Share Email Print
cover

Proceedings Paper

A PDE approach for quantifying and visualizing tumor progression and regression
Author(s): Benjamin J. Sintay; J. Daniel Bourland
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Quantification of changes in tumor shape and size allows physicians the ability to determine the effectiveness of various treatment options, adapt treatment, predict outcome, and map potential problem sites. Conventional methods are often based on metrics such as volume, diameter, or maximum cross sectional area. This work seeks to improve the visualization and analysis of tumor changes by simultaneously analyzing changes in the entire tumor volume. This method utilizes an elliptic partial differential equation (PDE) to provide a roadmap of boundary displacement that does not suffer from the discontinuities associated with other measures such as Euclidean distance. Streamline pathways defined by Laplace's equation (a commonly used PDE) are used to track tumor progression and regression at the tumor boundary. Laplace's equation is particularly useful because it provides a smooth, continuous solution that can be evaluated with sub-pixel precision on variable grid sizes. Several metrics are demonstrated including maximum, average, and total regression and progression. This method provides many advantages over conventional means of quantifying change in tumor shape because it is observer independent, stable for highly unusual geometries, and provides an analysis of the entire three-dimensional tumor volume.

Paper Details

Date Published: 13 March 2009
PDF: 8 pages
Proc. SPIE 7261, Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling, 72612F (13 March 2009); doi: 10.1117/12.813751
Show Author Affiliations
Benjamin J. Sintay, Wake Forest Univ. School of Medicine (United States)
J. Daniel Bourland, Wake Forest Univ. School of Medicine (United States)


Published in SPIE Proceedings Vol. 7261:
Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling
Michael I. Miga; Kenneth H. Wong, Editor(s)

© SPIE. Terms of Use
Back to Top