Share Email Print

Proceedings Paper

Towards biomimetic red solar cells
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Silicon photovoltaic solar cells generally have a black or blue appearance that makes them aesthetically very different from traditional red roofs that either comprise burned-clay tiles or composite-material shingles. Rooftop solar cells may become more acceptable if they are similar in appearance to traditional roofs. This objective requires that the red part (620–700 nm wavelength) of the incoming solar spectrum be reflected so that it becomes unavailable for photovoltaic generation of electricity. Complete reflection of red photons would result in the reduction of useful solar photons (300– 1200 nm wavelength) by 12.5%. Calculations show that the optical short-circuit density will then decline by: 17% for 100-μm-thick crystalline-silicon solar cells, 20–22% for triple-junction tandem thin-film solar cells of amorphous silicon, 15-16% for 2.2-μm-thick CIGS solar cells, and 16–20% for ultrathin CIGS solar cells. On average, the efficiency of a typical solar cell will have to be multiplied by a factor of 0.8 if all red photons were reflected. This reduction in efficiency can be offset by wider adoption of rooftop solar cells. Red-rejection filters can be made of particulate composite materials containing, say, silica nanospheres. Typically, the solar cells will be iridescent then, which may not be aesthetically pleasing to many. Non-iridescent red-rejection filters can be fabricated by upscaling the linear dimensions of biomimetic filters nano-imprinted to reproduce the Morpho blue, this possibility being guaranteed by the scale invariance of the Maxwell equations and the weak dispersion of the refractive indexes of numerous polymers in the visible spectral regime. Non-uniformly red rooftop solar cells would also become feasible.

Paper Details

Date Published: 13 March 2019
PDF: 14 pages
Proc. SPIE 10965, Bioinspiration, Biomimetics, and Bioreplication IX, 109650E (13 March 2019);
Show Author Affiliations
Torben Lenau, Technical Univ. of Denmark (Denmark)
Faiz Ahmad, The Pennsylvania State Univ. (United States)
Akhlesh Lakhtakia, The Pennsylvania State Univ. (United States)
Indian Institute of Technology (India)

Published in SPIE Proceedings Vol. 10965:
Bioinspiration, Biomimetics, and Bioreplication IX
Raúl J. Martín-Palma; Mato Knez; Akhlesh Lakhtakia, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?