Share Email Print

Proceedings Paper

Functional and cellular responses to laser injury in the rat snake retina
Author(s): Randolph D. Glickman; W. Rowe Elliott III; Neeru Kumar
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Acute (1-hr, 6-hr) and longer term (24-hr) effects of laser injury on retinal function and cellular responses have been studied in the Great Plains rat snake, Elaphe guttata emoryi. This animal is of interest for vision research because its eye has an all-cone retina. A linear array of 5 thermal lesions was placed in the retina of anesthetized animals, near the area centralis, using a Nd:VO4 laser (532 nm), that delivered 50 mW per 10-msec pulse. Retinal function was assessed with the pattern electroretinogram (PERG), recorded before and after the placement of the lesions. PERGs were elicited with counterphased square-wave gratings, and were analyzed by Fourier analysis. The fate of lesioned cells was assessed by immunohistological staining for the transcription factor, NF-&kgr;B (which is activated by ionizing and nonionizing radiation), as well as for the apoptosis marker, caspase-9. The normal snake PERG had the maximum, real amplitude frequency component, determined by Fourier analysis, at the reversal frequency of the grating (i.e. shifts/sec). In the hour following the lesion-producing laser exposures, the PERG response exhibited frequency doubling, i.e. a new response waveform appeared at twice the reversal frequency. By 24-hr post exposure, many lesioned photoreceptors stained positively for both NF-&kgr;B and caspase 9. Because the PERG largely reflects retinal ganglion cell activity, the appearance of frequency doubling in the PERG suggests that complementary (push-pull) inputs to ganglion cells are disrupted by the laser lesions. The immunohistological results indicate that activation of NF- B is not necessarily associated with photoreceptor survival after a laser injury.

Paper Details

Date Published: 21 February 2007
PDF: 11 pages
Proc. SPIE 6435, Optical Interactions with Tissue and Cells XVIII, 643511 (21 February 2007); doi: 10.1117/12.698801
Show Author Affiliations
Randolph D. Glickman, Univ. of Texas Health Science Ctr. at San Antonio (United States)
W. Rowe Elliott III, Naval Health Research Ctr. (United States)
Neeru Kumar, Univ. of Texas Health Science Ctr. at San Antonio (United States)

Published in SPIE Proceedings Vol. 6435:
Optical Interactions with Tissue and Cells XVIII
Steven L. Jacques; William P. Roach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?