Share Email Print

Proceedings Paper

Toward employing the full potential of magnetic particle imaging: exploring visualization techniques and clinical use cases for real-time 3D vascular imaging
Author(s): René Werner; Dominik Weller; Johannes Salamon; Martin Möddel; Tobias Knopp
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Magnetic particle imaging (MPI) is a relatively young, radiation-free imaging modality that measures the interaction between superparamagnetic nanoparticles and magnetic fields. Compared to standard imaging modalities, a key feature of MPI is its ability to measure 3D volumes of relatively high spatial resolution in real-time, while still maintaining high sensitivity. Therefore, MPI is considered promising especially for vascular imaging and interventions. Yet, to fully take advantage of the unique MPI properties, real-time 4D imaging has to be combined with appropriate real-time 4D visualization and image analysis techniques. The current work aims at identification of respective clinical use cases and scenarios to illustrate the potential of MPI in the context of vascular imaging and interventions; the implementation and exploration of suitable visualization and image analysis techniques; and evaluation and comparison of the resulting image data to standard clinical imaging approaches. The study is based on three clinical use cases and associated anatomical sites: mechanical thrombectomy (anatomical structure: middle cerebral artery, segments M1 and M2); endovascular coiling (internal carotid artery aneurysm); and chemoembolization (proper hepatic artery). Implemented visualization and image analysis options are based on direct volume rendering and cover aspects like optimal view point and view angle selection and application of cut-away views. We illustrate that combining MPI imaging and 4D visualization helps to improve vascular image interpretation.

Paper Details

Date Published: 15 March 2019
PDF: 6 pages
Proc. SPIE 10953, Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, 109531V (15 March 2019); doi: 10.1117/12.2512442
Show Author Affiliations
René Werner, Universitätsklinikum Hamburg-Eppendorf (Germany)
Dominik Weller, Universitätsklinikum Hamburg-Eppendorf (Germany)
Johannes Salamon, Universitätsklinikum Hamburg-Eppendorf (Germany)
Martin Möddel, Universitätsklinikum Hamburg-Eppendorf (Germany)
Technische Univ. Hamburg-Harburg (Germany)
Tobias Knopp, Universitätsklinikum Hamburg-Eppendorf (Germany)
Technische Univ. Hamburg-Harburg (Germany)

Published in SPIE Proceedings Vol. 10953:
Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging
Barjor Gimi; Andrzej Krol, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?