Share Email Print

Proceedings Paper

Large spectral tuning of liquid microdroplets by local heating with a focused infrared laser
Author(s): Alper Kiraz; Yasin Karadağ; Saime Ç. Yorulmaz; Metin Muradoğlu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Large deformations can easily be introduced in liquid microdroplets by applying relatively small external forces or controlling the evaporation/condensation kinetics. This makes liquid microdroplets attractive to serve as the building blocks of largely tunable optical switches or filters that are essential in optical communication systems based on wavelength division multiplexing. Solid optical microcavities have not found large use in these applications, mainly due to their rigid nature. The fact that liquid microdroplets are low-cost and disposable can also prove to be important in mass production of these photonic devices. Here, we show that local heating with an infrared laser can be used to largely tune the whispering gallery modes (WGMs) of water/glycerol or salty water microdroplets standing on a superhydrophobic surface. In the scheme presented, a liquid microdroplet kept in a humidity chamber is stabilized on a superhydrophobic surface, and an infrared laser beam is focused near the center of the microdroplet. As a result of the local heating, the temperature of the liquid microdroplet increases, and the water content in the liquid microdroplet evaporates until a new equilibrium is reached. At the new equilibrium state, the non-volatile component (i.e. glycerol or salt) attains a higher concentration in the liquid microdroplet. We report tunability over large spectral ranges up to 30 nm at around 590 nm. For salty water microdroplets the reported spectral tuning mechanism is almost fully reversible, while for the case of glycerol/water microdroplets the spectral tuning mechanism can be made highly reversible when the chamber is saturated with glycerol vapor and the relative water humidity approaches unity.

Paper Details

Date Published: 29 August 2008
PDF: 8 pages
Proc. SPIE 7038, Optical Trapping and Optical Micromanipulation V, 70381I (29 August 2008); doi: 10.1117/12.794624
Show Author Affiliations
Alper Kiraz, Koç Univ. (Turkey)
Yasin Karadağ, Koç Univ. (Turkey)
Saime Ç. Yorulmaz, Koç Univ. (Turkey)
Metin Muradoğlu, Koç Univ. (Turkey)

Published in SPIE Proceedings Vol. 7038:
Optical Trapping and Optical Micromanipulation V
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?