Share Email Print

Proceedings Paper

Nanomanufacturing via fast laser-induced self-organization in thin metal films
Author(s): C. Favazza; H. Krishna; R. Sureshkumar; R. Kalyanaraman
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Robust nanomanufacturing methodologies are crucial towards realizing simple and cost-effective products. Here we discuss nanofabrication of ordered metal nanoparticles through pulsed-laser-induced self-organization. When ultrathin metal films are exposed to short laser pulses, spontaneous pattern formation results under appropriate conditions. Under uniform laser irradiation two competing modes of self-organization are observed. One, a thin film hydrodynamic dewetting instability due to the competition between surface tension and attractive van derWaals interactions, results in nanoparticles with well-defined and predictable interparticle spacings and sizes with short range spatial order. The second, thermocapillary flow due to interference between the incident beam and a scattered surface wave, results in laser induced periodic surface structures. Non-uniform laser irradiation, such as by 2-beam laser interference irradiation, initiates a tunable thermocapillary effect in the film giving rise to nanowires, and continued laser irradiation leads to a Rayleigh-like breakup of the nanowires producing nanoparticles with spatial long-range and short-range order. These self-organizing approaches appear to be applicable to a variety of metal films, including Co, Cu, Ag, Fe, Ni, Pt, Zn, Ti, V and Mn. These results suggest that laser-induced self-organization in thin films could be an attractive route to nanomanufacture well-defined nanoparticle arrangements for applications in optical information processing, sensing and solar energy harvesting.

Paper Details

Date Published: 10 September 2007
PDF: 8 pages
Proc. SPIE 6648, Instrumentation, Metrology, and Standards for Nanomanufacturing, 664809 (10 September 2007); doi: 10.1117/12.734490
Show Author Affiliations
C. Favazza, Washington Univ. in St. Louis (United States)
H. Krishna, Washington Univ. in St. Louis (United States)
R. Sureshkumar, Washington Univ. in St. Louis (United States)
R. Kalyanaraman, Washington Univ. in St. Louis (United States)

Published in SPIE Proceedings Vol. 6648:
Instrumentation, Metrology, and Standards for Nanomanufacturing
Michael T. Postek; John A. Allgair, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?