Proceedings Volume 10231

Optical Sensors 2017

cover
Proceedings Volume 10231

Optical Sensors 2017

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 20 July 2017
Contents: 11 Sessions, 74 Papers, 17 Presentations
Conference: SPIE Optics + Optoelectronics 2017
Volume Number: 10231

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10231
  • Raman Spectroscopy
  • Plasmonic Sensing I
  • Plasmonic Sensing II
  • Components, Subsystems, Data Processing I
  • Components, Subsystems, Data Processing II
  • Chemical Sensors I
  • Chemical Sensors II
  • Physical Sensors
  • Biosensors I
  • Poster Session
Front Matter: Volume 10231
icon_mobile_dropdown
Front Matter: Volume 10231
This PDF file contains the front matter associated with SPIE Proceedings Volume 10231, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Raman Spectroscopy
icon_mobile_dropdown
Tip-enhanced Raman spectroscopy for nanoscale chemical analysis and imaging (Conference Presentation)
Renato Zenobi
Tip-enhanced Raman Spectroscopy (TERS) is a nanoscale chemical analysis and imaging method with a spatial resolution on the order of 10 nm. TERS is similar to SERS, and relies on enhancement of the local electromagnetic field in the vicinity of a plasmonic nanostructure that is scanned over a sample by means of a scanning probe microscope, using either AFM or STM feedback. The local enhancement of Raman scattered light is many orders of magnitude, large enough to render monomolecular films spectroscopically visible that would otherwise be optically too thin to be analyzed with conventional vibrational spectroscopy. The working principle and experimental realization of TERS will first be presented [1]. An important advance concerns the production long-lived silver TERS tips that, thanks to the presence of a chemical protection layer, live for many weeks as opposed to the typical lifetime of ≈1 day for bare Ag tips [2]. The focus of this presentation will be on applications of TERS to the spatially resolved chemical analysis of molecular nanomaterials, including graphene, self-assembled monolayers [3], and a novel class of materials, 2D polymers [4]. References: [1] J. Stadler, T. Schmid, and R. Zenobi, Developments in and Practical Guidelines for Tip-Enhanced Raman Spectroscopy, Nanoscale 4, 1856 – 1870 (2012). [2] L. Opilik, Ü. Dogan, C.-Y. Li, B. Stephanidis, J.-F. Li, an R. Zenobi, Chemical Production of Thin Protective Coatings on Optical Nanotips for Tip-Enhanced Raman Spectroscopy, J. Phys. Chem. C 120, 20828-20832 (2016). [3] W.-I. Lin et al., Tip-Enhanced Raman Spectroscopic Imaging Shows Segregation within Binary Self-Assembled Thiol Monolayers at Ambient Conditions, Anal. Bioanal. Chem. 407, 8197-8204 (2015). [4] W. Dai et al., Synthesis of a Two-Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface, Angew. Chem. Int. Ed. 55, 213-217 (2016).
SERS substrates for in-situ biosensing (Conference Presentation)
Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature materials, 308(7), 2008. [2] T. Y. Jeon1, D. J. Kim, S. Park, S. Kim and D. Kim., "Nanostructured plasmonic substrates for use as SERS sensors," Nanocovergence, 3(18), 2016.
SERS investigations and electrical recording of neuronal networks with three-dimensional plasmonic nanoantennas (Conference Presentation)
SERS investigations and electrical recording of neuronal networks with three-dimensional plasmonic nanoantennas Michele Dipalo, Valeria Caprettini, Anbrea Barbaglia, Laura Lovato, Francesco De Angelis e-mail: francesco.deangelis@iit.it Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova Biological systems are analysed mainly by optical, chemical or electrical methods. Normally each of these techniques provides only partial information about the environment, while combined investigations could reveal new phenomena occurring in complex systems such as in-vitro neuronal networks. Aiming at the merging of optical and electrical investigations of biological samples, we introduced three-dimensional plasmonic nanoantennas on CMOS-based electrical sensors [1]. The overall device is then capable of enhanced Raman Analysis of cultured cells combined with electrical recording of neuronal activity. The Raman measurements show a much higher sensitivity when performed on the tip of the nanoantenna in respect to the flat substrate [2]; this effect is a combination of the high plasmonic field enhancement and of the tight adhesion of cells on the nanoantenna tip. Furthermore, when plasmonic opto-poration is exploited [3] the 3D nanoelectrodes are able to penetrate through the cell membrane thus accessing the intracellular environment. Our latest results (unpublished) show that the technique is completely non-invasive and solves many problems related to state-of-the-art intracellular recording approaches on large neuronal networks. This research received funding from ERC-IDEAS Program: “Neuro-Plasmonics” [Grant n. 616213]. References: [1] M. Dipalo, G. C. Messina, H. Amin, R. La Rocca, V. Shalabaeva, A. Simi, A. Maccione, P. Zilio, L. Berdondini, F. De Angelis, Nanoscale 2015, 7, 3703. [2] R. La Rocca, G. C. Messina, M. Dipalo, V. Shalabaeva, F. De Angelis, Small 2015, 11, 4632. [3] G. C. Messina et al., Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes. Advanced Materials 2015.
Plasmonic Sensing I
icon_mobile_dropdown
UV-SPR biosensor for biomolecular interaction studies
F. A. Geiss, S. Fossati, I. Khan, et al.
UV surface plasmon resonance (SPR) for direct in situ detection of protein binding events is reported. A crossed relief aluminum grating was employed for diffraction coupling to surface plasmons as an alternative to more commonly used attenuated total reflection method. Wavelength interrogation of SPR was carried out by using transmission measurements in order to probe odorant-binding protein 14 (OBP14) of the honey bee (Apis mellifera). The native oxide layer on the top of an aluminum grating sensor chip allows for covalent coupling of protein molecules by using regular silane-based linkers. The probing of bound OBP14 protein at UV with confined field of surface plasmons holds potential for further studies of interaction with recently developed artificial fluorescent odorants.
Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications
Shavkat Nizamov, Vitali Scherbahn, Vladimir M. Mirsky
Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.
Plasmonic Sensing II
icon_mobile_dropdown
Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)
Barbora Špašková, Nicholas Scott Lynn Jr., Jiří Slabý, et al.
There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.
Fabrication of plasmonic nanopore by using electron beam irradiation for optical bio-sensor
Seong Soo Choi, Myoung Jin Park, Chul Hee Han, et al.
The Au nano-hole surrounded by the periodic nano-patterns would provide the enhanced optical intensity. Hence, the nano-hole surrounded with periodic groove patterns can be utilized as single molecule nanobio optical sensor device. In this report, the nano-hole on the electron beam induced membrane surrounded by periodic groove patterns were fabricated by focused ion beam technique (FIB), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Initially, the Au films with three different thickness of 40 nm, 60 nm, and 200 nm were deposited on the SiN film by using an electron beam sputter-deposition technique, followed by removal of the supporting SiN film. The nanopore was formed on the electron beam induced membrane under the FESEM electron beam irradiation. Nanopore formation inside the Au aperture was controlled down to a few nanometer, by electron beam irradiations. The optical intensities from the biomolecules on the surfaces including Au coated pyramid with periodic groove patterns were investigated via surface enhanced Raman spectroscopy (SERS). The fabricated nanopore surrounded by periodic patterns can be utilized as a next generation single molecule bio optical sensor.
Investigation of plasmonic transmission in UT shaped graphene arrays
In this work, we studied the multi-band plasmonic UT graphene antenna arrays. The proposed model shows three different resonance frequencies. We show nearfield distributions of corresponding resonance frequencies and investigate the effect of the geometrical parameters, chemical potential, relaxation time, thickness of the substrate and different refractive index of the material on the spectral position of the UT-shaped graphene antenna.
The role of the oxide shell in the chemical functionalization of plasmonic gallium nanoparticles
S. Catalán-Gómez, M. Briones, A. Redondo-Cubero, et al.
Plasmonic Ga nanoparticles (NPs) were thermally oxidized at low temperature in order to increase the native Ga2O3 shell thickness and to improve their stability during the chemical functionalization. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed with the increasing annealing time due to the Ga2O3 thickness increase, and barely affecting the intensity of the plasmon resonance. This oxide layer enhances the stability of the NPs upon immersion in ethanol or water. The surface sensitivity properties of the as-grown and oxidized NPs were investigated by linking a thiol group from 6-Mercapto-1-hexanol through immersion. Ellipsometric spectra at the reversal polarization handedness (RPH) condition are in agreement with the Langmuir absorption model, indicating the formation of a thiol monolayer on the NPs.
Components, Subsystems, Data Processing I
icon_mobile_dropdown
A new concept for non-invasive optical sensing: random lasing
Federico Tommasi, Emilio Ignesti, Lorenzo Fini, et al.
Optical sensing has been subject to a great interest for the moderate intrusiveness of its operation. The introduction of random lasers in ’90s has opened the door for developing a new kind of optical sensors. In such a source, disorder is introduced within an inverted medium, increasing the lifetime of the radiation without the presence of an optical cavity. The striking point is that the spectral characteristics of the output emission are strongly dependent on the scattering properties of the medium, suggesting new methods to investigate disordered materials. Recently, a novel concept for optical sensing based on the physics of random laser has been reported,1 overcoming the limits due to the alteration of the investigated sample by injecting an active material. Here we present a characterization of such a kind of sensor, suggesting non-invasive and also in-vivo applications.
