Share Email Print

Proceedings Paper

Frequency-dependent MTF and DQE of photon-counting x-ray imaging detectors (Conference Presentation)

Paper Abstract

Theoretical modeling of the performance of x-ray imaging detectors enables understanding relationships between the physics of x-ray detection and x-ray image quality, and enables theoretical optimization of novel x-ray imaging techniques and technologies. We present an overview of a framework for theoretical modeling of the frequency-dependent signal and noise properties of single-photon-counting (SPC) and energy-resolving x-ray imaging detectors. We show that the energy-response function, large-area gain, modulation transfer function (MTF), noise power spectrum (NPS) (including spatio-energetic noise correlations) and detective quantum efficiency (DQE) of SPC and energy-resolving x-ray imaging detectors are related through the probability density function (PDF) describing the number electron-hole (e-h) pairs collected in detector elements following individual x-ray interactions. We demonstrate how a PDF-transfer approach can be used to model analytically the MTF and NPS, including spatio-energetic noise correlations, of SPC and energy-resolving x-ray imaging detectors. Our approach enables modeling the combined effects of stochastic conversion gain, electronic noise, characteristic emission, characteristic reabsorption, coulomb repulsion and diffusion of e-h pairs and energy thresholding on the MTF and NPS. We present applications of this framework to (1) analysis of the frequency-dependent DQE of SPC systems that use cadmium telluride (CdTe) x-ray converters, and (2) analysis of spatio-energetic noise correlations in CdTe energy-resolving x-ray detectors. The developed framework provides a platform for theoretical optimization of next-generation SPC and energy-resolving x-ray imaging detectors.

Paper Details

Date Published: 14 March 2019
Proc. SPIE 10948, Medical Imaging 2019: Physics of Medical Imaging, 109481X (14 March 2019); doi: 10.1117/12.2512964
Show Author Affiliations
Jesse Tanguay, Ryerson Univ. (Canada)
Nicholas Mantella, The Univ. of British Columbia Okanagan (Canada)
Ian A. Cunningham, Western Univ. (Canada)

Published in SPIE Proceedings Vol. 10948:
Medical Imaging 2019: Physics of Medical Imaging
Taly Gilat Schmidt; Guang-Hong Chen; Hilde Bosmans, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?