Share Email Print

Proceedings Paper

Quantification and validation of soft tissue deformation
Author(s): Thomas H. Mosbech; Bjarne K. Ersbøll; Lars B. Christensen
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised by radial basis functions with compact support. The parameterisation yields an absolute error with mean 0.20 mm, median 0.13 mm and standard deviation 0.21 mm (not cross validated). We use the parameterisation to form a statistical deformation model applying principal component analysis on the estimated deformation parameters. The model is successfully validated using leave-one-out cross validation by subject, achieving a sufficient level of precision using only the first two principal modes; mean 1.22 mm, median 1.11 mm and standard deviation 0.67 mm.

Paper Details

Date Published: 27 February 2009
PDF: 8 pages
Proc. SPIE 7262, Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging, 72621D (27 February 2009); doi: 10.1117/12.811986
Show Author Affiliations
Thomas H. Mosbech, Danmarks Tekniske Univ. (Denmark)
Bjarne K. Ersbøll, Danmarks Tekniske Univ. (Denmark)
Lars B. Christensen, Danish Meat Association (Denmark)

Published in SPIE Proceedings Vol. 7262:
Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging
Xiaoping P. Hu; Anne V. Clough, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?