Use of VLC for indoors navigation with RGB LEDs and a-SiC:H photodetector
P. Louro, J. Costa, M. Vieira, et al.
In this research we present a Visible Light Communication (VLC) system for indoor positioning and navigation. The viability of this methodology was demonstrated in previous work for indoor positioning within the unit navigation cell. In this paper it is proposed to extend this concept for navigation in wider spaces that demand more than one navigation unit. The proposed system uses white RGB LEDs of wide divergence angle and a specific photodetector dedicated to the selective wavelengths detection of red, green and blue light. The photodetector is a multilayered pin-pin heterostructure based on a-SiC:H/a-Si:H, such that the spectral sensitivity can be controlled externally by steady state background light. The RGB emitters of the white LED were modulated with specific bit sequences and frequency to assign different optical excitations to each spatial region. The measurement of the induced photocurrent signal by the detector allows the identification of the position. For this purpose the decoding algorithm for the photocurrent signal processing uses the filtering properties of the photodetector for the recognition of the navigation cell word code, and detection of the wavelength and Fourier analysis for recognition of the signal frequency.
Coupled data transmission and indoor positioning by using transmitting trichromatic white LEDs and a SiC optical MUX/DEMUX mobile receiver
M. Vieira, M. A. Vieira, P. Vieira, et al.
In this paper, we present an indoor positioning system were trichromatic white LEDs are used both for illumination proposes and as transmitters, and an MUX/DEMUX device, based on a-SiC:H technology, is used as the mobile receiver. OOK modulation scheme was used, and it provides a good trade-off between system performance and implementation complexity. The receiver is implemented using a double p-i-n/pin SiC photodetector with light filtering properties. The relationship between the optical inputs (transmitted data) and the associated digital output levels (received data) is established and decoded. Two topologies are used and tested as lighting plans: the square and the triangular. The key differences between both topologies are discussed in the following. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The position of the device is estimated using the visible multilateration method by measuring the strength of the MUX signal from several non-collinear transmitters. The location and motion information is calculated by position mapping and estimating the location areas. For both topologies, the transmitted data information, indoor position and motion direction of the mobile device are determined. Data analysis showed that by using a pinpin double photodiode based on a a-SiC:H heterostucture as receiver, and RBGLEDs as transmitters it is possible not only to determine the mobile target’s position but also to infer the motion direction over time, along with the received information in each position.
Interrogation of super-structured FBG sensors based on discrete prolate spheroidal sequences
A. Triana, D. Pastor
We propose and demonstrate an interrogation method for optical sensors designed as Discrete Prolate Spheroidal Sequences (DPSS), since these devices are complex structures involving unique magnitude and phase response the demodulating method should be able to recover both magnitude and phase response in order to identify each device in the sensing network. To do so, we use a tunable, dual–wavelength source (Single Side Band modulation of the tunable laser carrier), sweeping over the working range of the sensors, the reflected signal from the sensors is sent to a Vector Network Analyzer (VNA) in which it is obtained the magnitude and phase ratio between the two reflected wavelengths. Experimental demonstration has been carried out. With a very good result for the manufacturing of DPSS structures, in the experiments, two DPSS sensors are placed in the same spectral region and one of them is temperature shifted. The correlation, phase and magnitude product, between the original sensor shape and the compounded measurement returns the central wavelength position of each one of the sensors with a proper ratio between the auto correlation peak (ACP) and the cross correlation signal (XC). In this way, feasibility of the interrogation technique for devices involving magnitude and phase distinction has been validated, not only to identify sensors in a measurement network but also to allow overlapping between them.
Smart image selection algorithm in analysis plane of the optical-electronic angle measuring sensor
Anton Nogin, Igor Konyakhin
The article is based on some research which is considering the three-axis angle measuring autocollimation sensor and smart image selection algorithm for it. In order to measure angular displacements around the three main coordinate axes (OX, ОY, and ОZ), special control elements are used. The use of a special control element generally improves the characteristics of the device, but it creates a problem of label overlapping. This issue creates a zone of inoperability of the device and makes measurement and control impossible. In this paper, the algorithm is proposed, and the results of its testing are presented. This algorithm can reduce the malfunction area thereby The range of measurements is extending and accuracy at the label overlapping is increasing. Application of this algorithm in autocollimation sensors with a special control element allows to reduce the size and cost of such devices significantly, and also it allows to control two or three angles simultaneously. The algorithm uses the Hough transform to find intersecting labels, and the magnitude of the gradient vector is used as the weight function.
Components, Subsystems, Data Processing II
icon_mobile_dropdown
GeSn/Ge quantum well photodetectors for short-wave infrared photodetection: experiments and modeling
Chia-Ho Tsai, Guo-En Chang
Group-IV GeSn material systems have recently considered as a new material for sensitive photodetection in the short-wave infrared (SWIR) region. The introduction of Sn into Ge can effectively narrow the bandgap energies, thereby extending the absorption edges toward the longer wavelengths and enabling effective photodetection in SWIR region. Here we present an experimental and modeling study of GeSn/Ge quantum well (QW) photodetectors on silicon substrates for effective SRIW photodetection. Epitaxial growth of pseudomorphic GeSn/Ge QW structures was realized on Ge-buffered silicon substrates using low-temperature molecular beam epitaxy. Normal incident GeSn/Ge QW photodetectors were then fabricated and characterized. The optical responsivity experiments demonstrate that the photodetection cutoff wavelengths is extended to beyond 1800 nm, enabling effective photodetection in SWIR spectral region. We then develop theoretical models to calculate the composition-dependent strained electron band structures, oscillation strengths, and optical absorption spectra for the pseudomorphic GeSn/Ge QW structures. The results show that Ge1-xSnx well sandwiched by Ge barriers can achieve a critical type-I alignment at Γ point to provide necessary quantum confinement of carriers. With an increase in the Sn content, the band offsets between the GeSn well and Ge barreirs increases, thus enhancing the oscillation strengths of direct interband transitions. In addition, despite stronger quantum confinement with increasing Sn content, the absorption edge can be effectively shifted to longer wavelengths due to the direct bandgap reduction caused by Sn-alloying. These results suggest that GeSn/Ge QW photodetectors are promising for low-cost, high-performance SWIR photodetection applications.
Compressive spectroscopy by spectral modulation
We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.
Speckle tracking approaches in speckle sensing
Thomas O. H. Charrett, Krzysztof Kotowski, Ralph P. Tatam
This paper reports some initial investigations into the application of feature tracking algorithms as an alternative data processing method for speckle correlation sensors capable of determining both the speckle pattern translation and rotation. The accuracy of translation measurements using the feature tracking approach was found to be similar to that of correlation based processing with accuracies of < 0.04 pixels. Rotation measurement accuracies of< 0.05° are found to be achievable over angle range ±20°, limited by the failure to match speckles at larger rotation angles.
Chemical Sensors I
icon_mobile_dropdown
Analysis of mineral composition by infrared spectral imaging using quantum dot focal plane array sensor
Chenhui Huang, Tomo Tanaka, Sota Kagami, et al.
In this report, mineral composition of rock samples including conglomerate, sandstone, and dolomite was analyzed by IR spectral imaging using QDIP focal plane arrays (FPAs) with a peak-responsivity wavelength of 6.5 μm (FPA 1) and 5.5 μm (FPA 2). The qualitative and quantitative analyses are presented, and the key factor that determines the quantitative precision is discussed. In the qualitative analysis, the luminance of the different components in the rock samples was compared in the image. In the FPA 1 images, the shell fossil in the conglomerate sample and the limestone in the sandstone sample were darker than the other parts of the rocks due to their low emittance at 6.5 μm. In contrast, the difference in the luminance is hardly observed in the FPA 2 images under the same conditions. In the quantitative analysis, the emittance of dolomite was measured. Ten points in the IR image were randomly selected and the average emittance was calculated. The obtained emittances were 0.544±0.012 (FPA 1) and 0.941±0.019 (FPA 2), which means the coefficient of variation of the emittance measurement is ±2.1%~2.2%. By calculating the propagation of error, the precision of thermocouples for monitoring the temperature of the rocks in the calibration contributes most significantly (73%) to the total error.
Analysis of nanoparticles with an optical sensor based on carbon nanotubes
J. Stäb, D. Furin, P. Fechner, et al.
Nanomaterials play an important role in science and in every day products. This is due to their varied and specific properties, whereby especially engineered nanoparticles (ENPs) have shown various beneficial properties for a wide range of application in consumables (e.g. cosmetics, drinks, food and food packaging). Silver nanoparticles for instance are hidden in meat packaging materials or in deodorants. Reasons for this can be found in the antibacterial effect of silver, which leads to high applicability in consumer products. However, ENPs are under permanent discussion due to their unforeseen hazards and an unknown disposition in living organisms and the environment. So far, there is a lack of methods, which allows for the fast and effective characterization and quantification of such nanoparticles in complex matrices (e.g. creams, fruit juice), since matrix components can impede a specific detection of the analyte. It was the objective of project INSTANT to address this topic and compose a method to detect nanoparticles as a first step. Therefore, the development of a sensor system with an upstream sample preparation for the characterization and quantification of specific nanoparticles in complex matrices using a label free optical sensor array in combination with novel recognition elements was developed. The promising optical technology iRIfS (imaging reflectometric interference sensor) was used for this purpose. As a recognition element, functionalized carbon nanotubes can be effectively used. Owing to their excellent electronical, mechanical and chemical properties, CNTs have already been used for extracting ENPs from complex matrices as sorbent material by filtration. After successful immobilization of CNTs on microscope glass slides e.g. the detection of stabilized silver nanoparticles extracted by a sample preparation unit using the iRIfS technology was performed.
