandwidth which makes the piezoelectric cantilever sensitive to tuning up of the resonance frequency. It could be tuned only for one narrow vibration frequency bandwidth. The piezoelectric vibration energy harvester with nonlinear stiffness could provide the resonance frequency bandwidth wider and it allows energy harvesting from the wider bandwidth of excitation vibrations. The additional nonlinear stiffness is implemented by using a set of permanent magnets. A simulation and an experiment were performed and the results show a wider resonance bandwidth. However, it depended on direction of vibration frequency sweeping. The frequency bandwidth is more than three times wider but there is only a half resonance amplitude of oscillations. That means that the maximal harvested power is lower but the average harvested power around resonance frequency was higher which was the goal of this research.
Comparison of methods for static charge energy harvesting on aircraft
M. E. Kiziroglou, Th. Becker, E. M. Yeatman, et al.
In this paper, the possibility of using the static charge that accumulates on aircraft during flight as a source to power monitoring sensors is examined. The assessed methods include using a pair of materials with different air-flow charging rates, contact discharging of the fuselage to neutral metallic bodies, charge motion induction by the fuselage field and inductive harvesting of fuselage-to-air corona discharges at static discharge wicks. The installation and potential advantages of each method are discussed. The feasibility of directly charging a storage capacitor from accumulated static charge is studied experimentally, demonstrating a voltage of 25V on a 25nF capacitor.
Improved thermal and electrical design for an all-Si thermoelectric micropower source
I. Donmez, M. Salleras, C. Calaza, et al.
This work presents current achievements on the fabrication and characterization of an all-Si based planar thermoelectric microgenerator. Ordered dense arrays of Vapor-Liquid-Solid (VLS) grown p-type Si nanowires (Si NWs) are integrated in predefined thermally isolated microstructures as nanostructured thermoelectric active material. Optimizations in device processing and architecture that improved both thermal and electrical performances of the microgenerator resulted in a 70 fold increase in power output. Furthermore, the performance of microgenerators with Si NWs is compared to that of microgenerators with micron-sized Si beams as active material. Additionally, a 60 fold improvement in power output is observed by placing a cold-finger on top of the thermally isolated microstructure to demonstrate the effect of a heat exchanger, which is currently being implemented on the microgenerator.
Integrated TiN coated porous silicon supercapacitor with large capacitance per foot print
Kestutis Grigoras, Leif Grönberg, Jouni Ahopelto, et al.
We have fabricated a micro-supercapacitor with porous silicon electrodes coated with TiN by atomic layer deposition technique. The coating provides an efficient surface passivation and high electrical conductivity of the electrodes, resulting in stable and almost ideal electrochemical double layer capacitor behavior with characteristics comparable to the best carbon based micro-supercapacitors. Stability of the supercapacitor is verified by performing 50 000 voltammetry cycles with high capacitance retention obtained. Silicon microfabrication techniques facilitate integration of both supercapacitor electrodes inside the silicon substrate and, in this work, such in-chip supercapacitor is demonstrated. This approach allows realization of very high capacitance per foot print area. The in-chip micro-supercapacitor can be integrated with energy harvesting elements and can be used in wearable and implantable microdevices.
Interfacing and System Integration
icon_mobile_dropdown
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
G. Royo, C. Sánchez-Azqueta, C. Gimeno, et al.
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
Robust design of an inkjet-printed capacitive sensor for position tracking of a MOEMS-mirror in a Michelson interferometer setup
To guarantee high performance of Micro Optical Electro Mechanical Systems (MOEMS), precise position feedback is crucial. To overcome drawbacks of widely used optical feedback, we propose an inkjet-printed capacitive position sensor as smart packaging solution. Printing processes suffer from tolerances in excess of those from standard processes. Thus, FEM simulations covering assumed tolerances of the system are adopted. These simulations are structured following a Design Of Computer Experiments (DOCE) and are then employed to determine a optimal sensor design. Based on the simulation results, statistical models are adopted for the dynamic system. These models are to be used together with specifically designed hardware, considered to cope with challenging requirements of ≈50nm position accuracy at 10MS/s with 1000μm measurement range. Noise analysis is performed considering the influence of uncertainties to assess resolution and bandwidth capabilities.
Universal and inductorless DC/DC converter for multi-output power supplies in sensor and actuator networks
This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn’t optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.
Poster Session
icon_mobile_dropdown
Anti-collision radio-frequency identification system using passive SAW tags
A. V. Sorokin, A. P. Shepeta
Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.
Mini- and microgenerators applicable in the MEMS technology
P. Fiala, Z. Szabo, P. Marcon, et al.
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday’s law of induction.
Modeling the microstructure of surface by applying BRDF function
The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.
Actuation control of a PiezoMEMS biomimetic robotic jellyfish
Alvaro Alejandre, Oskar Olszewski, Nathan Jackson
Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.
MEMS-based seed generator applied to a chaotic stream cipher
M. Garcia-Bosque, A. Pérez, C. Sánchez-Azqueta, et al.
