Share Email Print

Proceedings Paper

The causal lossy impulse response of a circular piston evaluated in the time and frequency domains for power law media
Author(s): Christopher T. Johnson; Robert J. McGough
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Analytical expressions for the time-domain Green's function that exactly solve the wave equation for power-law media with an attenuation term that is proportional to frequency to the power were recently derived. These analytical expressions are causal for power-law exponents less than one and noncausal for power-law exponents greater than or equal to one. A causal expression for the lossy impulse response for a circular piston is obtained for power-law exponent when the impulse response of the time-domain Rayleigh-Sommerfeld integral is evaluated by superposing the causal Green's function in space and in time. The lossy impulse response is also computed in the frequency-domain for the same piston. Numerical results are computed in the time and frequency-domains for a circular piston with a radius of 15mm. Problems with aliasing are identified in the frequency-domain impulse response calculation, whereas these problems are avoided in the time-domain calculation.

Paper Details

Date Published: 25 March 2011
PDF: 8 pages
Proc. SPIE 7968, Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy, 796819 (25 March 2011); doi: 10.1117/12.877831
Show Author Affiliations
Christopher T. Johnson, Michigan State Univ. (United States)
Robert J. McGough, Michigan State Univ. (United States)

Published in SPIE Proceedings Vol. 7968:
Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy
Jan D'hooge; Marvin M. Doyley, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?