Oxygen sensing with an absolute optical sensor based on biluminescence (Conference Presentation)
Organic semiconductors are materials having the benefits of semiconductors together with those of organic molecules. That means, on one hand, these are compounds able to absorb and emit light, as well as conduct electricity to a certain extent, which is enough for the functionality of solid state devices. On the other hand, a remarkable characteristic is that the excitations are typically localized on individual molecules, such that the exchange interactions lead to energetically distinct singlet and triplet states. According to the spectroscopic selection rules in quantum mechanics, only transitions from the singlet excited state are allowed, deactivating radiatively while generating fluorescence emission in the process, whereas transitions from the triplet excited state are not allowed, because its decay involves a spin flip, and therefore, it is theoretically forbidden by electric dipole transitions. Nevertheless, there is a small probability of these forbidden transitions to occur at a low rate, resulting in a slow radiative deactivation known as phosphorescence emission. In this context, the property of an organic molecule able to emit light from both their singlet and triplet excited states is called biluminescence. Although this dual state emission, particularly at room temperature, is difficult to achieve by purely organic molecules, it becomes possible if competitive thermal decay is suppressed effectively, allowing emission from the triplet states (i.e. phosphorescence) in addition to the conventional fluorescence. Here, we have identified biluminescence in simple host:guest systems in which a biluminophore (i.e. organic molecule with biluminescence property) is embedded in an optimum rigid matrix, for example, a combination of PMMA [poly(methyl methacrylate)] as host and NPB [N,N’-di(naphtha-1-yl)-N,N’-diphenyl-benzidine] as biluminophore [Reineke and Baldo, Sci. Rep.]. Such system is unique not only because of the dual state emission, but also the large exciton dynamic range extended up to nine orders of magnitude between nanosecond-lifetime fluorescence and millisecond-lifetime phosphorescence. In this presentation, we will report on the oxygen sensing characteristics of this luminescent system compared to a benchmarked single state optical sensor. Such properties can be evaluated because of the sensitivity of the triplet state to oxygen and therefore, we investigate the dependence of the persistent phosphorescence on the oxygen content. Furthermore, we will address our efforts towards the potential integration of novel optical biluminescent sensing into organic electronics.
Chemical Sensors II
icon_mobile_dropdown
Discrimination of trace nitroaromatics using linear discriminant analysis on aerosol jet printed fluorescent sensor arrays
N. Bolse, R. Eckstein, M. Schend, et al.
In this work, we report on fluorescent sensor arrays fabricated by aerosol jet printing on glass substrates to detect explosives-related nitroaromatic species. The printed sensor arrays consist of six different fluorescent polymers responding to nitroaromatic vapors through a photo-induced electron transfer. This results in a quenched fluorescence proportional to the vapor concentration. Distinct fluorescence quenching patterns are detected for nitroaromatic species including nitrobenzene, 1,3-dinitrobenzene and 2,4-dinitrotoluene. The detected fingerprints are evaluated at low concentrations of only 1, 3 and 10 parts-per-billion in air. Linear discriminant analysis is used to train each sensor array enabling the discrimination of the target analyte vapors. To investigate the reproducibility of multiple sensor arrays on a single substrate, the measured fluorescence quenching patterns are used to benchmark the linear discriminant models. For this purpose, the target analytes and vapor concentrations are predicted for each sensor array. On average, we report low and reproducible misclassification rates of about 4 % indicating excellent discriminatory abilities at low concentrations close to the detection limits. We conclude that digital printing of fluorescent polymers offers the potential to realize low-cost sensor arrays for a reliable detection of trace explosives.
Infrared sensor for water pollution and monitoring
E. Baudet, A. Gutierrez-Arrovo, M. Bailleul, et al.
Development of Mid-infrared sensors for the detection of biochemical molecules is a challenge of great importance. Mid-infrared range (4000 – 400 cm-1) contains the absorption bands related to the vibrations of organic molecules (nitrates, hydrocarbons, pesticides, etc.). Chalcogenide glasses are an important class of amorphous materials appropriate for sensing applications. Indeed, they are mainly studied and used for their wide transparency in the infrared range (up to 15 μm for selenide glasses) and high refractive index (between 2 and 3). The aim of this study is to synthesize and characterize chalcogenide thin films for developing mid-IR optical waveguides. Therefore, two (GeSe2)100-x(Sb2Se3)x chalcogenide glasses, where x=10 and 50 were chosen for their good mid-IR transparency, high stability against crystallization and their refractive index contrast suitable for mid-IR waveguiding. Chalcogenide glasses were prepared using the conventional melting and quenching method and then used for RF magnetron sputtering deposition. Sputtered thin films were characterized in order to determine dispersion of refractive index in UV-Vis-NIR-MIR. Obtained results were used for the simulation of the optical design in mid-infrared (λ = 7.7 μm). Selenide ridge waveguide were prepared by RIE-ICP dry etching process. Single-mode propagation at 7.7 μm was observed. Optical losses of 0.7 ± 0.3 and 2.5 ± 0.1 dB.cm-1 were measured in near-infrared (λ = 1.55 μm) and midinfrared (λ = 7.7 μm), respectively. Achieved results are promising for the fabrication of an integrated optical sensor operating in the mid-infrared.
A robust and reliable optical trace oxygen sensor
G. R. McDowell, A. S. Holmes-Smith, M. Uttamlal, et al.
In applications of nitrogen (N2) generation, industrial gas manufacturing and food packaging there is a need to ensure oxygen (O2) is absent from the environment, even at the lowest concentration levels. Therefore, there has been an increased growth in the development of trace O2 parts per million (ppm) sensors over the past decade to detect and quantify the concentration of molecular O2 in the environment whether it be dissolved or gaseous O2. The majority of commercially available trace O2 sensors are based on electrochemical, zirconia and paramagnetic technologies. Here, the development of a luminescence-based optical trace O2 sensor is presented. Luminescence-based sensing is now regarded as one of the best techniques for the detection and quantification of O2. This is due to the high detection sensitivity, no O2 is consumed and there are a vast array of luminescent indicators and sensing platforms (polymers) that can be selected to suit the desired application. The sensor will be shown to operate from -30 °C to +60 °C in the 0–1000 ppm and/or 0–1200 μbar partial pressure of oxygen (ppO2) range and is equipped with temperature and pressure compensation. The luminescence non-depleting principle, sensor specifications and miniaturized nature offers an attractive alternative to other sensing technologies and advantages over other luminescence-based O2 ppm sensors.
Physical Sensors
icon_mobile_dropdown
Black silicon n-type photodiodes with high response over wide spectral range
Juha Heinonen, Mikko A. Juntunen, Hannu S. Laine, et al.
Commercial photodiodes suffer from reflection losses and different recombination losses that reduce the collection efficiency of photogenerated charge carriers. Recently, we realized a near-ideal silicon photodiode, which steps closer to the physical performance limits of silicon photodiodes than any other silicon photodiode realized before. Our device exhibits an external quantum efficiency above 95% over the wavelength range of 235 – 980 nm, and provides a very high response at incident angles of up to 70 degrees. The high quantum efficiency is reached by 1) virtually eliminating front surface reflectance by forming a “black silicon” nanostructured surface having dimensions in the range of wavelength of optical light and 2) using an induced junction for signal collection, formed by negatively charged alumina, instead of a conventional doped p-n junction. Here, we describe the latest efforts in further development of the photodiode technology. In particular, we report improvements both in the short wavelength response via better control of the surface quality, and superior response to photons with energies close to the silicon bandgap.
Low temperature oxidation in air of iron thin films monitored with long period fiber gratings
In this work an investigation of long period fiber gratings (LPFGs) over coated with iron (Fe) thin layers with different thicknesses and subjected to oxidation in air atmosphere under controlled temperature is presented. The formation of iron oxides was monitored in real time by following the optical features of the LPFG attenuation band. The morphology of the oxide layer was further analyzed by scanning electron microscope (SEM). Preliminary results show that iron coated LPFGs can be used as sensors for early warning of corrosion in projects where metal structures made of iron alloys are in contact with atmospheric air.
Surface plasmon resonance prism coupler for enhanced circular dichrosim/birefringence sensing
A novel method for surface plasmon resonance (SPR) enhanced circular dichroism (CD), circular birefringence (CB), and degree of polarization (Dep) detection is proposed using Stokes-Mueller matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simulations, and the simulation results show that the proposed detection method for CB and CD has a sensitivity of 10-5 RIU and 10-4 RIU (refractive index unit) for refractive indices in the range of 1.3~1.4, respectively. The practical feasibility of the proposed method is demonstrated by the experimental results for detecting the CB/CD/Dep with the glucose-chlorophyllin compound samples contained polystyrene microsphere particles. It is shown that the extracted CB value decreases linearly with glucose concentration over the considered range while the extracted CD value increases linearly with the chlorophyll concentration over the considered range. In general, the results obtained in this study show that the measured CB and CD response is highly sensitive to the polarization scanning angle. Consequently, the potential of Stokes-Mueller matrix polarimetry for highresolution in CB/CD/Dep detection is confirmed.
