Share Email Print

Proceedings Paper

Analysis of the short-pulsed CO2 laser ablation process for optimizing the processing performance for cutting bony tissue
Author(s): Markus Mehrwald; Jessica Burgner; Christoph Platzek; Claus Feldmann; Jörg Raczkowsky; Heinz Wörn
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recently we established an experimental setup for robot-assisted laser bone ablation using short-pulsed CO2 laser. Due to the comparable low processing speed of laser bone ablation the application in surgical interventions is not yet feasible. In order to optimize this ablation process, we conducted a series of experiments to derive parameters for a discrete process model. After applying single and multiple laser pulses with varying intensity onto bone, the resulting craters were measured using a confocal microscope in 3D. The resulting ablation volumes were evaluated by applying Gaussian function fitting. We then derived a logarithmic function for the depth prediction of laser ablation on bone. In order to increase the ablation performance we conducted experiments using alternate fluids replacing the water spray: pure glycerin, glycerin/water mixture, acids and bases. Because of the higher boiling point of glycerin compared to water we had expected deeper craters through the resulting higher temperatures. Experimental results showed that glycerin or a glycerin/water mix do not have any effect on the depth of the ablation craters. Additionally applying the acid or base on to the ablation site does only show minor benefits compared to water. Furthermore we preheated the chemicals with a low energy pulse prior to the ablation pulse, which also showed no effect. However, applying a longer soaking time of the chemicals induced nearly a doubling of the ablation depth in some cases. Furthermore with this longer soaking time, carbonization at the crater margins does not occur as is observed when using conventionally water spray.

Paper Details

Date Published: 22 February 2010
PDF: 10 pages
Proc. SPIE 7562, Optical Interactions with Tissues and Cells XXI, 75620P (22 February 2010); doi: 10.1117/12.841981
Show Author Affiliations
Markus Mehrwald, Univ. Karlsruhe (Germany)
Jessica Burgner, Univ. Karlsruhe (Germany)
Christoph Platzek, Univ. Karlsruhe (Germany)
Claus Feldmann, Univ. Karlsruhe (Germany)
Jörg Raczkowsky, Univ. Karlsruhe (Germany)
Heinz Wörn, Univ. Karlsruhe (Germany)

Published in SPIE Proceedings Vol. 7562:
Optical Interactions with Tissues and Cells XXI
E. Duco Jansen; Robert J. Thomas, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?