Share Email Print

Proceedings Paper

Thermally induced magnetic switching in thin ferromagnetic annuli
Author(s): Kirsten Martens; Daniel L. Stein; Andrew D. Kent
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We consider magnetization reversal due to thermal fluctuations in thin, submicron-scale rings. These mesoscopic ferromagnetic particles are of particular interest as potential information storage components in magnetoelectronic devices, because their lack of sharp ends result in a magnetization density that is significantly more stable against reversal than in thin needles and other geometries. Their two-dimensional nature and rotational symmetry allow us to incorporate long-range magnetostatic forces in a fully analytic treatment, which is not possible in most geometries. We uncover a type of 'phase transition' between different activation regimes as magnetic field is varied at fixed ring size. Previous studies of such transitions in classical activation behavior have found that they occur as length is varied, which cannot be realized easily or continuously for most systems. However, the different activation regimes in a single mesoscopic ferromagnet should be experimentally observable by changing the externally applied magnetic field, and by tuning this field the transition region itself can be studied in detail.

Paper Details

Date Published: 23 May 2005
PDF: 11 pages
Proc. SPIE 5845, Noise in Complex Systems and Stochastic Dynamics III, (23 May 2005); doi: 10.1117/12.610493
Show Author Affiliations
Kirsten Martens, Univ. Heidelberg (Germany)
Daniel L. Stein, Univ. of Arizona (United States)
Andrew D. Kent, New York Univ. (United States)

Published in SPIE Proceedings Vol. 5845:
Noise in Complex Systems and Stochastic Dynamics III
Laszlo B. Kish; Katja Lindenberg; Zoltan Gingl, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?