Share Email Print

Proceedings Paper

Impact of scattered radiation on spectral CT
Author(s): Jens Wiegert; Klaus Jürgen Engel; Christoph Herrmann
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In "Spectral CT" based on energy-resolving photon-counting detectors (also "multi-energy CT") spectral information of transmitted X-radiation is measured in order to extract additional information about the material composition of the scanned object. Common practice is to decompose the attenuation line integrals into several components based on models of physical (e.g. photo/Compton/K-edge) or material properties (e.g. water/calcium). Scattered radiation causes a significant deterioration to the results, which are obtained with these models, as the measured spectrum in a specific detector element contains additional contributions which are not related to the attenuation in the respective line integral of the beam. In this paper the detrimental impact of scattered radiation in multi-energy CT is quantitatively analyzed by means of Monte-Carlo simulations. Large projection data sets of full rotational acquisitions are computed by combining noise-free analytical primary radiation with Monte-Carlo calculated scattered radiation of high statistical accuracy. The simulations show that, compared to the primary spectrum, the scatter spectrum is significantly shifted towards lower energies resulting in very high scatter-to-primary ratios for energies below 50keV. In the analysis of sinograms and reconstructed data using extended Alvarez-Macovsky decomposition into Photo-, Compton-, and K-edge images, it is revealed that scattered radiation causes significant inhomogeneity artifacts especially in the Photo image. Additionally "crosstalk" between Photo-, Compton- and K-edge images is found as K-edge structures appear in the other images and vice versa. Quantitatively it is found that due to scatter the reconstructed concentration of the K-edge material is up to 23 % smaller than its correct value.

Paper Details

Date Published: 14 March 2009
PDF: 10 pages
Proc. SPIE 7258, Medical Imaging 2009: Physics of Medical Imaging, 72583X (14 March 2009); doi: 10.1117/12.813674
Show Author Affiliations
Jens Wiegert, Philips Research (Germany)
Klaus Jürgen Engel, Philips Research (Germany)
Christoph Herrmann, Philips Research (Germany)

Published in SPIE Proceedings Vol. 7258:
Medical Imaging 2009: Physics of Medical Imaging
Ehsan Samei; Jiang Hsieh, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?