Share Email Print

Proceedings Paper

Multiresolution-fractal feature extraction and tumor detection: analytical model and implementation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose formal analytical models for identification of tumors in medical images based on the hypothesis that the tumors have a fractal (self-similar) growth behavior. Therefore, the images of these tumors may be characterized as Fractional Brownian motion (fBm) processes with a fractal dimension (D) that is distinctly different than that of the image of the surrounding tissue. In order to extract the desired features that delineate different tissues in a MR image, we study multiresolution signal decomposition and its relation to fBm. The fBm has proven successful to modeling a variety of physical phenomena and non-stationary processes, such as medical images, that share essential properties such as self-similarity, scale invariance and fractal dimension (D). We have developed the theoretical framework that combines wavelet analysis with multiresolution fBm to compute D.

Paper Details

Date Published: 13 November 2003
PDF: 12 pages
Proc. SPIE 5207, Wavelets: Applications in Signal and Image Processing X, (13 November 2003); doi: 10.1117/12.504091
Show Author Affiliations
Khan M. Iftekharuddin, Univ. of Memphis (United States)
Carlos Parra, Univ. of Memphis (United States)

Published in SPIE Proceedings Vol. 5207:
Wavelets: Applications in Signal and Image Processing X
Michael A. Unser; Akram Aldroubi; Andrew F. Laine, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?