Biosensors I
icon_mobile_dropdown
Remote detection of buried explosives by fluorescent and bioluminescent microbial sensors (Conference Presentation)
Shimshon Belkin, Sharon Yagur-Kroll, Cheinat Zohar, et al.
Current landmine detection methodologies are not much different in principle from those employed 75 years ago, in that they require actual presence in the minefield, with obvious risks to personnel and equipment. Other limitations include an extremely large ratio of false positives, as well as a very limited ability to detect non-metallic landmines. In this lecture a microbial-based solution for the remote detection of buried landmines described. The small size requirements, rapid responses and sensing versatility of bacterial bioreporters allow their integration into diverse types of devices, for laboratory as well as field applications. The relative ease by which molecular sensing and reporting elements can be fused together to generate dose-dependent quantifiable physical (luminescent, fluorescent, colorimetric, electrochemical) responses to pre-determined conditions allows the construction of diverse classes of sensors. Over the last two decades we and others have employed this principle to design and construct microbial bioreporter strains for the sensitive detection of (a) specific chemicals of environmental concern (heavy metals, halogenated organics etc.) or (b) their deleterious biological effects on living systems (such as toxicity or genotoxicity). In many of these cases, additional molecular manipulations beyond the initial sensor-reporter fusion may be highly beneficial for enhancing the performance of the engineered sensor systems. This presentation highlights several of the approaches we have adopted over the years to achieve this aim, while focusing on the application of live cell microbeads for the remote detection of buried landmines and other explosive devices.
A POCT platform for sepsis biomarkers (Conference Presentation)
Infectious diseases and sepsis, as a severe and potential medical condition in which the immune system overreacts and finally turns against itself, are a worldwide problem. As a matter of fact, it is considered the main cause of mortality in intensive care. For such a pathology, a timely diagnosis is essential, since it has been shown that each hour of delay in the administration of an effective pharmacological treatment increases the mortality rate of 7%. Therefore, the advent of a POCT platform for sepsis is highly requested by physicians. Biomarkers have gained importance for the diagnosis and treatment monitoring of septic patients, since biomarkers can indicate the severity of sepsis and can differentiate bacterial from viral and fungal infection, and systemic sepsis from local infection. The present paper deals with the development of fluorescence-based bioassays for the sepsis biomarkers and their integration on a multianalyte chip. Among the different biomarker candidates, the attention was focused on procalcitonin (PCT), C-reactive protein (CRP) and interleukine-6 (IL-6) as well as on soluble urokinase plasminogen activator receptor (suPAR) recently proposed as a very effective inflammatory marker, potentially capable of acting also as a prognostic biomarker. Starting point of this new setup was an already developed fluorescence-based optical platform, which makes use of multichannel polymethylmetacrylate chips for the detection of different bioanalytes, and the serial interrogation of the microfluidic channels of the chip. The novel proposed optical setup makes use of a suitable fluorescence excitation and detection scheme, capable of performing the simultaneous interrogation of all the channels. For the excitation part of the optical setup, a diffractive optical element is used which generates a pattern of parallel lines, for the simultaneous excitation of all the channels and for the optimization of the optical power distribution. For the detection part, an array of optical absorbing waveguides (long-pass coloured glass filters) is used, which collects the scattered light and the emitted fluorescence, filters out the excitation component, and is faced to a large area rectangular detector, for the simultaneous fluorescence detection. The implemented sandwich immunoassays comprise a capture antibody immobilized onto the surface of the chip channel and a detection antibody properly labelled with a fluorophore. Limits of detection of 2.7 ng/mL, 0.022 µg/mL, 12 ng/mL and 0,3 ng/mL were achieved for PCT CRP, IL-6 and suPAR, respectively.
U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection
Gowri A., V. V. R. Sai
This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size (~ 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.
Study of inertial hydrodynamic focusing in sheath-driven flows for lab-on-a-chip flow cytometry
Nishtha Panwar, Peiyi Song, Ken-Tye Yong, et al.
Miniature flow cytometer models enable fast and cost-effective management of diseases in vulnerable and low-end settings. The single-line focusing of cell or particle samples is achieved using hydrodynamic forces in the microfluidic channels. The two common configurations among them are the single-sheath and dual-sheath flows wherein the sample is directed through the main channel, and the surrounding sheath fluids are directed into the main channel through inlets on either side of the main channel. Most models predict the width of the focused sample stream based on hydrodynamic focusing in the low Reynolds number regime (Re << 1), where the viscous forces dominate the inertial forces. In this work, we present comparative analysis of particle focusing by single-sheath and dual-sheath configurations for focusing of micron-sized cells/particles in the range 2 to 20 μm in the higher Re (10 < Re < 80) laminar regime. A quantitative analysis of the relative focused stream width (wf/wch) as a function of flow rate ratio (FRR = Sample flow rate/Sheath flow rate) for the two configurations is presented. The particle tracing results are also compared with the experimental fluorescent microscopy results at various FRR. The deviations of the results from the theoretical predictions of hydrodynamic focusing at Re << 1, are explained analytically. These findings clearly outline the range of flow parameters and relative particle sizes that can be used for cytometry studies for a given channel geometry. This is a highly predictive modeling method as it provides substantial results of particle positions across the microchannel width according to their size and FRR for single-line focusing of particles. Such information is crucial for one to engineer miniaturized flow cytometry for screening of desired cells or particles.
Poster Session
icon_mobile_dropdown
The research of the possibility of the dispersion method sensitivity increase for the air tract vertical temperature gradient determination by analyzing the diffraction pattern
Ivan S. Nekrylov, Alexander N. Timofeev, Maksim A. Kleshchenok
The research of the possibility of the dispersion method sensitivity increase for the air tract vertical temperature gradient determination by analyzing the diffraction pattern is provided. It is invited to analyze the diffraction pattern forming by the two-wavelength optical radiation from the single source. It is invited to evaluate the increase in linear difference between the energy centers coordinates of the same image but in different spectral zones.
Acoustic waves in tilted fiber Bragg gratings for sensing applications
Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.
Analysis of the impact of the deposition optical fibers on the deformation measurement with a distributed system BOTDR
Article deal of the problematic of impact fixing optical fiber for measuring the deformation with the distributed system known as Brillouin Optical Time Domain Reflectometry (BOTDR). The measurement principle of BOTDR system based on scanning of Brillouin frequency. Authors focused on monitoring changes Brillouin frequency for various bends and size of the substrate layer in combination with different types of fixing materials. We used distributed system DiTEST STA-R Omnisense. For the analysis was used a standard telecommunication optical fiber G.652.D. Deformation of the optical fiber was carried out by bending at a special tool. This article aims to find the most suitable method of implementing a fiber-optics for practical applications. It showed that it is necessary to pay attention to the size of the substrate layer and the fixing material to optimize the sensitivity in the measurement of mechanical deformations and the forces.
Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations
Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.
Analysis encapsulation of fiber Bragg gratings into polydimethylsiloxane for the needs of dynamic weighing
Authors of the article focused on the possible encapsulation method of fiber Bragg gratings (FBGs) for the needs of dynamic weighing. For monitoring the parameters, we used broad-spectrum light source LED (Light-Emitting Diode) with a central wavelength of 1550 nm and optical spectrum analyzer with sampling rate 300 Hz. For encapsulation of used FBGs was chosen a specific material polymer polydimethylsiloxane (PDMS). A characteristic feature of this material is very high mechanical resistance, chemical resistance and temperature stability in the range of values -60 °C to + 200 °C. The combination of characteristic advantages of optical fibers (electromagnetic immunity) with stated properties of PDMS gives us the innovative type of encapsulated sensor which could be used for example for the needs of dynamic weighing in worsened or potentially hazardous conditions. This type of monitoring weighing is fully dielectric. Experimental measurements were carried out in laboratory conditions in the weight range of 35 up to 180 kg.
Photovoltaic optical sensors for high-power conversion and information transmission
Viktor M. Emelyanov, Evgeniy D. Filimonov, Svetlana A. Kozhuhovskaya, et al.
Investigated were the opportunities of direct conversion of modulated laser radiation with mean power of 10–40 dBm for combined power and information transfer fiber-optic lines. Have been studied optical sensors based on common p-n AlGaAs/GaAs and n-p GaInP/GaAs structures, including the ones with multiple photovoltaic cells, providing acceptable efficiency values at optical-to-electrical conversion at wavelength 809–830 nm. Developed was a special circuit allowing extraction of the information signal at one time with power conversion. Shown, that at 30–35 dBm of incident power, laser power converters can demonstrate up to 55 % efficiency and 500 MHz bandwidth. Maximum laser source modulation depth in these modes shouldn’t exceed 3.5 %.
Autocollimation sensor to control the angular deformation with increased measurement range
Aiganym M. Sakhariyanova, Igor A. Konyakhin, Renpu Li
The construction features of autocollimation systems for measurement the large-sized and extended objects deformations at industry, power and scientific instrument making are considered. The conditions of increase of a distance of measurement are analyzed in comparison with the serial autocollimation devices. The error of measurement by the restriction of a working beam is investigated. The structure of algorithm for reduces the systematic error of the measurement which based on received analytical expression of function of an error is determined.
