
Proceedings Paper
Optical antenna arrays of carbon nanotubes and their fabrication on polyimide and transparent conducting oxides for direct device integrationFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Vertically-aligned carbon nanotubes/nanofibers grown on various substrates by a direct-current plasma-enhanced chemical vapor deposition method have been shown experimentally to function as classical low-loss dipole antenna arrays at optical frequencies. Two fundamental antenna effects, e.g., the polarization effect and length matching effect, directly observed on large-scale CNT arrays in visible frequency range, hold them promising for industry-level fabrication of devices including linear/beam-splitting polarizers, solar energy converters, THz demodulators, etc., some of which will, however, require or prefer a flexible and/or transparent conducting substrate to be compatible for multi-level integration and low-cost manufacturing process. A low-energy dark discharge fabrication technique is therefore devised which successfully yields CNT antennas directly on polyimide films and transparent conducting oxides (ITO, ZnO) with the absence of a buffer layer.
Paper Details
Date Published: 16 November 2005
PDF: 14 pages
Proc. SPIE 6003, Nanostructure Integration Techniques for Manufacturable Devices, Circuits, and Systems: Interfaces, Interconnects, and Nanosystems, 60030V (16 November 2005); doi: 10.1117/12.630727
Published in SPIE Proceedings Vol. 6003:
Nanostructure Integration Techniques for Manufacturable Devices, Circuits, and Systems: Interfaces, Interconnects, and Nanosystems
Minoru M. Freund; M. Saif Islam; Achyut K. Dutta, Editor(s)
PDF: 14 pages
Proc. SPIE 6003, Nanostructure Integration Techniques for Manufacturable Devices, Circuits, and Systems: Interfaces, Interconnects, and Nanosystems, 60030V (16 November 2005); doi: 10.1117/12.630727
Show Author Affiliations
Published in SPIE Proceedings Vol. 6003:
Nanostructure Integration Techniques for Manufacturable Devices, Circuits, and Systems: Interfaces, Interconnects, and Nanosystems
Minoru M. Freund; M. Saif Islam; Achyut K. Dutta, Editor(s)
© SPIE. Terms of Use
