Share Email Print

Proceedings Paper

Optimal tree approximation with wavelets
Author(s): Richard G. Baraniuk
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The more a priori knowledge we encode into a signal processing algorithm, the better performance we can expect. In this paper, we overview several approaches to capturing the structure of singularities (edges, ridges, etc.) in wavelet-based signal processing schemes. Leveraging results from approximation theory, we discuss nonlinear approximations on trees and point out that an optimal tree approximant exists and is easily computed. The optimal tree approximation inspires a new hierarchical interpretation of the wavelet decomposition and a tree-based wavelet denoising algorithm that suppresses spurious noise bumps.

Paper Details

Date Published: 26 October 1999
PDF: 12 pages
Proc. SPIE 3813, Wavelet Applications in Signal and Image Processing VII, (26 October 1999); doi: 10.1117/12.366780
Show Author Affiliations
Richard G. Baraniuk, Rice Univ. (United States)

Published in SPIE Proceedings Vol. 3813:
Wavelet Applications in Signal and Image Processing VII
Michael A. Unser; Akram Aldroubi; Andrew F. Laine, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?