Share Email Print

Proceedings Paper

Spatial frequency characteristics at image decision-point locations for observers with different radiological backgrounds in lung nodule detection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.

Paper Details

Date Published: 12 March 2009
PDF: 9 pages
Proc. SPIE 7263, Medical Imaging 2009: Image Perception, Observer Performance, and Technology Assessment, 72630I (12 March 2009); doi: 10.1117/12.810063
Show Author Affiliations
Mariusz W. Pietrzyk, Univ. of Cumbria (United Kingdom)
Lancaster Univ. (United Kingdom)
David J. Manning, Univ. of Cumbria (United Kingdom)
Alan Dix, Lancaster Univ. (United Kingdom)
Tim Donovan, Univ. of Cumbria (United Kingdom)

Published in SPIE Proceedings Vol. 7263:
Medical Imaging 2009: Image Perception, Observer Performance, and Technology Assessment
Berkman Sahiner; David J. Manning, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?