Share Email Print

Proceedings Paper

Maximising information recovery from rank-order codes
Author(s): B. Sen; S. Furber
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The central nervous system encodes information in sequences of asynchronously generated voltage spikes, but the precise details of this encoding are not well understood. Thorpe proposed rank-order codes as an explanation of the observed speed of information processing in the human visual system. The work described in this paper is inspired by the performance of SpikeNET, a biologically inspired neural architecture using rank-order codes for information processing, and is based on the retinal model developed by VanRullen and Thorpe. This model mimics retinal information processing by passing an input image through a bank of Difference of Gaussian (DoG) filters and then encoding the resulting coefficients in rank-order. To test the effectiveness of this encoding in capturing the information content of an image, the rank-order representation is decoded to reconstruct an image that can be compared with the original. The reconstruction uses a look-up table to infer the filter coefficients from their rank in the encoded image. Since the DoG filters are approximately orthogonal functions, they are treated as their own inverses in the reconstruction process. We obtained a quantitative measure of the perceptually important information retained in the reconstructed image relative to the original using a slightly modified version of an objective metric proposed by Petrovic. It is observed that around 75% of the perceptually important information is retained in the reconstruction. In the present work we reconstruct the input using a pseudo-inverse of the DoG filter-bank with the aim of improving the reconstruction and thereby extracting more information from the rank-order encoded stimulus. We observe that there is an increase of 10 - 15% in the information retrieved from a reconstructed stimulus as a result of inverting the filter-bank.

Paper Details

Date Published: 9 April 2007
PDF: 12 pages
Proc. SPIE 6570, Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2007, 65700C (9 April 2007); doi: 10.1117/12.717799
Show Author Affiliations
B. Sen, Univ. of Manchester (United Kingdom)
S. Furber, Univ. of Manchester (United Kingdom)

Published in SPIE Proceedings Vol. 6570:
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2007
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?