Detection of trace amount of NO2 gas using tunable blue laser diode
Abdulaziz Aljalal, Sameh Altanany, Khaled Gasmi, et al.
Nitrogen dioxide, one of the main air pollutants, has strong light absorption cross section in the blue region of the optical spectrum. Recent availability of blue laser diodes provides possibility of detecting NO2 in open-air paths with very low detection limits. However, in the blue region, the sharp features of the NO2 spectrum is relatively broad with typical width of tenths of nanometer. This poses a serious challenge for implementing traditional direct or wave-modulated tunable diode laser absorption spectroscopy. In this study, we report the usage of a blue laser diode with multi longitudinal modes tuned over about one nanometer in detecting trace amount of NO2 gas. Details of the setup and its optimization will be presented along with a comparison of its performance with other NO2 detection optical methods.
A high resolution hand-held focused beam profiler
The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.
Simulation and research of the gamma-ray detectors based on the CsI crystals and silicon photomultipliers
G. E. Romanova, A. V. Radilov, V. M. Denisov, et al.
The paper discusses the problems of development of the SiPM-based gamma-detectors. The main focus is on the most effective coupling between the scintillation crystal and the SiPM. We have used a simple optical model to study the different schemes of the coupling and analyze these variants from the point of view of efficiency and uniformity of the signal on the SiPM areas. We present the process and the results of the modeling.
Evaluating inner surface roughness of inline/picoliter fiber optic spectrometer fabricated by an NUV femtosecond laser drilling
Masahiko Shiraishi, Shoichi Kubodera, Kazuhiro Watanabe
We have evaluated inner surface roughness of inline/picoliter fiber optic spectrometer fabricated by an NUV femtosecond laser drilling. A microhole fabricated by the femtosecond laser without breaking off works as inline/picoliter fiber optic spectrometer. The attractive feature of the spectrometer is very small sensing volume which has several tens of picoliter. A second harmonic 400 nm femtosecond laser with 350 fs pulse duration launched onto the glass fiber optic. A high aspect ratio of the microhole was fabricated after 1000 pulse shots, but there was inner surface roughness. Although the repetition rate was changed 10 to 1000 Hz in order to control the inner surface roughness, the inner surface roughness was occurred in each case. It was confirmed that ablated fused silica particles deposited on the inner surface of microhole. The depth of microhole was deepened with 1 kHz of repetition rate and number of 1000 shots. In comparison to 10 Hz, the depth of microhole was increased by approximately 80%. It was assumed that heat accumulation effect enlarged the length of drilling. In order to minimize inner surface roughness, the best method is to use low number laser shots. After 100 pulse shots with 30 μJ of pulse energy, an optical inner surface quality of microhole was acquired. The optical inner surface quality of microhole was verified by measuring the transmittance of 94% of infrared light emission launched from superluminescent diode in the case of 100 pulse shots with 20 μJ. The transmittance decreased to 52% changing the microhole fabricated by 30 μJ with 100 laser shots because of increasing interaction area between the microhole and propagating light.
Autocollimation sensor for measuring the angular deformations with the pyramidal prismatic reflector
Phong V. Hoang V. P., Igor A. Konyakhin
We consider the design of a reflector to measure the rotation angles with respect to three axes by the autocollimation method. A quadrangular pyramidal reflector is proposed. An exact algorithm of angular measurements for yaw and pitch angles is considered. Two reflector variants are studied. In the first variant, the angles between the reflecting faces is 90°, in the second variant, these angles do not equal 90°. Algorithms are designed to determine the yaw, pitch and roll angles with two reflector variants. Reflector effectiveness is compared for autocollimation measurements of three rotation angles of an object.
Multiagent robotic systems' ambient light sensor
Radda A. Iureva, Oleg S. Maslennikov, Igor I. Komarov
Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling
Optical choppers with rotational elements: modeling, design and prototypes
Virgil-Florin Duma, Octavian Cira, Dorin Demian
We present a brief overview of our contributions regarding the analysis and design of optical choppers. Their applications range numerous domains, from optical sensing in radiometry or telescopes to laser manufacturing and biomedical imaging – for example for the controlled attenuation of light, the elimination of selected spectral domains, or the switching of optical paths. While these aspects are pointed out, the paper describes our analysis, modeling, and manufacturing of prototypes for choppers with: (a) wheels with windows with linear margins; (b) wheels with windows with non-linear margins (semi-circular or elliptical), outward or inward; (c) rotational shafts with different shapes, with slits or with holes. While variant (a) represents classical choppers, variant (b) represents the “eclipse” choppers that we have developed and also patented for the solution with two adjustable wheels that can produce circular windows. Variant (c), of choppers with shafts is also a patent application. Their transmission functions are discussed, for the shape of the laser pulses produced and for the attenuation coefficients obtained. While this discussion has been completed analytically for top-hat laser beams, it has been modeled using simulations for Gaussian and Bessel beams. Design, manufacturing aspects, and prototypes of the different chopper configurations complete the presentation.
Optical signal processing for a smart vehicle lighting system using a-SiCH technology
M. A. Vieira, M. Vieira, P. Vieira, et al.
We propose the use of Visible Light Communication (VLC) for vehicle safety applications, creating a smart vehicle lighting system that combines the functions of illumination and signaling, communications, and positioning. The feasibility of VLC is demonstrated by employing trichromatic Red-Green-Blue (RGB) LEDs as transmitters, since they offer the possibility of Wavelength Division Multiplexing (WDM), which can greatly increase the transmission data rate, when using SiC double p-i-n receivers to encode/decode the information. Trichromatic RGB Light Emitting Diodes (LED)s (RGB-LED) are used together for illumination proposes (headlamps) and individually, each chip, to transmit the driving range distance and data information. An on-off code is used to transmit the data. Free space is the transmission medium. The receivers consist of two stacked amorphous a-H:SiC cells. They combine the simultaneous demultiplexing operation with the photodetection and self-amplification. The proposed coding is based on SiC technology. Multiple Input Multi Output (MIMO) architecture is used. For data transmission, we propose the use of two headlights based on commercially available modulated white RGB-LEDs. For data receiving and decoding we use three a-SiC:H double pin/pin optical processors symmetrically distributed at the vehicle tail Moreover, we present a way to achieve vehicular communication using the parity bits. A representation with a 4 bit original string color message and the transmitted 7 bit string, the encoding and decoding accurate positional information processes and the design of SiC navigation system are discussed and tested. A visible multilateration method estimates the drive distance range by using the decoded information received from several non-collinear transmitters.
Refractive index sensor based on multi-mode plastic optical fiber with long period grating
Chuanxin Teng, Fangda Yu, Yue Ding, et al.
A multi-mode plastic optical fiber (POF) with a long period grating (LPG) was proposed for a refractive index (RI) sensing probe. The LPG was fabricated on the surface of the POF by a simple die-press-print method using a commercial available thread rod as the mould. The RI sensing performances for straight and U-shaped POFs with LPGs were studied. It is found that the straight RI sensing probe with LPG structure was not sensitive enough for RI measurement. After bending the straight POF probes with LPGs into U-shaped probes, the RI sensing performance was improved markedly. By altering the structural parameters, the RI sensing performances of the U-shaped POF probes with LPGs were optimized, a sensitivity of 1130%/RIU with a resolution of 8.44×10-4 in the RI range of 1.33-1.41 was obtained. The probe is a low cost solution for RI sensing purpose, which has the features of simple structure, easy fabrication, compact size and intensity modulation at visible wavelengths.
Novel techniques for optical sensor using single core multi-layer structures for electric field detection
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young’s modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor’s sensitivity; (i) Pressure force enhancement technique; and (ii) Young’s modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium’s dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
Construction and laboratory test of the fiber optic rotational seismograph FOSREM for rotational seismology area of interest
Anna Kurzych, Leszek R. Jaroszewicz, Jerzy K. Kowalski
A relatively young field of study named Rotational Seismology caused a highly interest in an investigation of rotational movements generated by earthquakes, explosions, and ambient vibrations. It includes a wide range of scientific branches. However, this field needs to apply appropriate rotational sensors which should fulfill restrict technical requirements. The presented in this work system FOSREM (Fibre-Optic System for Rotational Events and Phenomena Monitoring) seems to be a promising rotational sensor for such investigation. FOSREM works by measuring the Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. Regarding to its theoretical sensitivity equals 2·10-8 rad/s/Hz1/2, it enables to measure rotation in a wide range of signal amplitude (10-8 rad/s ÷ 10 rad/s) and frequency (DC ÷ 328.12 Hz). Moreover, FOSREM is mobile and remotely controlled via Internet using a special designed software.
CO2 sensing at atmospheric pressure using fiber Fabry-Perot interferometer
Wenwen Ma, Yelu He, Yangfan Zhao, et al.
