Proceedings Volume 10189

Passive and Active Millimeter-Wave Imaging XX

cover
Proceedings Volume 10189

Passive and Active Millimeter-Wave Imaging XX

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 20 June 2017
Contents: 5 Sessions, 16 Papers, 8 Presentations
Conference: SPIE Defense + Security 2017
Volume Number: 10189

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10189
  • History and Imager Evaluation
  • Phenomenology
  • Imaging Systems
  • Enabling Technology
Front Matter: Volume 10189
icon_mobile_dropdown
Front Matter: Volume 10189
This PDF file contains the front matter associated with SPIE Proceedings Volume 10189 including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
History and Imager Evaluation
icon_mobile_dropdown
Millimeter wave imaging: a historical review
The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference’s twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.
Expanding the spectrum: 20 years of advances in MMW imagery
Christopher A. Martin, John A. Lovberg, Valdimir G. Kolinko
Millimeter-wave imaging has expanded from the single-pixel swept imagers developed in the 1960s to large field-ofview real-time systems in use today. Trex Enterprises has been developing millimeter-wave imagers since 1991 for aviation and security applications, as well as millimeter-wave communications devices. As MMIC device development was stretching into the MMW band in the 1990s, Trex developed novel imaging architectures to create 2-D staring systems with large pixel counts and no moving parts while using a minimal number of devices. Trex also contributed to the device development in amplifiers, switches, and detectors to enable the next generation of passive MMW imaging systems. The architectures and devices developed continue to be employed in security imagers, radar, and radios produced by Trex. This paper reviews the development of the initial real-time MMW imagers and associated devices by Trex Enterprises from the 1990s through the 2000s. The devices include W-band MMIC amplifiers, switches, and detector didoes, and MMW circuit boards and optical processors. The imaging systems discussed include two different real-time passive MMW imagers flown on helicopters and a MMW radar system, as well as implementation of the devices and architectures in simpler stand-off and gateway security imagers.
Developments in the use and capability of millimetre wave technologies for stand-off detection of threat items over the last decade
E. Ollett, A. Clark
The Home Office Centre for Applied Science and Technology (CAST) has a longstanding history in the evaluation of passive and active millimetre wave (mmW) systems for stand-off detection. The requirements for stand-off detection have evolved greatly over the last decade due to changes in threat, as has the capability of technologies. CAST has worked with these changes to evaluate systems alongside other government departments, developing expertise in the standard of technology from low to high technology readiness level (TRL) as well as understanding the limitations in detection. In this paper I discuss the work that has been undertaken by CAST since 2007, exploring the developments in methodology that have become necessary for trials to capture the requirements successfully. This involves utilising aspects of test protocols to ensure consistency across testing between CAST and other organisations, allowing for a fair comparison of data. The trials undertaken vary from evaluating the system capability in a static setting to the capability in a crowded environment such as a shopping centre. Understanding the performance capability of passive and active (mmW) systems in crowded places is particularly important given the current threat status of the UK.
Developing an ANSI standard for image quality tools for the testing of active millimeter wave imaging systems
Jeffrey Barber, Joseph Greca, Kevin Yam, et al.
In 2016, the millimeter wave (MMW) imaging community initiated the formation of a standard for millimeter wave image quality metrics. This new standard, American National Standards Institute (ANSI) N42.59, will apply to active MMW systems for security screening of humans. The Electromagnetic Signatures of Explosives Laboratory at the Transportation Security Laboratory is supporting the ANSI standards process via the creation of initial prototypes for round-robin testing with MMW imaging system manufacturers and experts. Results obtained for these prototypes will be used to inform the community and lead to consensus objective standards amongst stakeholders. Images collected with laboratory systems are presented along with results of preliminary image analysis. Future directions for object design, data collection and image processing are discussed.
Phenomenology
icon_mobile_dropdown
Identifying explosives using broadband millimeter-wave imaging
James C. Weatherall, Kevin Yam, Jeffrey Barber, et al.
