Share Email Print

Proceedings Paper

Feature extraction with modified Fisher’s linear discriminant analysis
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hyperspectral remotely sensed imagery is rapidly developed recently. It collects radiance from the ground with hundreds of channels which results in hundreds of co-registered images. How to process this huge amount of data is a great challenge. Feature extraction methods are designed to remove redundant and remain useful information in the hyperspectral images. Many feature extraction approaches have been developed in the past, including the well known Principal Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (LDA). The PCA is designed to search for directions with maximum variances. It compress most of the signal in the first a few principal components, but the experimental result shows that the extracted features by PCA does not perform well for target classification. On the other hand, Fisher's LDA is designed target classification, which maximize the between class distance while minimize the within class distance, but it can only find number of features which equal to the number of classes minus one. This will become a problem for subpixel target classification. Under this circumstance, this paper presents a modified Fisher's LDA which can extract features more than number of classes. The experiments are conducted to compare the classification results of PCA, Fisher's LDA and proposed method.

Paper Details

Date Published: 4 November 2005
PDF: 7 pages
Proc. SPIE 5995, Chemical and Biological Standoff Detection III, 599506 (4 November 2005); doi: 10.1117/12.631885
Show Author Affiliations
Hsuan Ren, National Central Univ. (Taiwan)
Yang-Lang Chang, National Taipei Univ. of Technology (Taiwan)

Published in SPIE Proceedings Vol. 5995:
Chemical and Biological Standoff Detection III
James O. Jensen; Jean-Marc Thériault, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?