Share Email Print

Proceedings Paper

Effects of scatter radiation on reconstructed images in digital breast tomosynthesis
Author(s): Bob Liu; Xinhua Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We evaluated the effects of scatter radiation on the reconstructed images in digital breast tomosynthesis. Projection images of a 6 cm anthropomorphic breast phantom were acquired using a Hologic prototype digital breast tomosynthesis system. Scatter intensities in projection images were sampled with a beam stop method. The scatter intensity at any pixel was obtained by two dimensional fitting. Primary-only projection images were generated by subtracting the scatter contributions from the original projection images. The 3-dimensional breast was reconstructed first based on original projection images which contained the contributions from both primary rays and scattered radiation using three different reconstruction algorithms. The same breast volume was reconstructed again using the same algorithms but based on primaryonly projection images. The image artifacts, pixel value difference to noise ratio (PDNR), and detected image features in these two sets of reconstructed slices were compared to evaluate the effects of scatter radiation. It was found that the scatter radiation caused inaccurate reconstruction of the x-ray attenuation property of the tissue. X-ray attenuation coefficients could be significantly underestimated in the region where scatter intensity is high. This phenomenon is similar to the cupping artifacts found in computed tomography. The scatter correction is important if accurate x-ray attenuation of the tissues is needed. No significant improvement in terms of numbers of detected image features was observed after scatter correction. More sophisticated phantom dedicated to digital breast tomosynthesis may be needed for further evaluation.

Paper Details

Date Published: 13 March 2009
PDF: 13 pages
Proc. SPIE 7258, Medical Imaging 2009: Physics of Medical Imaging, 72585Y (13 March 2009); doi: 10.1117/12.814130
Show Author Affiliations
Bob Liu, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Xinhua Li, Massachusetts General Hospital (United States)

Published in SPIE Proceedings Vol. 7258:
Medical Imaging 2009: Physics of Medical Imaging
Ehsan Samei; Jiang Hsieh, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?