A Fabry–Perot interferometer (FPI) for CO2 gas sensing at atmospheric pressure is proposed and experimentally demonstrated. The gas sensing material is poly(ethyleneimine) (PEI)/poly(vinylalcohol) (PVA) compound, which exhibits reversible refrative index change upon absorption and release of CO2 gas molecules. The FPI is fabricated by coating a PEI/P VA film with a thickness of 15μm film at the end face of a single-mode fiber (SMF). A well-confined interference spectrum with fringe contrast of 19.5 dB and free spectra range (FSR) of 33.15 nm is obtained. The proposed FPI sensor is sensitive to the CO2 gas concentration change, and a sensitivity of 0.2833nm/PCT is obtained. The FPI sensor provides a solution in the development of low-cost and compact gas sensors for CO2 leakage monitoring.
Measuring the modulation-transfer function of radiation-tolerant machine-vision system using the sum of harmonic components of different frequency
Oleg A. Perezyabov, Nadezhda K. Maltseva, Aleksandr V. Ilinski
There are a number of robotic systems that are used for nuclear power plant maintenance and it is important to ensure the necessary safety level. The machine-vision systems are applied for this purpose. There are special requirements for the image quality of these systems. To estimate the resolution of a video-system one should determine the impact of the system on the special test pattern. In this paper we describe the procedure of determining the number of the modulation transfer function values of the radiation-tolerant machine-vision systems using the test pattern, containing the sum of the harmonic functions of different frequency.
Experimental study of laser trimmed surface acoustic wave delay line topologies
Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev, et al.
Laser ablation technique is promising for production of surface acoustic wave (SAW) sensors complicated topologies. Its main advantages in comparison to a photolithography method are: simplicity in pattern creation, no need in photomasks, possible to work with thick metallization (up to 20 μm), possibility to correct topology after the sensor sealing and others. This work discusses possible error sources, including side heating of metal films, and presents results of first characteristics evaluation for experimental delay lines produced by laser technology.
The influence of the whispering gallery modes resonators shape on their sensitivity to the movement
Yuri V. Filatov, Ekaterina V. Govorenko, Alexander S. Kukaev, et al.
The optical whispering gallery modes resonators are axially symmetrical resonators with smooth edges, supporting the existence of the whispering gallery modes by the total internal reflection on the surface of the resonator. For today various types of such resonators were developed, namely the ball-shaped, tor-shaped, bottle-shaped, disk-shaped etc. The movement of whispering gallery modes resonators in inertial space causes the changes of their shape. The result is a spectral shift of the whispering gallery modes. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement on a miscellaneous. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. This work is devoted to a research of these aspects.
Design of an optical sun sensor for a space application: a reliable passive sun tracking device for the SOLAR/SOLSPEC instrument
N. Pereira, D. Bolsée, D. Sluse, et al.
SOLAR/SOLSPEC, a spectroradiometer measuring solar spectral irradiance is an instruments of the SOLAR payload mounted on the zenith external platform of the European Columbus module of the International Space Station. Solar flux is received by the SOLAR instruments thanks to the Coarse Pointing Device (CPD). A complementary Sun position tracking module, the Position Sensitive Device (PSD), is integrated in SOLAR/SOLSPEC. The PSD module has been a useful tool to monitor for misalignments between the CPD and the SOLAR payload. It is used in SOLAR/SOLSPEC’s operations to follow the quality of the Sun tracking. The PSD module is also valuable to monitor for SOLAR/SOLSPEC’s three spectrometers (ultraviolet, visible, infrared) angular response in orbit. We first give a detailed description of the PSD’s functionalities. We then present the results of the PSD data analysis. We will show that the PSD module has, despite working in a severe space environment, preserved its full potential from 2008 up to 2017 thanks to its design and appropriate selection of components. We conclude that its robustness makes of the PSD module a simple, yet reliable, instrument useful for future long term space-based missions.
Temperature sensing setup based on an aluminum coated Mach-Zehnder Interferometer
In this paper a temperature sensing setup based on a Photonic Crystal Fiber (PCF) Mach-Zehnder Interferometer (MZI), coated with aluminum is proposed. Here, this interferometer is fabricated through the concatenation of two sections of Single Mode Fiber (SMF) with a segment of PCF between them. The SMF-PCF joint acts as beam splitter causing the excitement of PCF’s, both cladding and fundamental core modes. In the PCF-SMF union, the cladding modes couple again to the core of the SMF, and interfere with the fundamental core mode, this interaction results in an interference pattern spectrum. Moreover, the MZI was coated with aluminum, using the evaporation technique. By adding a thin metal layer to the PCF section, the general thermal coefficient of the structure changes, enhancing the sensitivity of the device. Experimental results show that a visibility of 13 dBm can be obtained and a sensitivity of 250 pm/°C. Finally, the proposed structure is simple, cost effective and easy to fabricate.
Shack-Hartmann wavefront sensor using a Raspberry Pi embedded system
In this work we present the design and manufacture of a compact Shack-Hartmann wavefront sensor using a Raspberry Pi and a microlens array. The main goal of this sensor is to recover the wavefront of a laser beam and to characterize its spatial phase using a simple and compact Raspberry Pi and the Raspberry Pi embedded camera. The recovery algorithm is based on a modified version of the Southwell method and was written in Python as well as its user interface. Experimental results and reconstructed wavefronts are presented.
Splicing and shaping of the special optical fibers
Michal Jelinek, Vaclav Hlavaty, Jan Hrabina, et al.
We present development of new methods and techniques of the splicing and shaping optical fibers. We developed new techniques of splicing for standard Single Mode (SM) and Multimode (MM) optical fibers and optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by light adjustment of our developed techniques. Adjustment of the splicing process has to be prepared for any new optical fibers and new fibers combinations. The splicing of the same types of fibers from different manufacturers has to adjust too. We are able to splice PCF with standard telecommunication fiber with attenuation up to 2 dB. The method is also presented. In the next step we developed techniques to tapering optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. Development of these new optical fibers splicing techniques and methods are made with respect to using these fibers to another research and development in the field of optical fibers sensors, laser frequency stabilization and laser interferometry based on optical fibers. Especially for the field of laser frequency stabilization we developed and present new techniques to closing microstructured fibers with gases inside.
Overview of field gamma spectrometries based on Si-photomultiplier
Viktor Denisov, Valery Korotaev, Aleksandr Titov, et al.
Design of optical-electronic devices and systems involves the selection of such technical patterns that under given initial requirements and conditions are optimal according to certain criteria. The original characteristic of the OES for any purpose, defining its most important feature ability is a threshold detection. Based on this property, will be achieved the required functional quality of the device or system. Therefore, the original criteria and optimization methods have to subordinate to the idea of a better detectability. Generally reduces to the problem of optimal selection of the expected (predetermined) signals in the predetermined observation conditions. Thus the main purpose of optimization of the system when calculating its detectability is the choice of circuits and components that provide the most effective selection of a target.
An experimental sample of the field gamma-spectrometer based on solid state Si-photomultiplier
Viktor Denisov, Valery Korotaev, Aleksandr Titov, et al.
Design of optical-electronic devices and systems involves the selection of such technical patterns that under given initial requirements and conditions are optimal according to certain criteria. The original characteristic of the OES for any purpose, defining its most important feature ability is a threshold detection. Based on this property, will be achieved the required functional quality of the device or system. Therefore, the original criteria and optimization methods have to subordinate to the idea of a better detectability. Generally reduces to the problem of optimal selection of the expected (predetermined) signals in the predetermined observation conditions. Thus the main purpose of optimization of the system when calculating its detectability is the choice of circuits and components that provide the most effective selection of a target.
Improved vibration sensor based on a biconical tapered singlemode fiber, using in-fiber Mach-Zehnder interferometer
Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg’s gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.
Development of an algorithm of the decision of the inverse ellipsometry problem for multilayer structure of the matrix receiver of optical radiation
The work is dedicated to the ellipsometric research of the pixel transparent structure within the matrix receiver of the optical radiation. The receiver consists of the four transparent layers ( for the colour sensor) and the three layers ( for the black-and-white sensor). Also the work concerns the measuring of the ellipsometric radiation options reflected from the surface layers of the sensitive element; in addition the work is about the receiving of the entering data to solve the inverse ellipsometric problem and the geometrical and optical calculation of the options of the multilayer structure. The diven work presents the iterative algorithm to solve the inverse ellipsometric problem, the method of the experimental researching and the measuring results of the polarization characteristics of the reflected radiation in according to the inside and the outside samples’ options.
Pure and Au nanoparticles doped higher alkanes for an optical fiber temperature threshold sensor
Natalia Przybysz, Paweł Marć, Emilia Tomaszewska, et al.
Development of photonic crystal fibers (PCFs) technology has created new research fields for optical sensors and telecommunication. The cross section geometry modifications of this type of fibers allow to influence their optical parameters. These modifications are not limited to change sizes and arrangements of an air holes’ lattice, but also replacing air with another material. In the paper we have shown how to change thermo-optical properties of a large mode area commercially available LMA-10 PCF by filling it with different chemical substances. Our previous research has led us to develop a class of optical fiber temperature threshold sensor transducers based on a partially filled PCF with higher alkanes. The principle of work of such a sensor transducer is to use a temperature bi-stability of a filling material because when the higher alkane is in the solid state light cannot pass through the transducer, and when it is in the liquid state light can be transmitted. One of the most important advantages of higher alkanes we used in the experiments are their different melting points, but the most important disadvantage is discrepancy between melting and crystallization temperatures and the sensor switches on and off for different temperatures. This effect called supercoiling appears due to the lack of nucleation centers. To reduce this effect the gold nanoparticels (NPs) in hexane colloid were used. We have prepared samples with three higher alkanes doped with 1% of Au NPs and we have shown their temperature and time responses. The proper selection of melting points of higher alkanes allows to design the multilevel temperature threshold sensor which can cover the temperature range from -20°C up to 70°C, and can be applied in chemical, oil, gas and energy industry.