Millimeter wave imaging is employed in Advanced Technology Imaging (AIT) systems to screen personnel for concealed explosives and weapons. AIT systems deployed in airports auto-detect potential threats by highlighting their location on a generic outline of a person using imaging data collected over a range of frequency. We show how the spectral information from the imaging data can be used to identify the composition of an anomalous object, in particular if it is an explosive material. The discriminative value of the technique was illustrated on military sheet explosive using millimeter-wave reflection data at frequencies 18 – 40 GHz, and commercial explosives using 2 – 18 GHz, but the free-space measurement was limited to a single horn with a large-area sample. This work extends the method to imaging data collected at high resolution with a 18 – 40 GHz imaging system. The identification of explosives is accomplished by extracting the dielectric constant from the free-space, multifrequency data. The reflection coefficient is a function of frequency because of propagation effects associated with the material’s complex dielectric constant, which include interference from multiple reflections and energy loss in the sample. The dielectric constant is obtained by numerically fitting the reflection coefficient as a function of frequency to an optical model. In principal, the implementation of this technique in standoff imaging systems would allow threat assessment to be accomplished within the scope of millimeter-wave screening.
Improved characterization of scenes with a combination of MMW radar and radiometer information
For security related applications MMW radar and radiometer systems in remote sensing or stand-off configurations are well established techniques. The range of development stages extends from experimental to commercial systems on the civil and military market. Typical examples are systems for personnel screening at airports for concealed object detection under clothing, enhanced vision or landing aid for helicopter and vehicle based systems for suspicious object or IED detection along roads. Due to the physical principle of active (radar) and passive (radiometer) MMW measurement techniques the appearance of single objects and thus the complete scenario is rather different for radar and radiometer images. A reasonable combination of both measurement techniques could lead to enhanced object information. However, some technical requirements should be taken into account. The imaging geometry for both sensors should be nearly identical, the geometrical resolution and the wavelength should be similar and at best the imaging process should be carried out simultaneously. Therefore theoretical and experimental investigations on a suitable combination of MMW radar and radiometer information have been conducted. First experiments in 2016 have been done with an imaging linescanner based on a cylindrical imaging geometry [1]. It combines a horizontal line scan in azimuth with a linear motion in vertical direction for the second image dimension. The main drawback of the system is the limited number of pixel in vertical dimension at a certain distance. Nevertheless the near range imaging results where promising. Therefore the combination of radar and radiometer sensor was assembled on the DLR wide-field-of-view linescanner ABOSCA which is based on a spherical imaging geometry [2]. A comparison of both imaging systems is discussed. The investigations concentrate on rather basic scenarios with canonical targets like flat plates, spheres, corner reflectors and cylinders. First experimental measurement results with the ABOSCA linescanner are shown.
Measurements of the dielectric properties of explosives and inert materials at millimeter wave frequencies (V-band and above) using free space reflection methods
We present a free space material measurement system operating in the E band (60-90 GHz) frequency range that uses calibration standards placed at the sample location to define the measurement reference plane directly at the sample surface. Measurement signal to noise is improved by using an aperture in radar absorbing material (RAM) to simplify the RF measurement environment. Measurements are provided that extend earlier work done in the 18-40 GHz frequency range. Data is extracted using numerical fitting of reflection-only data to a theoretical model based on geometric optics. System calibration, and results are presented.
Imaging Systems
icon_mobile_dropdown
Design and performance of a THz block camera with a 130nm CMOS focal plane array
E. F. Fleet, H. Romero, J. Schlupf, et al.
Recent advances in 130 nm CMOS based Schottky barrier diode THz power detectors enable relatively simple, highperformance focal plane arrays. We present a low size, weight and power block camera which uses polymer refractive optics and a 6x6 focal plane array to image the return from an active source operating at 218 GHz. The operating frequency is chosen for multiple reasons: to coincide with atmospheric transmission windows, to image through degraded visual environments, and to leverage recently developed high power sources available at the Naval Research Laboratory. The sensor achieves better than 30 pW/√Hz NEP at video frame rates while lock-in detecting a modulated source. The three and a half pound camera houses a COTs aspheric polymer optic, detector array, signal amplification and lock-in detection, and outputs data over an Ethernet connection. We will present the camera design, performance metrics, and sample imagery
Security screening via computational imaging using frequency-diverse metasurface apertures
David R. Smith, Matthew S. Reynolds, Jonah N. Gollub, et al.