In this work, we have studied the possibility of using a MEMS accelerometer to generate seeds for a secure cryptosystem. The noise signal generated by the accelerometer at rest has been studied and, after a post-processing process, has been used to generate the initial parameters of a stream cipher based on a piecewise linear chaotic map. The encryption algorithm has been implemented in a Xilinx Virtex 7 FPGA achieving a throughput of 200 Mbps using 390 LUTS. The resulting sequences generated by this system have been subjected to the NIST randomness tests, passing all of them, indicating that the whole encryption system is secure.
Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting
Z. Hadas, J. Smilek, O. Rubes
The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.
Gold/polypyrrole nanorods for gas sensing application
Milena Šetka, Jana Drbohlavová, Stella Vallejos, et al.
This work describes the preparation of gold/polypyrrole nanorods (AuPPy NRs) using anodized alumina oxide (AAO) template and both pulsed galvanic deposition and electropolymerization for the deposition of Au and polypyrrole (PPy) nanorods (NRs), respectively. Characterization of the whole structure after AAO etching revealed the formation of a high density of NRs along the substrate with uniform diameters of approximately 50 nm and total lengths of 700 nm, the last corresponding to 1/3 and 2/3 of the length of the Au and PPy NRs, respectively. These structures are provided of bottom/top electrodes and a heating element coupled to the backside of the substrate, and their gas sensing properties towards various concentrations of NO2 in resistive configuration are presented.
Four segment piezo based micropump
Rakesh Kumar Haldkar, Tanuja Sheorey, Vijay Kumar Gupta, et al.
In recent years, micropumps have been investigated by various researchers as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric based micro pumps are more popular as compared to other smart materials being explored. In this paper, four segment piezoelectric bimorph actuator (FSPB) are compared with circular disc piezoelectric bimorph actuator (CDPB) based pump. The static and transient behaviors under various electric fields have been analyzed by using ANSYS 12.1(R) finite element software. Simulation results show that dividing the actuator in segment can amplify the deflection and improve the performance of the pump.
Computational model and simulation for the whispering gallery modes inside micro-optical cavity
Amir R. Ali, Abanoub M. Erian, Kirelloss Shokry
A computational model for the whispering gallery modes inside a microsphere resonator is presented. In the archetypical microsphere resonator sensor, a tunable laser light beam is injected into an optical fiber and coupled with the resonator’s cavity. The resonant optical coupling is achieved by bringing the fiber in the vicinity of the cavity’s evanescent field. The transmission spectrum is then observed to detect the WGM shifts. In this paper, two-dimensional models of a single laser source put near the equator of a microsphere are simulated using COMSOL Multi-physics 5.1 electromagnetic waves, beam envelopes library. Afterwards, a three-dimensional model of two laser sources put near the horizontal and vertical equators of a microsphere is computed. The transmission spectrum of both simulations was taken and cross correlation was performed on them. Results show a big similarity between both simulations and could bring a breakthrough in the area of optical sensors.
Influence of binding material of PZT coating on microresonator's electrical and mechanical properties
Giedrius Janusas, Asta Guobiene, Arvydas Palevicius, et al.
Microresonators are fundamental components integrated in hosts of MEMS applications: covering the automotive sector, the telecommunication industry, electronic equipment for surface/material characterization and motion sensing, and etc. The aim of this paper is to investigate the mechanical and electrical properties of PZT film fabricated with three binding materials: polyvinyl butyral (PVB), polymethyl methacrylate (PMMA) and polystyrene (PS) and to evaluate applicability in control of microresonators Q factor. Micro particles of PZT powder were mixed with 20% solution of PVB, PMMA and PS in benzyl alcohol. For investigation of mechanical and electrical properties multilayer cantilevers were made. Obtained PZT and polymer paste was screen printed on copper (thickness 40 μm) using polyester monofilament screen meshes (layer thickness 50 μm) and dried for 30 min at 100°C. Electric dipoles of the PZT particles in composite material were aligned using high voltage generator (5 kV) and a custom–made holder. Electric field was held for 30 min. Surfaces of the applied films were investigated by Atomic Force Microscope NanoWizard(R)3 NanoScience. Dynamic and electrical characteristics of the multilayer were investigated using laser triangular displacement sensor LK-G3000. The measured vibration amplitude and generated electrical potential was collected with USB oscilloscope PicoScope 3424. As the results showed, these cantilevers were able to transform mechanical strain energy into electric potential and, v.v. However, roughness of PZT coatings with PMMA and PS were higher, what could be the reason of the worse quality of the top electrode. However, the main advantage of the created composite piezoelectric material is the possibility to apply it on any uniform or non-uniform vibrating surface and to transform low frequency vibrations into electricity.
Colorimetric sensor for bad odor detection using automated color correction
K. Schmitt, K. Tarantik, C. Pannek, et al.
Colorimetric sensors based on color-changing dyes offer a convenient approach for the quantitative measurement of gases. An integrated, mobile colorimetric sensor can be particularly helpful for occasional gas measurements, such as informal air quality checks for bad odors. In these situations, the main requirement is high availability, easy usage, and high specificity towards one single chemical compound, combined with cost-efficient production. In this contribution, we show how a well stablished colorimetric method can be adapted for easy operation and readout, making it suitable for the untrained end user.