Optical features of zinc selenide, silver iodide and its two-phase composite nanostructures
A. M. Smirnov, V. V. Tomaev, A. D. Golinskaya, et al.
The goal of this work is the investigation of optical spectra features of zinc selenide (ZnSe), silver iodide (AgI) and its two-phase composite AgI-ZnSe nanostructures produced by laser ablation method, which can be used to design optical sensors and diffractive structures in integrated optics. Shifted to blue wavelengths relatively to the bulk semiconductor material band edge transmission spectra minima have been discovered for the ZnSe and AgI-ZnSe films. The observed minima of the transmission spectra are peculiar to the quantum energy spectra of semiconductor nanostructures. Discovered transmission spectra minima for the ZnSe and AgI-ZnSe films shifted to the short-wavelength region from the energy of the bulk material band gap can be the evidence of nanocrystals formation during the film growth by laser ablation, and which are characterized by the energy spectrum quantization and lower electron and upper hole quantum confinement levels shifts from the bottom of the conduction and the top valence bands, respectively.
Gallium nanoparticles colloids synthesis for UV bio-optical sensors
Flavio Nucciarelli, Iria Bravo, Luis Vázquez, et al.
A new method for the synthesis of colloidal gallium nanoparticles (Ga NPs) based on the thermal evaporation of Ga on an expendable aluminum zinc oxide (AZO) layer is presented here. The growth of AZO layers was investigated on different substrates at room temperature and 300 °C. By means of physical evaporation process, nanoparticles were deposited with a distribution ranging from 10 nm to 80 nm in diameter. A study of their endurance in acidic environment was carried out in order to assure the NPs shape and size stability during the etching process. Smaller particles start to disappear between 1h and 2h immersion time in a pH=1 solution, while bigger particles reduce their dimension. The NPs were dispersed in tetrahydrofuran (THF) organic solvent and optically characterized, showing strong UV absorption with a band centered at 280 nm. The colloids size distribution of as-evaporated samples was compared with the distribution obtained in droplets of the solution after drop-casting. By Dipole Discrete Approximation simulations, a close relationship between the UV absorption and the NPs with diameter smaller than ~40 nm was found. Because of the gallium oxide (Ga1-xOx) outer shell that surrounds the Ga NPs, an enhancement of their hydrophobicity occurs. Hence, the low agglomeration state between NPs in tetrahydrofuran allows to obtain narrow absorption band in the optical spectrum.
Luminance compensation for AMOLED displays using integrated MIS sensors
Yuri Vygranenko, Miguel Fernandes, Paula Louro, et al.
Active-matrix organic light-emitting diodes (AMOLEDs) are ideal for future TV applications due to their ability to faithfully reproduce real images. However, pixel luminance can be affected by instability of driver TFTs and aging effect in OLEDs. This paper reports on a pixel driver utilizing a metal-insulator-semiconductor (MIS) sensor for luminance control of the OLED element. In the proposed pixel architecture for bottom-emission AMOLEDs, the embedded MIS sensor shares the same layer stack with back-channel etched a Si:H TFTs to maintain the fabrication simplicity. The pixel design for a large-area HD display is presented. The external electronics performs image processing to modify incoming video using correction parameters for each pixel in the backplane, and also sensor data processing to update the correction parameters. The luminance adjusting algorithm is based on realistic models for pixel circuit elements to predict the relation between the programming voltage and OLED luminance. SPICE modeling of the sensing part of the backplane is performed to demonstrate its feasibility. Details on the pixel circuit functionality including the sensing and programming operations are also discussed.
New fiber laser design for application in phase sensitive optical time domain reflectometry
J. L. Bueno Escobedo, V. V. Spirin, C. A. López-Mercado, et al.
We have employed a new injection locking DFB laser configuration for detection and localization of the perturbations in phase sensitive OTDR system. The spectral performance of available DFB laser source has been significantly improved with implementation of self-injection locking mechanism. To provide the effect, a part of the optical radiation emitted by the laser is returned back into the laser cavity through an external fiber optic ring resonator. Self-injection locking of DFB laser coupled with the ring cavity in the under-coupled, critically coupled, and over-coupled regimes has been tested bringing us to the conclusion that the best locked laser stability and narrower linewidth is observed with the critical coupling. With the laser operating in this regime an accurate localization of 50 Hz harmonic perturbation with the spatial resolution of ~10 m at the distance of 9270 m is experimentally demonstrated with phase sensitive OTDR technique.
Simultaneous transmission of standard data, precise time, stable frequency and sensing signals and their possible interaction
P. Munster, T. Horvath, O. Havlis, et al.
Since optical fibre is a standard medium for all current and new networks, these optical networks offer possibility for connecting new applications over long distances almost to anywhere. However with increasing number of applications, the large number of dedicated fibres will be necessary. This constitution is quite unpractical in terms of costs, however since wavelength division multiplexing enables transmission of multiple different signals over one fibre it is more than suitable to use this technology for cost reduction and network efficiency increase. Wavelength division multiplexing technology is common in data networks where parameters of all signals may be optimized (especially maximum optical power launched into the fibre) for simultaneous transmission. In case of non-data applications the situation is more difficult because each application is connected by different type of signal and with its own requirements for transmission parameters. Hence it is necessary to evaluate possible interactions before field deployment. In this paper we deal with possible interaction of a coherent 100 Gb/s dual polarisation QPSK data signal with new applications like accurate time and stable frequency transmission and high-power pulse signal used for distributed sensing. In laboratory setup we performed a measurement with a standard G.652D single mode optical fibre and also with G.655 fibre which can also be found in some networks and may be source of more nonlinear interactions. All signals were transmitted in a grid with 100GHz spacing according to ITU standard. Results confirmed our assumptions that 100GHz spacing is not large enough and also that G.655 optical fibre is prone to more non-linear interactions.
Continuous palladium-based thin films for hydrogen detection
Alain J. Corso, Marco Angiola, Enrico Tessarolo, et al.
Metallic films of palladium (Pd) and palladium-tin (Pd-Sn) have been deposited by evaporation technique. They were used as sensitive material for optical sensor by measuring the variation of absorbance. All samples were then oxidized by annealing at 500°C in low vacuum atmosphere. All the films were investigated by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) to observe the influence of the structure and morphology on the optical properties of the films, carrying useful information for the sensing properties of the different sensing materials. Furthermore, the sensing performances were tested by monitoring the variation on the optical absorbance induced during the absorption / desorption of hydrogen gas. While the use of Pd for gas sensing has been widely covered for electrical and SPR sensors, this work aims to extend our comprehension of the optical sensing behavior, especially in absorbance-mode, of the thin films of PdO, Pd-Sn and PdO-SnO2.
Tiny incident light angle sensor
D. Mitrenga, M. Schädel, A. T. Winzer, et al.
A novel device for detecting the intensity and the angles of incoming light is presented. The silicon chip with 1 mm edge length comprises a segmented photo diode with four active areas within the inclined surfaces of a deep etched cavity. Simple signal difference analysis of these signals allow for accurate azimuth and inclination measurement in the range of 0 to 360° and 0 to 55°, respectively. Using an artificial neural network (ANN) calibration strategy the operation range of inclination can be increased up to 85° with typical angle errors below 2°. In this report we present details on design, fabrication, signal analysis and calibration strategies.
Miniature optical components for a small inline polarimeter
J. Freitag, A. T. Winzer, M. Schädel, et al.
We present two novel components for a small polarimeter: A laser light source and a polarization measuring element. The polarimeter is designed for the use in experimental biogas fermenters, where the optical activity information is needed as an input for the process control loop. For this purpose reproducible measurements over several days and a very small sample volume are necessary. The laser light source provides the collimated and linearly polarized light which passes the sample chamber towards the polarization detector. The beam diameter is smaller than 1 mm over the whole length of 10 cm in order to prevent reflections from the chamber walls. The micro lasers are surface emitting laser diodes (VCSELs) that are mounted on a metalized glass / polymer micro optics in a wafer based process flow. This makes it possible to reduce the size of the polarized light source down to 1.40 x 0.64 x 0.70 mm3. The polarization angle detector consists of a beam polarizing splitter cube with a splitting ratio of better than 10000:1. At both exits a monolithic pair of photodiodes is mounted directly. The sum of the two signals is a measure for the parallel or perpendicular polarized part of the light, respectively. The double diodes are tilted by 90° within the plane, in order to create a four-quadrant detector that is suited to analyze the beam position. This additional position measurement is used for detection of adverse illumination.
