Share Email Print

Proceedings Paper

A novel multipurpose tree and path matching algorithm with application to airway trees
Author(s): Jens N. Kaftan; Atilla P. Kiraly; David P. Naidich; Carol L. Novak
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Tree matching methods have numerous applications in medical imaging, including registration, anatomical labeling, segmentation, and navigation of structures such as vessels and airway trees. Typical methods for tree matching rely on conventional graph matching techniques and therefore suffer potential limitations such as sensitivity to the accuracy of the extracted tree structures, as well as dependence on the initial alignment. We present a novel path-based tree matching framework independent of graph matching. It is based on a point-by-point feature comparison of complete paths rather than branch points, and consequently is relatively unaffected by spurious airways and/or missing branches. A matching matrix is used to enforce one-to-one matching. Moreover our method can reliably match irregular tree structures, resulting from imperfect segmentation and centerline extraction. Also reflecting the nature of these features, our method does not require a precise alignment or registration of tree structures. To test our method we used two thoracic CT scans from each of ten patients, with a median inter-scan interval of 3 months (range 0.5 to 10 months). The bronchial tree structure was automatically extracted from each scan and a ground truth of matching paths was established between each pair of tree structures. Overall 87% of 702 airway paths (average 35.1 per patient matched both ways) were correctly matched using this technique. Based on this success we also present preliminary results of airway-to-artery matching using our proposed methodology.

Paper Details

Date Published: 13 March 2006
PDF: 10 pages
Proc. SPIE 6143, Medical Imaging 2006: Physiology, Function, and Structure from Medical Images, 61430N (13 March 2006); doi: 10.1117/12.652440
Show Author Affiliations
Jens N. Kaftan, RWTH Aachen Univ. (Germany)
Atilla P. Kiraly, Siemens Corporate Research (United States)
David P. Naidich, New York Univ. Medical Ctr. (United States)
Carol L. Novak, Siemens Corporate Research (United States)

Published in SPIE Proceedings Vol. 6143:
Medical Imaging 2006: Physiology, Function, and Structure from Medical Images
Armando Manduca; Amir A. Amini, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?