Share Email Print

Proceedings Paper

Temperature sensitive glassware for monitoring liquid or surface temperatures in a high power microwave environment
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Temperature sensitive glassware has been developed to monitor liquid chemical temperature in a microwave environment. A combination of two phosphor powders is coated to the base of a Pyrex beaker & Quartz tube, which fluoresce under blue light stimulation. These temperature sensitive glassware monitors changes in liquid or surface temperature by observing ratios of peak emission intensities of the phosphors. The temperature sensitive Pyrex beaker is placed on an oven so that surface temperature can be accurately monitored. A fabricated coated Quartz tube is placed in an Industrial Free Electron Laser (IFEL), which provides the necessary microwave radiation to heat liquids and therefore provide liquid measurements. This paper describes the testing of the coating and its application in monitoring liquid temperature in an Industrial Free Electron Laser.

Paper Details

Date Published: 3 June 2005
PDF: 9 pages
Proc. SPIE 5826, Opto-Ireland 2005: Optical Sensing and Spectroscopy, (3 June 2005); doi: 10.1117/12.605331
Show Author Affiliations
M. McSherry, Univ. of Limerick (Ireland)
C. Fitzpatrick, Univ. of Limerick (Ireland)
E. Lewis, Univ. of Limerick (Ireland)

Published in SPIE Proceedings Vol. 5826:
Opto-Ireland 2005: Optical Sensing and Spectroscopy
Gerard D. O'Sullivan; Brian D. MacCraith; Hugh James Byrne; Enda McGlynn; Alan G. Ryder, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?