Supercritical angle fluorescence as a tool to study the interaction between lipid bilayer and peptides
The understanding of processes occurring at the interface between two media are of prior importance in various fields of research, from material sciences to biology. A custom-made microscope objective based on the supercritical angle technique was developed in our group, allowing to probe these interfacial events by carrying out surface-sensitive and low invasive spectroscopy of aqueous samples. A biological example of particular interest is the comprehension of neurodegenerative diseases which seem caused by the interaction of specific peptides with the membrane of the neurons. Taking advantage of our optical setup, we used supercritical angle fluorescence spectroscopy to specifically monitor the interaction between a supported lipid bilayer (SLB) and the Amyloid β peptide, notably responsible of the Alzheimer disease. Different forms of the peptide (40 and 42 amino acids composition) were tested and the interfacial fluorescence measured to get information about the lipid integrity and mobility. The adsorption of the peptide was also characterized in terms of kinetic and affinity.
Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles
Shavkat Nizamov, Vitali Scherbahn, Vladimir M. Mirsky
In-situ detection and characterization of nanoparticles in biological media as well as in food or other complex samples is still a big challenge for existing analytical methods. Here we describe a label-free and cost-effective analytical method for detection of nanoparticles in the concentration range 106 -1010 NPs/ml. The proposed method is based on the surface plasmon resonance microscopy (SPRM) with a large field of view (~1.3mm2 ). It is able to detect and count adsorbing nanoparticles individually, totally up to the hundreds of thousands of NPs on the sensor surface. At constant diffusion conditions the detection rate is proportional to the number concentration of NPs, this provides an approach to determine the NPs concentration. The adsorption of nanoparticle can be manipulated by the surface functionalization, pH and electrolyte concentration of suspensions. Images of detected nanoparticles can be quantified in order to characterize them individually. The image intensity grows quasi-linearly with nanoparticle size for the given material. However, the size and material of nanoparticle cannot be resolved directly from the image. For determination of chemical composition, SPRM can be assisted by electrochemical analysis. In this case, the gold sensor surface is used both as a resonant media for plasmon microscopy and as a working electrode. Under potential sweep, the adsorbed NPs can be subjected to electrochemical dissolution, which is detected optically. The potential of this conversion characterizes the material of NPs.
Preparation of Mach-Zehnder interferometric photonic biosensors by inkjet printing technology
Florian Strasser, Eva Melnik, Paul Muellner, et al.
Inkjet printing is a versatile method to apply surface modification procedures in a spatially controlled, cost-effective and mass-fabrication compatible manner. Utilizing this technology, we investigate two different approaches for functionalizing label-free optical waveguide based biosensors: a) surface modification with amine-based functional polymers (biotin-modified polyethylenimine (PEI-B)) employing active ester chemistry and b) modification with dextran based hydrogel thin films employing photoactive benzophenone crosslinker moieties. Whereas the modification with PEI-B ensures high receptor density at the surface, the hydrogel films can serve both as a voluminous matrix binding matrix and as a semipermeable separation layer between the sensor surface and the sample. We use the two surface modification strategies both individually and in combination for binding studies towards the detection of the protein inflammation biomarker, C-reactive protein (CRP). For the specific detection of CRP, we compare two kinds of capture molecules, namely biotinylated antibodies and biotinylated CRP-specific DNA based aptamers. Both kinds of capture molecules were immobilized on the PEI-B by means of streptavidin-biotin affinity binding. As transducer, we use an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) photonic sensing platform operating at a wavelength of 850nm (TM-mode).
Optical sensors based on photonic crystal: a new route
S. Romano, S. Torino, G. Coppola, et al.
The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.
Real-time temperature monitoring during radiofrequency treatments on ex-vivo animal model by fiber Bragg grating sensors
Giovanna Palumbo, Daniele Tosi, Emiliano Schena, et al.
Fiber Bragg Grating (FBG) sensors applied to bio-medical procedures such as surgery and rehabilitation are a valid alternative to traditional sensing techniques due to their unique characteristics. Herein we propose the use of FBG sensor arrays for accurate real-time temperature measurements during multi-step RadioFrequency Ablation (RFA) based thermal tumor treatment. Real-time temperature monitoring in the RF-applied region represents a valid feedback for the success of the thermo-ablation procedure.

In order to create a thermal multi-point map around the tumor area to be treated, a proper sensing configuration was developed. In particular, the RF probe of a commercial medical instrumentation, has been equipped with properly packaged FBGs sensors. Moreover, in order to discriminate the treatment areas to be ablated as precisely as possible, a second array 3.5 cm long, made by several FBGs was used.

The results of the temperature measurements during the RFA experiments conducted on ex-vivo animal liver and kidney tissues are presented herein. The proposed FBGs based solution has proven to be capable of distinguish different and consecutive discharges and for each of them, to measure the temperature profile with a resolution of 0.1 °C and a minimum spatial resolution of 5mm. Based upon our experiments, it is possible to confirm that the temperature decreases with distance from a RF peak ablation, in accordance with RF theory. The proposed solution promises to be very useful for the surgeon because a real-time temperature feedback allows for the adaptation of RFA parameters during surgery and better delineates the area under treatment.
Development of an optical biosensor for the detection of antibiotics in the environment
Patricia Weber, Julian Vogler, Günter Gauglitz
Pharmacologically active substances like antibiotics, hormones, x-ray contrast media, antirheumatic drugs or beta blockers are increasingly accumulating in the environment. These pharmacologically active substances can be found in surface waters as well as in food products. In the case of surface waters, the contamination with pharmacologically active substances is primary caused by incorrect disposal of drugs and by human and animal feaces. This is due to the fact that, drugs are only removed incompletely during the wastewater treatment. Furthermore, food of animal origin like milk, cheese, eggs or meat are potentially frequently concerned. The use of animal drugs in animal husbandry and food industry is permitted legal and a standard practice. However, it is possible that after drug application to animals drug residues or decomposition products remain in the animal carcasses. In this work we will present the first steps of the development of an optical biosensor sensitive for the antibiotic penicillin G. This biosensor is principle of the label-free and time resolved method Reflectometric Interference Spectroscopy (RIfS). The method uses interference of white light at thin layers to observe molecular interactions. The required surface modifications for the sensor were developed and optimized. Moreover, common commercial antibodies were chosen and concentration dependent measurements in buffer were performed.
Fabrication of arc-induced long-period gratings in different silica fibers
Rajeev Ranjan, Flavio Esposito, Stefania Campopiano, et al.
In this work, we report on recent results about the fabrication of Long Period Gratings (LPGs) in different single mode optical fibers, by means of Electric Arc Discharge (EAD) technique. In particular, the results are related to three optical fibers with different doping elements, i.e.: standard telecommunication Ge-doped SMF28, highly photosensitive B/Gecodoped PS1250/1500, and P-doped P-SM-5 fibers. EAD leads to a point-by-point LPG inscription, due to localized tapering of the transversal size of the core and cladding regions along the fiber, and to changes of the silica refractive index due to the stress relaxation induced by local hot spots. Here, we take into consideration both standard and unconventional silica fibers and the aim of the work is to identify an appropriate “recipe” for each fiber, for manufacturing LPGs with strong and narrow attenuation bands (depth higher than 25 dB) and trivial power losses (<0.5 dB). Indeed, a proper combination of arc power and duration, as well as fiber tension, allows for the appropriate core and cladding modulation and thus for the desired LPGs spectral features. The sensitivity characteristics towards surrounding refractive index (SRI) and temperature changes of these LPGs are also investigated, highlighting the effects of different kind of doping.
Strain-based multicore fiber optic temperature sensor
A four-core optical fiber is introduced as a strain based temperature sensor to investigate the phase shift based on the temperature variations. An interferometric fringe pattern is obtained by the coherent waveguides from the four cores. A small piece of a four-core fiber is winded around a solid stainless steel cylinder to form a tight circular loop, which is exposed to a temperature change from 50 °C to 92 °C. Shear strain due to the expansion of the steel rod at this temperature interval causes an optical path length difference between the inner and outer core pairs, resulting a total phase shift of 20.4±0.29 rad, which is monitored with a CMOS camera. Using the phase changes, two dimensional shear strain is determined.
Heat transfer measurements with a four-core optical fiber
A four-core optical fiber is used to investigate one-dimensional heat transfer measurements. Heat pulses from a Nd:YAG laser of 600 ms duration with a repetition rate of the order of 10 s are delivered onto one of the fiber cores. This results in an optical path length difference between the guiding cores due to the change in the refractive index and physical length of the targeted fiber core. As a result of this process, a phase shift of 1.30 rad is measured with a digital camera for 140 mW pulses in reflection scheme. The heat diffusion length in the selected fiber core is determined to be 2.8 mm, which contains 33.2 kJ/m2s heat, causing a temperature rise of 4.30 K.
Optical sensors of bulk refractive index using optical fiber resonators
Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 – 4.7 × 10−5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.
High-resolution investigation of longitudinal modes of a GaN-based blue laser diode
Watheq Al-Basheer, Abdulaziz Aljalal, Khaled Gasmi, et al.
Typical emission spectra of GaN-based blue laser diodes are known to have irregular shapes. Hence, well-resolved study of their spectra may help in understanding the origin of their spectral shapes irregularity. In this paper, the spectra of a commercial GaN-based blue laser diode are studied as a function of injection current and temperature using a spectrometer with highresolution of 0.003-nm over the spectral region 440 – 450 nm. The obtained laser spectra are used to track the longitudinal modes evolution as a function of operating currents and temperatures as well as to precisely map single mode operation. In addition, yielded laser spectra will be utilized to evaluate few parameters related to the laser diode, such as mode spacing, optical gain, slope efficiency and threshold current at certain temperature.