Share Email Print

Proceedings Paper

Incremental classification learning for anomaly detection in medical images
Author(s): Balathasan Giritharan; Xiaohui Yuan; Jianguo Liu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Computer-aided diagnosis usually screens thousands of instances to find only a few positive cases that indicate probable presence of disease.The amount of patient data increases consistently all the time. In diagnosis of new instances, disagreement occurs between a CAD system and physicians, which suggests inaccurate classifiers. Intuitively, misclassified instances and the previously acquired data should be used to retrain the classifier. This, however, is very time consuming and, in some cases where dataset is too large, becomes infeasible. In addition, among the patient data, only a small percentile shows positive sign, which is known as imbalanced data.We present an incremental Support Vector Machines(SVM) as a solution for the class imbalance problem in classification of anomaly in medical images. The support vectors provide a concise representation of the distribution of the training data. Here we use bootstrapping to identify potential candidate support vectors for future iterations. Experiments were conducted using images from endoscopy videos, and the sensitivity and specificity were close to that of SVM trained using all samples available at a given incremental step with significantly improved efficiency in training the classifier.

Paper Details

Date Published: 27 February 2009
PDF: 8 pages
Proc. SPIE 7260, Medical Imaging 2009: Computer-Aided Diagnosis, 72603W (27 February 2009); doi: 10.1117/12.812463
Show Author Affiliations
Balathasan Giritharan, Univ. of North Texas (United States)
Xiaohui Yuan, Univ. of North Texas (United States)
Jianguo Liu, Univ. of North Texas (United States)

Published in SPIE Proceedings Vol. 7260:
Medical Imaging 2009: Computer-Aided Diagnosis
Nico Karssemeijer; Maryellen L. Giger, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?