Share Email Print
cover

Proceedings Paper

Simulation model for evaluating energy-resolving photon-counting CT detectors based on generalized linear-systems framework
Author(s): Mats Persson; Norbert J. Pelc
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Photon counting detectors are interesting candidates for next-generation clinical computed tomography scanners, promising improved contrast-to-noise ratio, spatial resolution and energy information compared to conventional energy-integrating detectors. Most attention is focused on cadmium telluride (CdTe) (or CZT) detectors, but silicon (Si) has been proposed as an alternative. We present detector simulation models fitted to published spectral response data for CdTe and Si, and use linear-systems theory to evaluate the spatial-frequency dependent DQE for lesion quantification and detection. Our fitted spectral response is consistent with Gaussian charge clouds with σ = 20.5 µm independent of energy for CdTe, and σ = 17 µm at 60 keV with an energy dependence of E0.54 for Si. For a silicon strip detector with 0.5 × 0.5 mm2 pixels separated by a 1D grid of 20 µm tungsten foils, the zero-frequency DQE for iodine detection is 0.43 for 30 mm detector absorption length and 0.46 for 60 mm detector absorption length. For iodine quantification in a water-iodine decomposition, the DQE is 0.26 for 30 mm and 0.27 for 60 mm Si. Compared to this detector, the DQE of a 1.6 mm thick CdTe detector with 0.225 mm pixels and two energy bins is 11-36 % higher for water and iodine detection but 28-51 % lower for material quantification. The predicted performance of Si is competitive with CdTe, suggesting that further consideration is warranted.

Paper Details

Date Published: 1 March 2019
PDF: 12 pages
Proc. SPIE 10948, Medical Imaging 2019: Physics of Medical Imaging, 109481V (1 March 2019); doi: 10.1117/12.2512593
Show Author Affiliations
Mats Persson, Stanford Univ. (United States)
Norbert J. Pelc, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 10948:
Medical Imaging 2019: Physics of Medical Imaging
Taly Gilat Schmidt; Guang-Hong Chen; Hilde Bosmans, Editor(s)

© SPIE. Terms of Use
Back to Top