As an example, we present the use of pH indicators for the selective and reversible detection of NH3 in air (one relevant gas contributing to bad odors) using gas-sensitive layers dip coated on glass substrates. Our results show that the method can be adapted to detect NH3 concentrations lower than 1 ppm, with measure-to-result times in the range of a few minutes. We demonstrate that the color measurements can be carried out with the optical signals of RGB sensors, without losing quantitative performance.
Temperature simulation at ZnO surface processed by laser interference lithography
L. Parellada-Monreal, M. Martinez-Calderón, I. Castro-Hurtado, et al.
ZnO thin film on alumina has been deposited by RF sputtering and processed by two dimensional direct laser interference patterning (DLIP) using a nanosecond laser (λ=355nm). The thermodynamic and structural properties have been investigated.

Morphological characterization has shown a line-pattern structure with small alterations depending on the fluence of the laser (85 mJ/cm2 or 165 mJ/cm2). In order to understand these modifications, a simulation has been carried out to model the transient temperature during the DLIP to study the temperature reached by the ZnO surface for the different fluences. Moreover, a comparison with a non-interference energy distribution pulse is also simulated to corroborate the model.

For samples processed by DLIP, a thermal annealing effect has been noticed when temperatures at the surface are between 1000K and 1800K. Due to the slow cooling process, a possible recrystallization of the material similar to a thermal treatment is obtained. For temperatures close or higher than 1800K, the material starts to ablate.
Innovative metal thermo-compression wafer bonding for microelectronics and MEMS devices
With the continuously increasing level of integration for microelectronics and microelectromechanical systems (MEMS) devices, such as gyroscopes, accelerometers and bolometers, metal wafer bonding becomes progressively more importance. In the present work common metal wafer bonding techniques were categorized, described and compared. While devices produced with metal thermo-compression wafer bonding ensure high bonding quality and a high degree of reliability, the required bonding temperatures are very often close to the maximum complementary metal oxide semiconductor (CMOS) compatible process temperature (400-450°C). Based on a thermodynamic model of increasing the Gibbs free energy prior wafer bonding, in-situ ComBond(R) surface activation was applied to enable low-temperature Au-Au, Al-Al and Cu-Cu wafer bonding. Different aspects, such as bonding quality, dicing yield, bond strength, grain growth and elemental analysis across the initial bonding interface, were investigated. Based on these parameters successful wafer bonding was demonstrated at room temperature for Au-Au and Cu-Cu, and at 100°C for Al-Al wafer bonding.
Characterization of oscillator circuits for monitoring the density-viscosity of liquids by means of piezoelectric MEMS microresonators
J. Toledo, V. Ruiz-Díez, G. Pfusterschmied, et al.
Real-time monitoring of the physical properties of liquids, such as lubricants, is a very important issue for the automotive industry. For example, contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded as a precise and compact solution for tracking the viscosity and density of lubricant oils. In this work, we report a piezoelectric resonator, designed to resonate with the 4th order out-of-plane modal vibration, 15-mode, and the interface circuit and calibration process for the monitoring of oil dilution with diesel fuel.

