Share Email Print
cover

Proceedings Paper • new

Enhance anti-water ability of high transmittance film in mid-infrared band
Author(s): Xiuhua Fu; Gong Zhang; Jing Zhang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In order to obtain high-performance short-mid infrared anti-reflection membrane, Si, SiO, and MgF2 are used to design the system structure, in which MgF2 is located in the outermost layer and expose in the atmosphere. However, due to the porous structure of fluoride thin film, the peaking density of MgF2 film is low, which is prone to the moisture absorbing. The water vapor comes into the film not only caused the transmittance decrease but also lead to the poor adhesion. The excessive power of ion source assisted deposition increases the stress of MgF2 film, resulting in the stress mismatch between MgF2 film and the previous Si layer, caused the MgF2 film cracks. To improve the adhesion of the film, this paper invests a way to matching stress by plating bond layer between MgF2 and Si, and adopts the step annealing process combined with ion beam assisted deposition to improve the film aggregation density and decrease the absorption of water vapor, and further reduce the film stress. The spectral transmittance of prepared films is greater than 96% in1.5~5μm. After 7 days, the spectral transmittance decreased by only 0.6% and remained stable for the next 30 days. The prepared film with high quality can through 10 times adhesive test without fracture.

Paper Details

Date Published: 8 July 2019
PDF: 7 pages
Proc. SPIE 11064, Tenth International Conference on Thin Film Physics and Applications (TFPA 2019), 1106408 (8 July 2019); doi: 10.1117/12.2538335
Show Author Affiliations
Xiuhua Fu, Changchun Univ. of Science and Technology (China)
Gong Zhang, Changchun Univ. of Science and Technology (China)
Jing Zhang, Changchun Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 11064:
Tenth International Conference on Thin Film Physics and Applications (TFPA 2019)
Junhao Chu; Jianda Shao, Editor(s)

© SPIE. Terms of Use
Back to Top