Share Email Print

Proceedings Paper

Potential of MBE for gallium nitride based lasers
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Up until recently the successful growth of nitride optoelectronic devices had been demonstrated only with Metal Organic Vapor Phase Epitaxy (MOVPE) due to the possibility of growth of GaN at temperatures which exceed 1000C. Molecular Beam Epitaxy (MBE) seemed to be less adapted for this purpose. It was believed that MBE can give good results only if the growth conditions are close to these used in MOVPE reacotors. Indeed, the first successful growth of laser diode (LDs) was obtained using ammonia MBE at temperatures as high as 950oC. The new perspective has been opened recently by successful growth of LD structures on nearly dislocation free GaN bulk substrates using Plasma Assisted MBE at much lower temperatures of 590-710oC. The laser structures are deposited on the high-pressure-grown low dislocation bulk GaN substrates taking full advantage of the so called adlayer enhanced lateral diffusion channel for adatoms below the dynamic metallic cover. Devices grown by PAMBE on bulk substrates compare very favorably to the early laser diodes fabricated using the MOVPE technique, providing evidence that the relatively low growth temperatures used in this process pose no intrinsic limitations on the quality of the optoelectronic components. This opened up a number of new possibilities to the low temperature PAMBE including high power blue LDs, green and UV LDs, and quantum cascade lasers.

Paper Details

Date Published: 11 October 2005
PDF: 11 pages
Proc. SPIE 5958, Lasers and Applications, 59580Z (11 October 2005); doi: 10.1117/12.622908
Show Author Affiliations
S. Porowski, Institute of High Pressure Physics PAS (Poland)
C. Skierbiszewski, Institute of High Pressure Physics PAS (Poland)

Published in SPIE Proceedings Vol. 5958:
Lasers and Applications
Krzysztof M. Abramski; Antonio Lapucci; Edward F. Plinski, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?