Share Email Print

Proceedings Paper

Processing forward-looking data for anomaly detection: single-look, multi-look, and spatial classification
Author(s): Jordan M. Malof; Kenneth D. Morton Jr.; Leslie M. Collins; Peter A. Torrione
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Many effective buried threat detection systems rely on close proximity and near vertical deployment over subsurface objects before reasonable performance can be obtained. A forward-looking sensor configuration, where an object can be detected from much greater distances, allows for safer detection of buried explosive threats, and increased rates of advance. Forward-looking configurations also provide an additional advantage of yielding multiple perspectives and looks at each subsurface area, and data from these multiple pose angles can be potentially exploited for improved detection. This work investigates several aspects of detection algorithms that can be applied to forward-looking imagery. Previous forward-looking detection algorithms have employed several anomaly detection algorithms, such as the RX algorithm. In this work the performance of the RX algorithm is compared to a scale-space approach based on Laplcaian of Gaussian filtering. This work also investigates methods to combine the detection output from successive frames to aid detection performance. This is done by exploiting the spatial colocation of detection alarms after they are mapped from image coordinates into world coordinates. The performance of the resulting algorithms are measured on data from a forward-looking vehicle mounted optical sensor system collected over several lanes at a western U.S. test facility. Results indicate that exploiting the spatial colocation of detections made in successive frames can yield improved performance.

Paper Details

Date Published: 10 May 2012
PDF: 10 pages
Proc. SPIE 8357, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, 83571O (10 May 2012); doi: 10.1117/12.918447
Show Author Affiliations
Jordan M. Malof, Duke Univ. (United States)
Kenneth D. Morton Jr., Duke Univ. (United States)
Leslie M. Collins, Duke Univ. (United States)
Peter A. Torrione, Duke Univ. (United States)

Published in SPIE Proceedings Vol. 8357:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII
J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?