Computational imaging is a proven strategy for obtaining high-quality images with fast acquisition rates and simpler hardware. Metasurfaces provide exquisite control over electromagnetic fields, enabling the radiated field to be molded into unique patterns. The fusion of these two concepts can bring about revolutionary advances in the design of imaging systems for security screening. In the context of computational imaging, each field pattern serves as a single measurement of a scene; imaging a scene can then be interpreted as estimating the reflectivity distribution of a target from a set of measurements. As with any computational imaging system, the key challenge is to arrive at a minimal set of measurements from which a diffraction-limited image can be resolved. Here, we show that the information content of a frequency-diverse metasurface aperture can be maximized by design, and used to construct a complete millimeter-wave imaging system spanning a 2 m by 2 m area, consisting of 96 metasurfaces, capable of producing diffraction-limited images of human-scale targets. The metasurfacebased frequency-diverse system presented in this work represents an inexpensive, but tremendously flexible alternative to traditional hardware paradigms, offering the possibility of low-cost, real-time, and ubiquitous screening platforms.
High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening
Duncan A. Robertson, David G. Macfarlane, Robert I. Hunter, et al.
The EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) is developing a demonstrator system for next generation airport security screening which will combine passive and active submillimeter wave imaging sensors. We report on the development of the 340 GHz 3D imaging radar which achieves high volumetric resolution over a wide field of view with high dynamic range and a high frame rate. A sparse array of 16 radar transceivers is coupled with high speed mechanical beam scanning to achieve a field of view of ~ 1 x 1 x 1 m3 and a 10 Hz frame rate.
Enabling Technology
icon_mobile_dropdown
Quad-channel beam switching WR3-band transmitter MMIC
Daniel Müller, Gülesin Eren, Sandrine Wagner, et al.
Millimeter wave radar systems offer several advantages such as the combination of high resolution and the penetration of adverse atmosphere like smoke, dust or rain. This paper presents a monolithic millimeter wave integrated circuit (MMIC) transmitter which offers four channel beam steering capabilities and can be used as a radar or communication system transmitter. At the local oscillator input, in order to simplify packaging, a frequency tripler is used to multiply the 76.6 - 83.3 GHz input signal to the intended 230 - 250 GHz output frequency range. A resistive mixer is used for the conversion of the intermediate frequency signal into the RF domain. The actual beam steering network is realized using an active single pole quadruple throw (SP4T) switch, which is connected to a integrated Butler matrix. The MMIC was fabricated in a 35 nm InGaAs mHEMT process and has a size of 4.0 mm × 1.5 mm
Optical-fiber-connected 300-GHz FM-CW radar system
Atsushi Kanno, Norihiko Sekine, Akifumi Kasamatsu, et al.
300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.
Reconfigurable metasurface aperture for security screening and microwave imaging
Timothy Sleasman, Mohammadreza F. Imani, Michael Boyarsky, et al.
Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5–26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture’s utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.
Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna
Michael Boyarsky, Timothy Sleasman, Laura Pulido-Mancera, et al.
Synthetic aperture radar (SAR) systems conventionally rely on mechanically-actuated reflector dishes or large phased arrays for generating steerable directive beams. While these systems have yielded high-resolution images, the hardware suffers from considerable weight, high cost, substantial power consumption, and moving parts. Since these disadvantages are particularly relevant in airborne and spaceborne systems, a flat, lightweight, and low-cost solution is a sought-after goal. Dynamic metasurface antennas have emerged as a recent technology for generating waveforms with desired characteristics. Metasurface antennas consist of an electrically-large waveguide loaded with numerous subwavelength radiators which selectively leak energy from a guided wave into free space to form various radiation patterns. By tuning each radiating element, we can modulate the aperture’s overall radiation pattern to generate steered directive beams, without moving parts or phase shifters. Furthermore, by using established manufacturing methods, these apertures can be made to be lightweight, low-cost, and planar, while maintaining high performance. In addition to their hardware benefits, dynamic metasurfaces can leverage their dexterity and high switching speeds to enable alternative SAR modalities for improved performance. In this work, we briefly discuss how dynamic metasurfaces can conduct existing SAR modalities with similar performance as conventional systems from a significantly simpler hardware platform. We will also describe two additional modalities which may achieve improved performance as compared to traditional modalities. These modalities, enhanced resolution stripmap and diverse pattern stripmap, offer the ability to circumvent the trade-off between resolution and region-of-interest size that exists within stripmap and spotlight. Imaging results with a simulated dynamic metasurface verify the benefits of these modalities and a discussion of implementation considerations and noise effects is also included. Ultimately, the hardware gains coupled with the additional modalities well-suited to dynamic metasurface antennas has poised them to propel the SAR field forward and open the door to exciting opportunities.
Coded aperture subreflector array for high resolution radar imaging
Jonathan J. Lynch, Florian Herrault, Keerti Kona, et al.
HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL’s Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.