In order to determine the resonance parameters of interest, i.e. resonant frequency and quality factor, an interface circuit was implemented and included within a closed-loop scheme. Two types of oscillator circuits were tested, a Phase-Locked Loop based on instrumentation, and a more compact version based on discrete electronics, showing similar resolution. Another objective of this work is the assessment of a calibration method for piezoelectric MEMS resonators in simultaneous density and viscosity sensing. An advanced calibration model, based on a Taylor series of the hydrodynamic function, was established as a suitable method for determining the density and viscosity with the lowest calibration error.

Our results demonstrate the performance of the resonator in different oil samples with viscosities up to 90 mPa•s. At the highest value, the quality factor measured at 25°C was around 22. The best resolution obtained was 2.4•10-6 g/ml for the density and 2.7•10-3 mPa•s for the viscosity, in pure lubricant oil SAE 0W30 at 90°C. Furthermore, the estimated density and viscosity values with the MEMS resonator were compared to those obtained with a commercial density-viscosity meter, reaching a mean calibration error in the best scenario of around 0.08% for the density and 3.8% for the viscosity.
Radio link design framework for WSN deployment and performance prediction
Sergio Saponara, Filippo Giannetti
For an easy implementation of wireless sensor and actuator networks (WSAN), the state-of-the-art is offering single-chip solutions embedding in the same device a microcontroller core with a wireless transceiver. These internet-on-chip devices support different protocols (Bluetooth, ZigBee, Bluetooth Low Energy, sub- GHz links), from about 300 MHz to 6 GHz, with max. sustained bit-rates from 250 kb/s (sub-GHz links) to 4 Mb/s (Wi-Fi), and different trade-offs between RX sensitivity (from -74 to -100 dBm), RX noise figure (few dB to 10 dB), maximum TX power (from 0 to 22 dBm), link distances, power consumption levels (from few mW to several hundreds of mW). One limit for their successful application is the missing of an easy-to-use modeling and simulation environment to plan their deployment. The need is to predict, before installing a network, at which distances the sensors can be deployed, the real achievable bit-rate, communication latency, outage probability, power consumption, battery duration. To this aim, this paper presents the H2AWKS (Harsh environment and Hardware Aware Wireless linK Simulator) simulator, which allows the planning of a WSAN taking into account environment constraints and hardware parameters. Applications of H2AWKS to real WSAN case studies prove that it is an easy to use simulation environment, which allows design exploration of the system performance of a WSAN as a function of the operating environment and of the hardware parameters of the used devices.
User centered integration of Internet of Things devices
This paper discusses an IoT framework which allows rapid and easy setup and customization of end-to-end solutions for field data collection and presentation; it is effective in the development of both informative and transactional applications for a wide range of application fields, such as home, industry and environment.

On the “far-end” of the chain are the IoT devices gathering the signals; they are developed used a full Model Based approach, where programming is not required: the TaskScript technology is used to this purpose, which supports a choice of physical boards and boxes equipped with a range of Input and Output interfaces, and with a Tcp/Ip interface. The development of the needed specific IoT devices takes advantage of the available “standard” hardware; the software development of the algorithms for sampling, conditioning and uploading signals to the Cloud is supported by a graphical-only IDE.

On the “near-end” of the chain is the presentation Interface, through which users can browse through the information provided by their IoT devices; it is implemented in a Conversational way, using the Bot paradigm: Bots are conversational automatons, to whom users can “chat”. They are accessed via mainstream Messenger programs, such as Telegram(C), Skype(C) or others, available on smartphones, tablets or desktops; unlike apps, bots do not need installation on the user device.

A message Broker has been implemented, to mediate among the far-end and the near-end of the chain, providing the needed services; its behavior is driven by a set of rules provided on a per-device basis, at configuration level; the Broker is able to store messages received from the devices, process and forward them to the specified recipient(s) according to the provided rules; finally, finally is it is able to send transactional commands, from users back to the requested device, to implement not only field observation but also field control.

IoT solutions implemented with the proposed solution are user friendly: users can literally "chat with their devices", asking for information, providing commands, and receiving alert notifications, all with their favorite (mobile) terminal.

To demonstrate de effectiveness of the proposed scenario, several solutions have been set up for industrial applications; such “mobile dashboards” are presently used by managers and technicians to keep track of their machines and plants.
Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe
Eunjung Koh, Ha Jeong Song, Na Young Kwon, et al.
Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).