Share Email Print
cover

Proceedings Paper

Vibration mitigation for wind-induced jitter for the Giant Magellan Telescope
Author(s): Roger M. Glaese; Michael Sheehan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Giant Magellan Telescope (GMT) is a planned large terrestrial telescope with a segmented primary mirror with a 24.5 meter overall diameter. Like most terrestrial telescopes, the GMT resides within an enclosure designed to protect the telescope from the elements and to reduce the effects of wind on the optical performance of the telescope. Wind impingement on the telescope causes static deformation and vibration in the telescope structure that affects the alignment and image jitter performance of the telescope. Actively controlled primary mirror segments and a secondary mirror can correct for the static and low frequency portions of the wind effects, but typically the actuators do not have the bandwidth to address higher frequency components of the wind environment. Preliminary analyses on the GMT indicate that the image jitter associated with wind effects meets budgeted allowances but without much margin. Preliminary models show that the bulk of the residual jitter arises from excitation of a small number of modes in the 9 to 12 Hz range. Therefore, as a risk mitigation effort to increase the margin on the wind induced jitter, passive and active vibration mitigation approaches have been examined for the GMT, which will be the focus of this paper. Using a finite element model of the GMT along with wind loading load cases, several passive and active vibration mitigation approaches were analyzed. These approaches include passive approaches such as tuned mass dampers targeting the worst offending modes, and constrained layer damping targeting all of the modes within the troublesome frequency range. Active approaches evaluated include two active damping approaches, one using several reaction mass actuators and the other using active strut type actuators. The results of the study show that although all approaches are successful in reducing the jitter, the active damping approach using reaction mass actuators offers the lightest weight, least implementation impact, and most adaptability of any of the approaches.

Paper Details

Date Published: 17 September 2012
PDF: 15 pages
Proc. SPIE 8444, Ground-based and Airborne Telescopes IV, 84440V (17 September 2012); doi: 10.1117/12.926337
Show Author Affiliations
Roger M. Glaese, Moog-CSA Engineering (United States)
Michael Sheehan, Giant Magellan Telescope Organization (United States)


Published in SPIE Proceedings Vol. 8444:
Ground-based and Airborne Telescopes IV
Larry M. Stepp; Roberto Gilmozzi; Helen J. Hall, Editor(s)

© SPIE. Terms of Use
Back to Top