Share Email Print

Proceedings Paper

Efficient parameter estimation techniques for hysteresis models
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Actuators employing ferroelectric or ferromagnetic compounds are solid-state, efficient, and compact making them well-suited for aerospace, aeronautic, industrial and military applications. However, they also exhibit frequency, stress and thermally-dependent hysteresis and constitutive nonlinearities which must be incorporated in models for accurate device characterization and control design. A critical step in the use of these models is the estimation or re-estimation of parameters in a manner that is both efficient and robust. In this presentation, we discuss techniques to estimate densities in the homogenized energy model based on Galerkin expansions using physically motivated basis functions. The yields highly tractable optimization algorithms in which initial parameter estimates can be obtained from measured properties of the data. The efficiency and accuracy of the models and estimation algorithms are validated with experimental data.

Paper Details

Date Published: 31 March 2009
PDF: 10 pages
Proc. SPIE 7289, Behavior and Mechanics of Multifunctional Materials and Composites 2009, 728904 (31 March 2009); doi: 10.1117/12.817589
Show Author Affiliations
J. M. Ernstberger, LaGrange College (United States)
R. C. Smith, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 7289:
Behavior and Mechanics of Multifunctional Materials and Composites 2009
Zoubeida Ounaies; Jiangyu Li, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?